Normality through sharing of pairs of functions with derivatives

Kuldeep Singh Charak ${ }^{\text {a }}$, Manish Kumar ${ }^{\text {a,** }}$, Anil Singh ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Jammu, Jammu-180006, India
${ }^{b}$ Department of Mathematics, Maulana Azad Memorial College, Jammu-180006, India

Abstract

Let $\mathcal{F} \subset \mathcal{M}(D)$ and let a, b and c be three distinct complex numbers. If, there exist a holomorphic function h on D and a positive constant ρ such that for each $f \in \mathcal{F}, f$ and f^{\prime} partially share three pairs of functions $(a, h),\left(b, c_{f}\right)$ and $\left(c, d_{f}\right)$ on D, where c_{f} and d_{f} are some values in some punctured disk $D_{\rho}^{*}(0)$, then \mathcal{F} is normal in D. This is an improvement of Schwick's result [Arch. Math. (Basel), 59 (1992), 50-54]. We also obtain several normality criteria which significantly improve the existing results and examples are given to establish the sharpness of results.

1. Introduction

Let $D \subseteq \mathbb{C}$ be a domain. For the sake of convenience we shall denote by $\mathcal{M}(D)$ the class of all meromorphic functions on D, by $\mathcal{H}(D)$ the class of all holomorphic functions on D, and by \mathbb{D} the open unit disk in \mathbb{C}. Let $f \in \mathcal{M}(D)$ and $a \in \mathbb{C} \cup\{\infty\}$. Further, we shall denote by $E_{f}(a)$ the set of a-points of f. When $a=\infty, E_{f}(a)$ means the set of poles of f. Let $a, b \in \mathbb{C} \cup\{\infty\}$. We say that two functions $f, g \in \mathcal{M}(D)$ partially share a pair (a, b) if $z \in E_{f}(a) \Rightarrow z \in E_{g}(b)$. Further, if $E_{f}(a)=E_{g}(b)$, then f and g are said to share the pair (a, b). Clearly, f and g share the value a if they share the pair (a, a).

A family $\mathcal{F} \subset \mathcal{M}(D)$ is said to be normal if each sequence in \mathcal{F} has a subsequence which converges locally uniformly in D with respect to the spherical metric. The limit function lies in $\mathcal{M}(D) \cup\{\infty\}$.

Mues and Steinmetz [6] proved that if f is meromorphic in the plane and if f and f^{\prime} share three values, then $f^{\prime} \equiv f$. Let \mathcal{F} be a subfamily of $\mathcal{M}(D)$ such that for each $f \in \mathcal{F}, f$ and f^{\prime} share three distinct values. In view of Bloch's principle a natural question arises: Can \mathcal{F} be normal in D ? Schwick [8] answered this question affirmatively:
Theorem 1.1. Let $\mathcal{F} \subset \mathcal{M}(D)$ and let a, b and c be three distinct complex numbers. If, for each $f \in \mathcal{F}, f$ and f^{\prime} share three pairs of values $(a, a),(b, b)$ and (c, c), then \mathcal{F} is normal in D.

Several extensions, improvements and related variants of Theorem 1.1 have been obtained by various authors, for example one can see $[3,4,7,10]$. The purpose of this paper is to obtain further improvements of results of Xu [10] and Li and Yi [4].

[^0]
2. Statements of Results

Xu [10] proved that for holomorphic version of Theorem 1.1, the sharing of two distinct values is sufficient to ensure the normality:

Theorem 2.1. Let $\mathcal{F} \subset \mathcal{H}(D)$, and let a and b be two distinct complex numbers. If for each $f \in \mathcal{F}, f$ and f^{\prime} share the pairs of values (a, a) and (b, b), then \mathcal{F} is normal in D.

Lü, Xu and Yi [5] proved Theorem 2.1 by using partial sharing of values:
Theorem 2.2. Let $\mathcal{F} \subset \mathcal{H}(D)$, and let a and b be distinct complex numbers. If for each $f \in \mathcal{F}$, f and f^{\prime} partially share the pairs of values (a, a) and (b, b), then \mathcal{F} is normal in D.

We prove the following result as an improvement of Theorem 1.1 in which we relax the sharing condition by partial sharing and also replace the assumed values a, b, c of f^{\prime} by h, c_{f} and d_{f} respectively, where h is a holomorphic function, and c_{f} and d_{f} are complex values which depend on f :

Theorem 2.3. Let $\mathcal{F} \subset \mathcal{M}(D)$ and let a, b and c be three distinct complex numbers. If, there exist a holomorphic function h on D and a positive constant ρ such that for each $f \in \mathcal{F}, f$ and f^{\prime} partially share three pairs of functions $(a, h),\left(b, c_{f}\right)$ and $\left(c, d_{f}\right)$ on D, where c_{f} and d_{f} are some values in a punctured disk $D_{\rho}^{*}(0)$, then \mathcal{F} is normal in D.

