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Abstract. In this manuscript, the new sequence space ZΦ for Z ∈ {c, c0, ℓ∞} and Φ = Cm∆ have been
introduced using the Cesàro matrix and backward difference operator. Some of the topological properties
of these spaces have been studied and the existence of the Schauder basis for new spaces have been verified.
Also, the α, β and γ-duals have been computed along with the characterization of the matrix transformation
between new spaces.

1. Introduction

The analysis of the sequence space theory has always been of greatest interest in the numerous branches
of analysis such as the theory of summability, structural theory of topological linear spaces, Schauder basis
theory, etc. Moreover, sequence space theory contains a useful tool for acquiring the geometrical and
topological results through the Schauder basis.

Cesàro [6] propounded his work in the discipline of differential geometry. He also worked on the
averaging method of the divergent series for Cesàro summation, called Cesàro-mean. He defined an
infinite Cesàro matrix C = Crv of order one, denoted as C1, has the entries as follows

C =


1 0 0 · · ·

1/2 1/2 0 · · ·

1/3 1/3 1/3 · · ·

...
...

...
...

 (1)

Several authors concluded their research on the Cesàro sequence and the Cesàro function spaces, however,
they all have been around the Cesàro matrix of order one. Ng and Lee [17] have defined Xp and X∞, the
non-absolute type of Cesàro sequence spaces as the domains of matrix C1, in ℓp and ℓ∞ for 1 ≤ p < ∞. Later
on, Başar and Sengonul [22] introduced the non-absolute type of Cesàro spaces c̃ and c̃0 as the domains
of matrix C1, in c and c0 respectively. Moreover, Altay and Başar [2, 3] have studied and investigated the
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space of bounded variation bvp as the domain of backward difference ∇ in ℓp for 0 < p < 1 and 1 ≤ p < ∞,
respectively.

In [20], Roopaei et al. introduced and studied the Cesàro sequence spaces of order m as the domain of
matrix Cm in ℓp and ℓ∞ and discussed their duals for 1 < p < ∞.

Let s indicate the space of all complex sequences. For any sequence space µ and infinite matrix A, the
matrix domain of A is defined as µA = {x ∈ s : Ax ∈ µ}. In the last few years, there is a procedure of
obtaining new spaces via the matrix domain of a convenient matrix and characterizing the classes of matrix
transformation between the sequence spaces. Many authors studied and investigated new Banach spaces
by means of matrix domains of the special triangle matrices, in the classical sequence spaces. For more
details, one can refer to [4, 5, 8, 9, 11, 16] and references therein.

The study of difference sequence space was initiated by Kizmaz [12]. Subsequently, Başar and Altay [2],
Et and Colak [7], Ahmad and Mursaleen [1], Altay and Polat [18] studied and introduced new sequence
spaces by means of difference operator.

Besides this, Cesàro sequence spaces are defined through the domains of Cesàro matrix Cm of order m.
Some of them can be viewed in Roopaei [20] and, Roopaie and Başar [19] which incorporates the earlier
known Cesàro Banach spaces. Recently, Roopaei and Başar [19] have investigated the Cesàro spaces ℓp(Cm),
0 < p < 1, c(Cm) and c0(Cm) as the domains of matrix Cm of order m in ℓp, c and c0, respectively.

In this paper, we defined new sequence spaces through the backward difference operator and Cesàro
matrix. Besides, we determine some topological properties of new spaces along with α-, β- and γ-duals,
and constructed the bases of these spaces. Finally, we discuss the characterization of some related matrix
classes between these sequence spaces.

Motivation. In [21] Roopaei and Hazarika have investigated the sequence space ℓp(Sm,n), where Sm,n =
Cm∆n. Here the authors have introduced the matrix domain ZΦ for Z ∈ {c, c0, ℓ∞} based on Cesàro matrix of
order m and backward difference operator. Through this research, the authors have found the topological
properties, basis, duals, and matrix transformations that have not been known before.

2. Preliminaries

By c, c0, and ℓ∞, we indicate the spaces of all convergent, null convergent, and bounded sequences
x = (xv), endowed with norm ∥x∥∞ = supr |xr|. We also indicate the spaces of all convergent and bounded
series by cs, and bs respectively. Throughout the text, N is the set of natural numbers and N0 = N ∪ {0},
and e = (1, 1, 1, ....) and er = (0, 0, · · · , 1, 0, · · · ) where 1 is in the rth place, and 0 everywhere.