The values c_{f} and d_{f} in Theorem 2.3 need to be in a finite punctured disk as shown by the following example:

Example 2.4. Consider the family $\mathcal{F}:=\left\{f_{n}(z)=\tan n z: n \in \mathbb{N}\right\}$ of meromorphic functions in \mathbb{D}. Then each f_{n} and f_{n}^{\prime} partially share the pairs $(i, h),(-i, 1)$ and $(1,2 n)$, where h can be any holomorphic function on \mathbb{D}. Note that the values $d_{f_{n}}=2 n$ do not lie in any given finite punctured disk. But \mathcal{F} fails to be normal in \mathbb{D}.

The following example shows that the three pairs of functions in Theorem 2.3 can not be replaced by two pairs of functions:

Example 2.5. Consider the family

$$
\mathcal{F}:=\left\{f_{n}(z)=\frac{e^{n z}}{1+e^{n z}}: n \geq 4\right\} \subset \mathcal{M}(\mathbb{D}) .
$$

Note that each $f \in \mathcal{F}$ omits 0 and 1 in \mathbb{D} and therefore, f and f^{\prime} partially shares the pairs of functions $(0, h)$ and $\left(1, c_{f}\right)$, where h can be any holomorphic function and $c_{f} \in \mathbb{C}$. But the family \mathcal{F} is not normal in \mathbb{D} since $f_{n}(0)=1 / 2$ and for each positive real number x in $\mathbb{D}, f_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$.

In the following example, we show that the values b and c in Theorem 2.3 can not be made to depend on f :

Example 2.6. Let $\mathcal{F}:=\left\{f_{n}(z)=1 / n z: n \in \mathbb{N}\right\} \subset \mathcal{M}(\mathbb{D})$. Then, clearly, $f_{n} \neq 0$ and so f_{n} and f_{n}^{\prime} partially share the pair $(0,0)$. Also, f_{n} and f_{n}^{\prime} partially share $(1 / n,-1 / n)$ and $(-1 / n,-1 / n)$. Note the values $b=1 / n$ and $c=-1 / n$ are not fixed and depend on f_{n} and the family \mathcal{F} is not normal at $z=0$.

The holomorphic version of Theorem 2.3 is
Theorem 2.7. Let $\mathcal{F} \subset \mathcal{H}(D)$ and let a and b be two distinct complex numbers. If there exist a holomorphic function h on D and positive constant ρ such that for each $f \in \mathcal{F}, f$ and f^{\prime} partially share the two pairs (a, h) and $\left(b, c_{f}\right)$, where $c_{f} \in D_{\rho}^{*}(0)$, then \mathcal{F} is normal in D.

Note that Theorem 2.7 is an improvement of Theorem 2.2. The values c_{f} in Theorem 2.7 have to be essentially in a finite punctured disk, which is clear from the following example:

Example 2.8. Consider the family

$$
\mathcal{F}:=\left\{f_{n}(z)=e^{n z}: n \in \mathbb{N}\right\} \subset \mathcal{H}(\mathbb{D})
$$

Then f_{n} and f_{n}^{\prime} partially share the pairs $(0,0)$ and $(1, n)$. Note that $c_{f_{n}}=n$ are not contained in any finite disk and the family \mathcal{F} is not normal in \mathbb{D} since $f_{n}(0)=1$ and for each neighborhood N of 0 , we can choose a positive real number $x \in N$ such that $f_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$.

Li and Yi [4] considered partial sharing of the pair of values (a, a) by f and f^{\prime} and another pair of values (b, b) partially shared by f^{\prime} and f, and obtained the following normality criterion:

Theorem 2.9. Let $\mathcal{F} \subset \mathcal{H}(D)$ and let $a, b \in \mathbb{C}$ be distinct such that $b \neq 0$. If for each $f \in \mathcal{F}$, f and f^{\prime} partially share the pair (a, a) and f^{\prime} and f partially share the pair (b, b), then \mathcal{F} is normal in D.

Let $A \subset \mathbb{C}$ and $a \in \mathbb{C}$. For $f, g \in \mathcal{M}(D)$, we shall say that f and g partially share the pair (a, A), if $f(z)=a$ implies $g(z) \in A$.

As an improvement of Theorem 2.9, we have obtained the following result:
Theorem 2.10. Let $\mathcal{F} \subset \mathcal{H}(D)$, and let a and $b \neq 0$ be two distinct complex numbers. Let A be a compact set such that $b \notin A$ and $B=\{z:|z-a| \geq \epsilon\}$, for some $\epsilon>0$. If for each $f \in \mathcal{F}, f$ and f^{\prime} partially share the pair (a, A) and f^{\prime} and f partially share the pair (b, B), then \mathcal{F} is normal in D.

Remark 2.11. After obtaining Theorem 2.10 as an improvement of Theorem 2.9 we came across a result of Sauer and Schweizer [9]: Let \mathcal{F} be a family of holomorphic functions in a domain D. Let a and $b \neq 0$ be two complex numbers such that $b \neq a$, and let A and B be compact subsets of \mathbb{C} with $b \notin A$ and $a \notin B$. If, for each $f \in \mathcal{F}$ and $z \in D, f$ and f^{\prime} partially share the pair (a, A) and f^{\prime} and f partially share the pair (b, B), then \mathcal{F} is normal in D. This result is also an improvement of Theorem 2.9. Theorem 2.10 also provides an improvement of Sauer and Schweizer's result.

The condition 'the set B must be at a positive distance away from the point a ' in Theorem 2.10 cannot be dropped as shown by the following example:

Example 2.12. Let $\mathcal{F}:=\left\{f_{n}(z)=e^{n z}: n \in \mathbb{N}\right\} \subset \mathcal{H}(\mathbb{D})$. Take $a=0$ and $b=1$. Then $f_{n}(z) \neq a$ and $f_{n}^{\prime}(z)=b \Rightarrow$ $f_{n}(z)=1 / n \rightarrow a$. But \mathcal{F} is not normal at $z=0$.

In the next example, we show that the boundedness of set A in Theorem 2.10 can not be relaxed:
Example 2.13. Let $\mathcal{F}:=\left\{f_{n}(z)=e^{n z} / n: n \in \mathbb{N}\right\} \subset \mathcal{H}(\mathbb{D})$. Take $a=1$ and $b=-1$. Then $f_{n}(z)=1 \Rightarrow f_{n}^{\prime}(z)=n \in$ \mathbb{N} and $f_{n}^{\prime}(z)=-1 \Rightarrow f_{n}(z)=-1 / n \in\{z:|z-1| \geq 1\}$. But \mathcal{F} is not normal at $z=0$ since $f_{n}(0)=1 / n \rightarrow 0$ as $n \rightarrow \infty$ and for any positive real number $x, f_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$.

Another variant of Theorem 2.10 is obtained as:
Theorem 2.14. Let $\mathcal{F} \subset \mathcal{H}(D)$ be such that zeros of each $f \in \mathcal{F}$ have multiplicity at least k, where $k \in \mathbb{N}$ and $b(\neq 0) \in \mathbb{C}$. Let A be a compact set and $B=\{z:|z| \geq \epsilon\}$ for some $\epsilon>0$. If for each $f \in \mathcal{F}, f$ and $f^{(k)}$ partially share the pair $(0, A)$ and $f^{(k)}$ and f partially share the pair (b, B) in D, then \mathcal{F} is normal in D.

The condition ' $b \neq 0$ ' in Theorem 2.14 can not be dropped, as can be seen from the following example:
Example 2.15. Let $\mathcal{F}:=\left\{e^{n z}: n \in \mathbb{N}\right\} \subset \mathcal{H}(\mathbb{D})$. Then \mathcal{F} satisfies all the conditions of Theorem 2.14 with $b=0$, but \mathcal{F} is not normal in \mathbb{D}.

Also, the condition 'the zeros of $f \in \mathcal{F}$ have multiplicity at least k ' in Theorem 2.14 can not be weakened:
Example 2.16. Consider the family $\mathcal{F}:=\left\{f_{n}(z)=n \sinh z: n \in \mathbb{N}\right\} \subset \mathcal{H}(\mathbb{D})$. Then, clearly, the zeros of $f_{n} \in \mathcal{F}$ are simple and $f_{n} \equiv f_{n}^{\prime \prime}$. But the family \mathcal{F} is not normal at $z=0$ since $f_{n}(0)=0$ and for a sufficiently small positive real number $x, f_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$.

The meromorphic version of Theorem 2.10 does not hold as shown by the following example :
Example 2.17. Let $a \in \mathbb{C} \backslash\{1\}$ and consider the family

$$
\mathcal{F}:=\left\{f_{n}(z)=\frac{n+(n z-1)^{2}}{n(n z-1)}+a: n \in \mathbb{N}\right\} \subset \mathcal{M}(\mathbb{D}) .
$$

One can easily verify that for each $f \in \mathcal{F}, f(z)=a \Rightarrow f^{\prime}(z)=2$ and $f^{\prime} \neq 1$. Thus f and f^{\prime} partially shares the pair (a, A) and f^{\prime} and f partially shares the pair $(1, B)$, where $A=\{2\}$ and $B=\{z:|z-a| \geq \epsilon\}$ for any $\epsilon>0$. Note that $f_{n}(0) \rightarrow a-1$ as $n \rightarrow \infty$ and for any non-zero complex number z in the neighborhood of $0, f_{n}(z) \rightarrow z+a$ as $n \rightarrow \infty$ and therefore, \mathcal{F} is not normal at $z=0$.