If a normed linear space U contains a sequence (br), then for every x ∈ U, there is a unique sequence of
scalars (αr) such that

∥x − (α1b1 + α2b2 + · · · + αrbr)∥ → 0 as r→∞,

then (br) is known as the Schauder basis for U. The series
∑
∞

r=0 αrbr has the sum x, known as the expansion
of x about the basis (br), and we write x =

∑
∞

r=0 αrbr, [14].
Let U and V be any two sequence spaces. Then, the multiplier spaceM(U,V) is given as

M(U,V) =
{
(ar) ∈ s : ay = (aryr) ∈ V, for every y ∈ U

}
Thus, the α-dual, the β-dual and the γ-dual of U are denoted as

Uα =M(U, ℓ1), Uβ =M(U, cs), Uγ =M(U, bs).

An infinite matrix can be observed as the linear operator from a sequence space into another sequence
space. For this, let U and V be any arbitrary subsets of s. Let A = (arv) is an infinite matrix with complex
entries (arv). By A(x) = (Ar(x)) = (Ax)r, we write the A−transform of a sequence x = (xv), if the series
Ar(x) =

∑
v arvxv is convergent for r ≥ 0.

If Ax ∈ V with x ∈ U, then A defines a matrix mapping from U into V. Further, (U,V) indicates the
family of all infinite matrices that maps U into V. Thus, A is in (U,V) if and only if Ax = ((Ax)r) ∈ V, ∀
x ∈ U, that is, A ∈ (U,V) if and only if Ar ∈ Uβ, ∀ r (see [24]).
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A Banach sequence space ν is known as BK-space, if the projection mappings qr : ν → C such that
qr(x) = xr, r ≥ 1 are continuous. For the natural number r and the sequence x = (x1, x2, · · · , xr, · · · ), the rth

section of x is denoted as x(r) = (x1, x2, · · · , xr, 0, 0, · · · ). If for each x ∈ ν, x(r) tends to x, then ν is known as
AK-space.

The infinite matrix A = (arv) is said to be a summability matrix if it is a lower triangular matrix, i.e.,
arv = 0 for r < v and

∑r
v=0 arv = 1, for every r.

Let us consider the Hausdorff matrix with generating sequence µ = (µr), which is a lower triangular
matrix, denoted as Hµ = (hrv)∞r,v=0 and their entries are as follows:

hrv =

(
r
v

) ∫ 1

0
τv(1 − τ)r−vdµ(τ), for 0 ≤ v ≤ r

for every v, r ∈ N0, where µ be the probability measure on [0, 1]. For the probability measure µ, the
Hausdorffmatrix Hµ is called as totally regular.

For m > 0, the Hausdorffmatrix consist of the following matrices classes:

(i) if dµ(τ) = m(1 − τ)m−1, then the Hausdorffmatrix introduces the Cesàro matrix of order m,
(ii) If dµ(τ) = mτm−1dτ, then the Hausdorffmatrix introduces the Gamma matrix of order m,

(iii) if dµ(τ) =

∣∣∣log τ
∣∣∣m−1

Γ(m)
dτ, then the Hausdorffmatrix introduces the Hölder matrix of order m.

Such matrices have always been studied for a long time in connection with the summability of series, and
subsequently as operators on the sequence spaces.

In [13], Hardy’s formula follows that if the measure µ satisfying∫ 1

0
τ−1/pdµ(τ) < ∞,

then the Hausdorffmatrix Hµ is a bounded linear operator on ℓp furnished with the norm

∥∥∥Hµ

∥∥∥
ℓp
=

∫ 1

0
τ−1/pdµ(τ), (1 ≤ p < ∞).

For dµ(τ) = m(1 − τ)m−1dµ in the Hausdorffmatrix Hµ, the Cesàro matrix of order m, Cm = (Cm
rv) is given

as

Cm
rv =


(m+r−v−1

r−v
)(m+r

r
) , 0 ≤ v ≤ r

0, v > r

for r, v ∈N0.
In accordance with Hardy’s formula, Cm is endowed with the norm

∥Cm
∥ℓp
=
Γ(m + 1)Γ(1/q)
Γ(m + 1/q)

,

where q is a conjugate of p, i.e.,
1
p
+

1
q
= 1.

For instance, the ℓp norm of the Cesàro matrix C1 is ∥C∥ℓp
= q.
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3. Matrix Domain ZΦ

We embark with the concept of convergent, null convergent, and bounded sequences through the
composition of Cesàro operator of order m and the backward difference operator ∆, where ∆xv = xv − xv−1
and x−1 = 0.