However, the following related meromorphic version holds:
Theorem 2.18. Let $\mathcal{F} \subset \mathcal{M}(D)$ be such that zeros of each $f \in \mathcal{F}$ have multiplicity at least $k+1$, where $k \in \mathbb{N}$. Let a and b be two distinct non-zero complex numbers, and A be a compact set and $B=\{z \in \mathbb{C}:|z| \geq \epsilon\}$ for some $\epsilon>0$. If for each $f \in \mathcal{F}, f$ and $f^{(k)}$ partially share the pair (a, A) and $f^{(k)}$ and f partially share the pair (b, B), then \mathcal{F} is normal in D.

The following example shows that the condition 'zeros of each $f \in \mathcal{F}$ have multiplicity at least $k+1$,' in Theorem 2.18 is essential:

Example 2.19. Consider the family

$$
\mathcal{F}:=\left\{f_{n}(z)=\frac{e^{n z}}{n}+2: n \in \mathbb{N}\right\} .
$$

of entire functions. Then, clearly, $f_{n}(z) \neq 2$ and $f_{n}^{\prime}(z)=1 \Rightarrow f_{n}(z)=1 / n+2 \in\{z:|z| \geq 2\}$. Since $f_{n}^{\prime}(z) \neq 0$, the zeros of f_{n} are simple. But the family \mathcal{F} is not normal at $z=0$.

Also, the condition 'set B must be at a positive distance away from the origin' in Theorem 2.18 cannot be dropped:

Example 2.20. Consider the family

$$
\mathcal{F}:=\left\{f_{n}(z)=\frac{1}{e^{n z}+1}: n \in \mathbb{N}\right\} \subset \mathcal{M}(\mathbb{D}) .
$$

Take $a=1, b=-1$. Then, clearly, $f_{n}(z) \neq 0,1$. Also,

$$
f_{n}^{\prime}(z)=-1 \Rightarrow f_{n}(z)=\frac{2}{\left\{(n-2) \pm \sqrt{(n-2)^{2}-4}\right\}+2}
$$

which are not contained in any set of the form $\{z:|z| \geq \epsilon\}$, for any $\epsilon>0$. But the family \mathcal{F} is not normal at $z=0$.

3. Proofs of the results

To prove the results of this paper, we require the following lemmas:
Lemma 3.1. [7] Let $\mathcal{F} \subset \mathcal{M}(\mathbb{D})$ be such that for each $f \in \mathcal{F}$, all zeros of f are of multiplicity at least k. Suppose that there exists a number $L \geq 1$ such that $\left|f^{(k)}(z)\right| \leq L$ whenever $f \in \mathcal{F}$ and $f(z)=0$. If \mathcal{F} is not normal in \mathbb{D}, then for every $\alpha \in[0, k]$, there exist $r \in(0,1),\left\{z_{n}\right\} \subset D_{r}(0),\left\{f_{n}\right\} \subset \mathcal{F}$ and $\left\{\rho_{n}\right\} \subset(0,1): \rho_{n} \rightarrow 0$ such that

$$
g_{n}(\zeta)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)
$$

locally uniformly on \mathbb{C} with respect to the spherical metric, where g is a non-constant meromorphic function on \mathbb{C} with $g^{\#}(\zeta) \leq g^{\#}(0)=k L+1$.

Lemma 3.2. [2] Let $g \in \mathcal{M}(\mathbb{C})$ be of finite order. If g has only finitely many critical values, then it has only finitely many asymptotic values.

Lemma 3.3. [1] Let $g \in \mathcal{M}(\mathbb{C})$ be transcendental having no poles at the origin and let the set of finite critical and asymptotic values of g be bounded. Then there exists $R>0$ such that

$$
\left|g^{\prime}(z)\right| \geq \frac{|g(z)|}{2 \pi|z|} \log \frac{g(z)}{R}
$$

for all $z \in \mathbb{C} \backslash\{0\}$ which are not poles of g.
Lemma 3.4. [2] Let $f \in \mathcal{M}(\mathbb{C})$ be transcendental and of finite order. Suppose all zeros of f have multiplicity at least $k+1$, where $k \in \mathbb{N}$. Then $f^{(k)}$ assumes every non-zero complex number infinitely often.

Proof of Theorem 2.3: Suppose that \mathcal{F} is not normal. Then $\mathcal{F}_{a}=\{f-a: f \in \mathcal{F}\}$ is not normal and therefore, by Zalcman Lemma, there exist a sequence $\left\{f_{n}-a\right\} \subset \mathcal{F}_{a}$, sequence $\left\{z_{n}\right\}$ of points in D and a sequence $\left\{\rho_{n}\right\}$ of positive real numbers with $\rho_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that the re-scaled sequence $\left\{g_{n}(\zeta):=\right.$ $\left.f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right\}$ converges locally uniformly to a non-constant meromorphic function g on \mathbb{C}.

Suppose $g\left(\zeta_{0}\right)=0$. Then by Hurwitz's Theorem, there exists a sequence $\zeta_{n} \rightarrow \zeta_{0}$ as $n \rightarrow \infty$ such that for sufficiently large $n, g_{n}\left(\zeta_{n}\right)=0$. That is, $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a$. Thus, by hypothesis, $f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta_{n}\right)$, and hence

$$
g^{\prime}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{\prime}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \rho_{n} f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n}\right)=\lim _{n \rightarrow \infty} \rho_{n} h\left(z_{n}+\rho_{n} \zeta_{n}\right)=0
$$

This shows that the zeros of g have multiplicity at least 2. Similarly, we can show that the zeros of $g-(b-a)$ and $g-(c-a)$ have multiplicity at least 2 .

Next, we show that g omits $b-a$. Suppose that ζ_{0} is a zero of $g-(b-a)$ with multiplicity k. Then

$$
\begin{equation*}
g^{(k)}\left(\zeta_{0}\right) \neq 0 \tag{1}
\end{equation*}
$$

Choose $\delta>0$ such that

$$
\begin{equation*}
g(\zeta) \neq b-a, g^{\prime}(\zeta) \neq 0, \cdots, g^{(k)}(\zeta) \neq 0 \tag{2}
\end{equation*}
$$

on $D_{\delta}^{*}\left(\zeta_{0}\right)$.
Since $g\left(\zeta_{0}\right)=b-a$, by Hurwitz's Theorem, there exists $\zeta_{n, i} \rightarrow \zeta_{0}, n \rightarrow \infty(i=1, \cdots, k)$ in $D_{\delta}\left(\zeta_{0}\right)$ such that $g_{n}\left(\zeta_{n, i}\right)=b-a$, for sufficiently large n. That is, $f_{n}\left(z_{n}+\rho_{n} \zeta_{n, i}\right)=b$ and thus $0<\left|f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n, i}\right)\right| \leq \rho$.

Further,

$$
\begin{equation*}
g_{n}^{\prime}\left(\zeta_{n, i}\right)=\rho_{n} f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n, i}\right) \neq 0, \text { for } i=1, \cdots, k \tag{3}
\end{equation*}
$$

This implies $\zeta_{n, i}(i=1,2, \cdots, k)$ are simple zeros of $g_{n}-(b-a)$.
Also $\zeta_{n, i} \neq \zeta_{n, j}(1 \leq i<j \leq k)$ and

$$
g^{\prime}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{\prime}\left(\zeta_{n, i}\right)=0
$$

Therefore, by (3), for sufficiently large $n, g_{n}^{\prime}-\rho_{n} c_{f_{n}}$, where $c_{f_{n}}=f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n, i}\right)$, has at least k zeros $\zeta_{n, i}(i=$ $1, \cdots, k)$ in $D_{\delta}^{*}(0)$. This implies that ζ_{0} is a zero of g^{\prime} with multiplicity at least k and hence $g^{(k)}\left(\zeta_{0}\right)=0$, which contradicts (1). Hence $g(\zeta) \neq b-a$. Similarly, we can show that g omits $c-a$ and then by second fundamental theorem of Nevanlinna, we arrive at a contradiction.

The Proof of Theorem 2.7 is obtained exactly on the lines of the proof of Theorem 2.3, so we omit it.
Proof of Theorem 2.10: We may assume that D is the open unit disk \mathbb{D}. Suppose that \mathcal{F} is not normal in \mathbb{D}. Then $\mathcal{F}_{a}=\{f-a: f \in \mathcal{F}\}$ is not normal in \mathbb{D}. For any $h \in \mathcal{F}_{a},\left|h^{\prime}(z)\right| \leq M+1$ whenever $h(z)=0$, where
$M=\sup \{|z|: z \in A\}$. By Lemma 3.1, there exist a sequence $\left\{f_{n}-a\right\} \subset \mathcal{F}_{a}$, sequence $\left\{z_{n}\right\}$ of points in D and a sequence $\left\{\rho_{n}\right\}$ of positive real numbers with $\rho_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
g_{n}(\zeta)=\rho_{n}^{-1}\left(f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right) \rightarrow g(\zeta) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$, locally uniformly on \mathbb{C}, where g is a non-constant entire function satisfying