The infinite Cesàro matrix of order m, Cm = (Cm
rv), is invertible and its inverse is defined by

C−m
rv =

(−1)r−v( m
r−v

)(m+v
v

)
, v ≤ r ≤ m + v

0, otherwise
,

∀ r, v ∈N0.

We now define the sequence space, ZΦ for Z ∈ {c, c0, ℓ∞} as follows:

ZΦ =

x = (xv) ∈ s :

 1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆xv


∞

r=0

∈ Z

 .
With the definition of matrix domain, we can write

ZΦ = {x ∈ s : Φx ∈ Z} .

As y = (∆yv) is the Cm
−transform of a sequence x = ∆xv, i.e.,

yr = (Cmx)r =
1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆xv.

Theorem 3.1. The sequence space ZΦ for Z ∈ {c, c0, ℓ∞} is a complete normed linear space furnished with the norm

∥x∥ZΦ = sup
r

∣∣∣∣∣∣∣ 1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆xv

∣∣∣∣∣∣∣ .
Proof. Let x, y ∈ ZΦ and a, and b be any two scalars. Then

sup
r

∣∣∣∣∣∣∣ 1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆(axv + byv)

∣∣∣∣∣∣∣ ≤ |a| sup
r

∣∣∣∣∣∣∣ 1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆xv

∣∣∣∣∣∣∣
+ |b| sup

r

∣∣∣∣∣∣∣ 1(m+r
r
) r∑

v=0

(
m + r − v − 1

r − v

)
∆yv

∣∣∣∣∣∣∣
and so axv + byv ∈ ZΦ. Hence, ZΦ is a linear space.

Clearly, the functional ∥·∥ZΦ defined above introduce a norm on the space ZΦ.
For completeness, let (xn) is a Cauchy sequence in ZΦ, where xn = (xn

v) = (xn
0 , x

n
1 , x

n
2 , · · · ) ∈ ZΦ, for every

n ∈N0. Then, for every ϵ > 0, there exist n0 ∈Nwith
∥∥∥xn
− x j

∥∥∥
ZΦ
< ϵ for n, j ≥ n0.

Thus, for each v ∈N0,∣∣∣(ZΦxn)v − (ZΦx j)v

∣∣∣ < ϵ, ∀ n, j ≥ n0. (2)

So that ((ZΦxn)v)n is a Cauchy sequence of scalars for v ∈ N0. Therefore, ((ZΦxn)v)n converges for each v,
and

lim
n→∞

(ZΦxn)v = (ZΦx)v , v ∈N0.
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Letting, j→∞ in (2), we have

|(ZΦxn)v − (ZΦx)v| ≤ ϵ ∀ n ≥ n0,∀ v ∈N0.

Thus, by definition ∥xn
− x∥ZΦ ≤ ϵ for all n ≥ n0. Further, assume that

∥x∥ZΦ ≤ ∥x
n
∥ZΦ + ∥x

n
− x∥ZΦ ,

which is finite for n ≥ n0 and so x ∈ ZΦ.

Theorem 3.2. The spaces c(Φ), c0(Φ) and ℓ∞(Φ) are linearly isomorphic to c, c0 and ℓ∞, respectively.

Proof. Here, we consider the case for ℓ∞. For this, it suffices to show the existence of a linear bijection from
ℓ∞(Φ) to ℓ∞. Now, define a map Q : ℓ∞(Φ) → ℓ∞, as x → Φ(x), where ϕ = Cm∆. Since, Cm and ∆ are both
linear and invertible also is the matrix Φ, which completes the proof.

Since, ZΦ � Z for Z ∈ {c, c0}, the basis for the spaces ZΦ are the inverse images of basis for Z. Therefore
we state the following result.

Theorem 3.3. Let λv = (Φx)v and the sequences b(i) = (b(i)
r ), (i ∈N0), and (b−1

r ) be defined as

(b(v)
i ) =


v−i∑
j=0

(−1) j(m+i
i
)(m

j
)
, i f 0 ≤ i ≤ v

0, i f i > v
and (b−1

r ) =
v∑

i=0

v−i∑
j=0

(−1) j
(
m + i

i

)(
m

i + j

)

Then,

(i) The sequence (b(i))∞i=0 is a basis for space c0(Φ) and every x ∈ c0(Φ) is expressed uniquely as x =
∞∑

i=0
λib(i).