$$
g^{\#}(\zeta) \leq g^{\#}(0)=M+2
$$

implying that the order of g is at most 1 .
Assertion 1: If $g(z)=0$, then $g^{\prime}(z) \in A$.
Suppose that $g\left(\zeta_{0}\right)=0$. Then by Hurwitz's Theorem, there exists $\zeta_{n} \rightarrow \zeta_{0}$ as $n \rightarrow \infty$ such that for sufficiently large $n, g_{n}\left(\zeta_{n}\right)=0$. This implies that $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a$. Since f and f^{\prime} partially share the pair (a, A),

$$
g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n}\right) \in A
$$

Since A is compact,

$$
g^{\prime}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{\prime}\left(\zeta_{n}\right) \in A
$$

and this proves Assertion 1.
Assertion 2: $g^{\prime}(\zeta) \neq b, \forall \zeta \in \mathbb{C}$.
Suppose that $g^{\prime}\left(\zeta_{0}\right)=b$ for some $\zeta_{0} \in \mathbb{C}$. If $g^{\prime}(\zeta) \equiv b$, then $g(\zeta)=b \zeta+c$, so by Assertion $1, b \in A$, a contradiction. Thus $g^{\prime}(\zeta) \not \equiv b$.

Now by Hurwitz's Theorem, there exists $\zeta_{n} \rightarrow \zeta_{0}$ as $n \rightarrow \infty$, such that for sufficiently large n,

$$
g_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta_{n}\right)=b
$$

Since f^{\prime} and f partially share the pair (b, B),

$$
\left|g_{n}\left(\zeta_{n}\right)\right|=\rho_{n}^{-1}\left|\left(f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a\right)\right| \geq \frac{\epsilon}{\rho_{n}} \rightarrow \infty \text { as } n \rightarrow \infty
$$

That is, $g\left(\zeta_{0}\right)=\infty$, a contradiction since $g^{\prime}\left(\zeta_{0}\right)=b$. This proves Assertion 2.
Since g is of order at most 1 , so is g^{\prime} and then by Assertion 2, we have

$$
g^{\prime}(\zeta)=b+e^{l+m \zeta}
$$

where $l, m \in \mathbb{C}$.
Now we have the following two cases:
Case-1. When $m \neq 0$. In this case, g is a transcendental entire function of order one. Since g^{\prime} omits $b(\neq 0)$, by Hayman's alternative g has infinitely many zeros $\left\{z_{i}\right\}:\left|z_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$.

Define $G(z)=g(z)-b z$, then $G^{\prime}(z)=g^{\prime}(z)-b \neq 0, G$ has no critical values. Thus by Lemma 3.2, G has only finitely many asymptotic values. Applying Lemma 3.3 to G, we have

$$
\frac{\left|z_{i} G^{\prime}\left(z_{i}\right)\right|}{\left|G\left(z_{i}\right)\right|} \geq \frac{1}{2 \pi} \log \frac{\left|G\left(z_{i}\right)\right|}{R}=\frac{1}{2 \pi} \log \frac{\left|b z_{i}\right|}{R} .
$$

This implies

$$
\begin{equation*}
\frac{\left|z_{i} G^{\prime}\left(z_{i}\right)\right|}{\left|G\left(z_{i}\right)\right|} \rightarrow \infty \text { as } i \rightarrow \infty . \tag{5}
\end{equation*}
$$

Since $g=0 \Rightarrow\left|g^{\prime}\right| \leq M$, which further implies that $\left|z_{i} G^{\prime}\left(z_{i}\right)\right| /\left|G\left(z_{i}\right)\right|$ is bounded. Thus (5) yields a contradiction.
Case-2. When $m=0$. In this case $g(\zeta)=\left(b+e^{l}\right) \zeta+t$, where t is a constant. By Assertion 1 , we get $b+e^{l} \in A$. Thus $g^{\#}(0)<M+2$, a contradiction.

Proof of Theorem 2.14: We may assume that D is the open unit disk \mathbb{D}. Suppose that \mathcal{F} is not normal in \mathbb{D}. Then, by Lemma 3.1, (with $\alpha=k$ and $L=M+1$, where $M=\sup \{|z|: z \in A\}$), there exist $f_{n} \in \mathcal{F}, z_{n} \in \mathbb{D}$ and $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \rightarrow g(\zeta)
$$

locally uniformly on \mathbb{C}, where g is a non-constant entire function such that $g^{\#}(\zeta) \leq g^{\#}(0)=k(M+1)+1$ and the order of g is at most one.

Next we show that zeros of g are of multiplicity at least k and $g(z)=0$ implies that $g^{(k)}(z) \in A$. Let $g\left(\zeta_{0}\right)=0$. Then by Hurwitz's Theorem, there exists a sequence $\zeta_{n} \rightarrow \zeta_{0}$ as $n \rightarrow \infty$ such that for sufficiently large $n, g_{n}\left(\zeta_{n}\right)=0$. That is $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$ and by assumption, we have, $f_{n}^{(i)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0(i=1, \cdots, k-1)$ and $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right) \in A$. Thus

$$
g^{(i)}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{(i)}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \rho_{n}^{i-k} f_{n}^{(i)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0(i=1, \cdots, k-1)
$$

and

$$
g^{(k)}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{(k)}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right) \in A
$$

Therefore, all zeros of g are of multiplicity at least k and $g(z)=0$ implies that $g^{(k)}(z) \in A$.
Assertion: $g^{(k)}(z) \neq b$ in \mathbb{C}.
Suppose that $g^{(k)}\left(\zeta_{0}\right)=b$. If $g^{(k)}(\zeta) \equiv b$, then g is a polynomial of degree k. Since all zeros of g are of multiplicity at least k, g has only one zero, say ζ^{\prime}. Thus

$$
g(\zeta)=\frac{b\left(\zeta-\zeta^{\prime}\right)^{k}}{k!}
$$

Since $g(\zeta)=0 \Rightarrow g^{(k)}(\zeta) \in A,|b| \leq M$. By a simple calculation, we have

$$
g^{\#}(0) \leq \begin{cases}k / 2 & ;\left|\zeta^{\prime}\right| \geq 1 \\ M & ;\left|\zeta^{\prime}\right|<1\end{cases}
$$

That is, $g^{\#}(0)<k(M+1)+1$, a contradiction. Thus $g^{(k)}(\zeta) \not \equiv b$.
Thus, we choose a sequence $\zeta_{n} \rightarrow \zeta_{0}$ as $n \rightarrow \infty$ such that $g_{n}^{(k)}\left(\zeta_{n}\right)=b$. This implies that $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=b$ and by hypothesis, we find that $\left|f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)\right| \geq \epsilon$.

Therefore,

$$
\left|g\left(\zeta_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|g_{n}\left(\zeta_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}}\right| \geq \lim _{n \rightarrow \infty} \frac{\epsilon}{\rho_{n}^{k}}=\infty .
$$

That is, $g\left(\zeta_{0}\right)=\infty$, a contradiction since $g^{(k)}\left(\zeta_{0}\right)=b$ and this proves the Assertion.
Since g is of order at most one, so is $g^{(k)}$ and by Assertion, we find that

$$
g^{(k)}(\zeta)=b+e^{l+m \zeta}
$$

where l and m are constants. Now we have the following two cases:

Case-I. If $m=0$, then g is a polynomial of degree k. Since all zeros of g are of multiplicity at least k, g has only one zero, say ζ^{\prime}. Thus

$$
g(\zeta)=\frac{\left(b+e^{l}\right)\left(\zeta-\zeta^{\prime}\right)^{k}}{k!}
$$

By second part of Assertion, we have $\left|b+e^{l}\right| \leq M$ and as obtained above, we have that $g^{\#}(0)<k(M+1)+1$, a contradiction.

Case-II. If $m \neq 0$. then g is a transcendental entire function. Since $g^{(k)}(\zeta) \neq b(\neq 0)$, by Hayman's alternative, g has infinitely many zeros $\left\{z_{i}\right\}$ and $\left|z_{i}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Define $G(z)=g^{(k-1)}(z)-b z$, then $G^{\prime}(z)=g^{(k)}(z)-b \neq 0$, G has no critical value. Thus by Lemma 3.2, G has only finitely many asymptotic values. Applying Lemma 3.3 to G, we have

$$
\frac{\left|z_{i} G^{\prime}\left(z_{i}\right)\right|}{\left|G\left(z_{i}\right)\right|} \geq \frac{1}{2 \pi} \log \frac{\left|G\left(z_{i}\right)\right|}{R}=\frac{1}{2 \pi} \log \frac{\left|b z_{i}\right|}{R} .
$$

This implies that

$$
\frac{\left|z_{i} G^{\prime}\left(z_{i}\right)\right|}{\left|G\left(z_{i}\right)\right|} \rightarrow \infty
$$

as $i \rightarrow \infty$, which leads to a contradiction, since $g=0$ implies $g^{(k)} \in A$ and $\left|z_{i} G^{\prime}\left(z_{i}\right)\right| /\left|G\left(z_{i}\right)\right|$ is bounded.
Proof of Theorem 2.18: We may take D to be \mathbb{D}, the open unit disk. Suppose that \mathcal{F} is not normal on \mathbb{D}. Then, by Lemma 3.1, there exist $z_{n} \in \mathbb{D}, f_{n} \in \mathcal{F}$ and $\rho_{n} \rightarrow 0^{+}$such that $\left\{g_{n}(\zeta)=\rho_{n}^{-k}\left(f_{n}\left(z_{n}+\rho_{n} \zeta\right)\right)\right\}$ converges spherically locally uniformly on \mathbb{C} to a non-constant meromorphic function g, all of whose zeros have multiplicity at least $k+1$ and the order of g is finite.