(ii) The sequence (b(i))∞i=−1 be a basis for space c(Φ) and every x ∈ c(Φ) is expressed uniquely as x = ℓb−1
r +

∞∑
i=0

(λi−ℓ)b(i),

where ℓ = lim
r→∞

(Φx)r.

4. The α−, β− and γ−duals of ZΦ

Let G indicates the collection of all non-empty finite subsets of N, and T = (trv) be an infinite matrix
which satisfy the following conditions:

sup
r∈N0

∑
v∈N0

|trv| < ∞ (3)

sup
K∈G

∞∑
r=0

∣∣∣∣∣∣∣∑v∈K

trv

∣∣∣∣∣∣∣ < ∞ (4)

lim
r→∞

trv = 0, (v ∈N0) (5)

lim
r→∞

trv exists for all v (6)

lim
r→∞

∞∑
v=0

trv = 0 (7)
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lim
r→∞

∞∑
v=0

|trv| = 0 (8)

lim
r→∞

∞∑
v=0

trv exists (9)

lim
r→∞

∞∑
v=0

∣∣∣∣trv − lim
r

trv

∣∣∣∣ = 0 (10)

We now state the following results given by Stieglitz et.al [23] which are useful to compute the duals.

Lemma 4.1. [23] (i) T = (trv) ∈ (c0, c0) if and only if (3) and (5) hold.
(ii) T = (trv) ∈ (c0, c) if and only if (3) and (6) hold.
(iii) T = (trv) ∈ (c, c0) if and only if (3), (5) and (7) hold.
(iv) T = (trv) ∈ (c, c) if and only if (3), (6) and (9) hold.
(v) T = (trv) ∈ (c0, ℓ∞) (or (c, ℓ∞), or (ℓ∞, ℓ∞)) if and only if (3) holds.
(vi) T = (trv) ∈ (c0, ℓ1) (or (c, ℓ1), or (ℓ∞, ℓ1)) if and only if (4) holds.
(vii) T = (trv) ∈ (ℓ∞, c0) if and only if (8) holds.
(viii) T = (trv) ∈ (ℓ∞, c) if and only if (3), (6) and (10) hold.

Theorem 4.2. The α-dual of space ZΦ for Z ∈ {c, c0, ℓ∞} is ψ, where

ψ =

a = (av) ∈ s : sup
K∈G

∑
r

∣∣∣∣∣∣∣∣
∑
i∈K

v−i∑
j=0

(−1) j
(
m + i

i

)(
m
j

)
av

∣∣∣∣∣∣∣∣ < ∞
 .

Proof. Let a = (av) ∈ s. Given that x ∈ ZΦ, y ∈ Z for Z ∈ {c, c0, ℓ∞}. Then, for every v ∈N0,

avxv =

v∑
i=0

v−i∑
j=0

(−1) j
(
m + i

i

)(
m
j

)
avyv = (Ay)v,

where A = (avi), is defined as

avi =


v−i∑
j=0

(−1) j(m+i
i
)(m

j
)
av, 0 ≤ i ≤ v

0, i > v
,

for all i, v ∈N0.
Hence, for each x ∈ ZΦ, avxv ∈ ℓ1 if and only if Ay ∈ ℓ1 with y ∈ Z for Z ∈ {c, c0, ℓ∞}. Thus, we may

conclude that a ∈ [ZΦ]α if and only if A ∈ (Z, ℓ1). Applying Lemma (4.1) part (vi), we obtain [ZΦ]α = ψ.

Theorem 4.3. The γ-dual of space ZΦ for Z ∈ {c, c0, ℓ∞} is

κ =

a = (av) ∈ s : sup
r∈N0

∞∑
v=0

|crv| < ∞

 ,
where C = (crv) the matrix defined as

Crv =


(m+v

v
) [

av +
( m

m−2
)
−

( m
m−1

) r∑
i=v+1

ai +
r∑

i=v+2
(−1)v−i( m

v−i
) ( r∑

v=i
av

)]
, 0 ≤ v ≤ r

0, v > r
(11)
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Proof. Let a = (av) ∈ s, x ∈ ZΦ and y ∈ Z for Z ∈ {c, c0, ℓ∞}. Consider the equality

r∑
v=0

avxv =

r∑
v=0

av

 v∑
i=0

v−i∑
j=0

(−1) j
(
m + i

i

)(
m
j

)
yi


=

r−1∑
v=0

v∑
i=0

v−i∑
j=0

(−1) j
(
m + i

i

)(
m
j

)
yrav +

v∑
i=0

v−i∑
j=0

(−1) j
(
m + i

i

)(
m
j

)
y ja j

=

(
m + v

v

) av +

(
m

m − 2

)
−

(
m

m − 1

) r∑
i=v+1

ai +

r∑
i=v+2

(−1)v−i
(

m
v − i

)  r∑
v=i

av




= (Cy)r,

where C = (Crv) is defined in (11).
Thus, a ∈ [ZΦ]γ if and only if ax ∈ bs for x ∈ ZΦ if and only if

(∑r
v=0 avxv

)
∈ ℓ∞. So, Cy ∈ ℓ∞ for y ∈ Z.