Assertion 1: $g^{(k)} \neq b$ on \mathbb{C}.
Suppose that $g^{(k)}\left(\zeta_{0}\right)=b$, for some $\zeta_{0} \in \mathbb{C}$. If $g^{(k)} \equiv b$, then g is a polynomial of degree k, a contradiction since all zeros of g are of multiplicity at least $k+1$. Thus by Hurwitz's Theorem, there exists $\zeta_{n} \rightarrow \zeta_{0}$ such that for sufficiently large n,

$$
g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=b
$$

By assumption, $\left|f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)\right| \geq \epsilon$ and so

$$
\left|g\left(\zeta_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|g_{n}\left(\zeta_{n}\right)\right|=\lim _{n \rightarrow \infty} \frac{\left|f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)\right|}{\rho_{n}^{k}} \geq \lim _{n \rightarrow \infty} \frac{\epsilon}{\rho_{n}^{k}}=\infty .
$$

That is, $g\left(\zeta_{0}\right)=\infty$, a contradiction since $g^{(k)}\left(\zeta_{0}\right)=b$.
Assertion 2: g is an entire function.
Suppose that $g\left(\zeta_{1}\right)=\infty$, for some $\zeta_{1} \in \mathbb{C}$. For sufficiently large n, we can choose a closed disk $\bar{D}_{r}\left(\zeta_{1}\right)$ such that $g_{n}(\zeta) \neq 0$ and $g(\zeta) \neq 0$, and $1 / g_{n}(\zeta) \rightarrow 1 / g(\zeta)$ uniformly on $\bar{D}_{r}\left(\zeta_{1}\right)$. Thus

$$
\frac{1}{g_{n}(\zeta)}-\frac{\rho_{n}^{k}}{a} \rightarrow \frac{1}{g(\zeta)}
$$

uniformly on $\bar{D}_{r}\left(\zeta_{1}\right)$. Since $1 / g\left(\zeta_{1}\right)=0$, there exits $\zeta_{n} \rightarrow \zeta_{1}$ such that for sufficiently large n,

$$
\frac{1}{g_{n}\left(\zeta_{n}\right)}-\frac{\rho_{n}^{k}}{a}=0
$$

That is, $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a$. By assumption, we have $\left|f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)\right| \leq M$, where $M=\sup \{|z|: z \in A\}$ and hence $\left|g^{(k)}\left(\zeta_{1}\right)\right| \leq M$, a contradiction since $g\left(\zeta_{1}\right)=\infty$.

Since g is entire and $g^{(k)} \neq b$ on \mathbb{C}, by Lemma $3.4, g$ is a polynomial of degree at most k, a contradiction.

References

[1] W. Bergweiler, On the zeros of certain homogeneous differential polynomial, Arch. Math. 64 (1995), 199-202.
[2] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana. 11 (1995), 355-373.
[3] J. Grahl, S. Nevo, On the result of Singh and Singh concerning shared values and normality, Complex Var. Elliptic Equ. 55(2) (2010), 347-356.
[4] J. Li, H. Yi, Normal families and uniqueness of entire functions and their derivatives, Arch. Math. 87 (2006), 52-59.
[5] F. Lü, J. Xu, H. Yi, Uniqueness theorems and normal families of entire functions and their derivatives, Ann. Pol. Math. 95(1) (2009), 67-75.
[6] E. Mues, N. Steinmetz, Meromorphe Funktionen, die mit ihrer AbleitungWerte teilen, Manuscripta Math. 29 (1979), 195-206.
[7] X. C. Pang, L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[8] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50-54.
[9] A. Sauer, A. Schweizer, A uniqueness problem concerning entire functions and their derivatives arXiv:2208.11341 (2022).
[10] Y. Xu, Normality criteria concerning sharing values, Indian J. Pure Appl. Math. 30 (1999), 287-293.

[^0]: 2020 Mathematics Subject Classification. Primary 30D30; Secondary 30D45.
 Keywords. Normal family; Shared value; Meromorphic function.
 Received: 21 November 2022; Accepted: 17 February 2023
 Communicated by Miodrag Mateljević
 The work of the first author is partially supported by Mathematical Research Impact Centric Support (MATRICS) grant, File No. MTR/2018/000446, by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

 * Correspondng author: Manish Kumar

 Email addresses: kscharak7@rediffmail.com (Kuldeep Singh Charak), manishbarmaan@gmail.com (Manish Kumar), anilmanhasfeb90@gmail.com (Anil Singh)