Hence, by using Lemma (4.1) Part (v) we obtain, [ZΦ]γ = κ.

We now state the following results to compute the β-dual of the sequence space ZΦ.
Let T be a triangle matrix with matrix domain ZT.

Lemma 4.4. [10] Let Z be a BK-space with AK, and P = Qt, the transpose of the matrix Q, where Q = (qiv) be the
inverse of matrix T. Then, a ∈ [ZT]β if and only if Pa ∈ [Z]β and the matrix E ∈ (Z, c0), where E = (env) is defined as

env =


∞∑

i=n
aiqiv, 0 ≤ v ≤ n

0, v > n
,

for every v, n ∈N0. Also , if a ∈ [ZT]β, then
∑
∞

v=0 avyv =
∑
∞

v=0 Pv(a)Tv(x), ∀ x = (xv) ∈ ZT.

Remark 4.5. (i) [10] For Z = ℓ∞, the result holds by above lemma.
(ii) [15] a ∈ [cT]β whenever Pa ∈ ℓ1, and E ∈ (c, c). Also, if a ∈ [cT]β, then for every x ∈ cT,

∞∑
v=0

avxv =

∞∑
v=0

Pv(a)Tv(x) − νρ,

where ν = limv→∞ Tv(x) and ρ = limn→∞
∑n

v=0 env.

Theorem 4.6. Define the following sets:

d1 =

a = (av) ∈ s :
∞∑

v=0

|Pv(a)| < ∞


d2 =

{
a = (av) ∈ s : lim

n→∞
env = 0 for all v

}
d3 =

a = (av) ∈ s : sup
n

∞∑
v=0

|env| < ∞


d4 =

a = (av) ∈ s : lim
n→∞

n∑
v=0

(env) exists


d5 =

a = (av) ∈ s : lim
n→∞

n∑
v=0

|env| = 0


d6 =

{
a = (av) ∈ s : lim

n→∞
env exists for all v

}
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where

P(a) = Pv(a) =
(
m + v

v

) av +

((
m

m − 2

)
−

(
m

m − 1

)) ∞∑
i=v+1

ai +

∞∑
k=2

(−1)k
(
m
k

)  ∞∑
i=v+k

ai




and

env =

(
m + v

v

) n−v∑
j=0

(−1) j
(
m
j

) ∞∑
i=n

ai +

∞∑
j=n−v+1

(−1) j
(
m
j

) ∞∑
i=v+ j

ai

 .
Then, [c0(Φ)]β = d1 ∩ d2 ∩ d3, [c(Φ)]β = d1 ∩ d3 ∩ d4 ∩ d6 and [ℓ∞(Φ)]β = d1 ∩ d5.

Proof. The matrix T = (trv) is defined as

trv =



1(m+r
r
) [(m+r−v−1

r−v
)
−

(m+r−v−2
r−v−1

)]
, 0 ≤ v < r

1(m+r
r
) , v = r

0, v > r

Let Q = (qiv) is the inverse of T. Then,

qiv =


i−v∑
j=0

(−1) j(m+v
v

)(m
j
)
, 0 ≤ v ≤ i

0, v > i.

Here, we first compute E = (env) and Pv(a) to get the β-dual. Consider the equality

Pv(a) =
∞∑

i=v

aiqiv

=

(
m + v

v

)
av +

∞∑
i=v+1

i−v∑
j=0

(−1) j
(
m + v

v

)(
m
j

)
a j

=

(
m + v

v

) av +

{(
m

m − 2

)
−

(
m

m − 1

)} ∞∑
i=v+1

ai +

∞∑
k=2

(−1)k
(
m
k

) ∞∑
i=v+k

ai


and

env =

∞∑
i=n

aiqiv

=

∞∑
i=n

i−v∑
j=0

(−1) j
(
m + v

v

)(
m
j

)
ai

=

(
m + v

v

) n−v∑
j=0

(−1) j
(
m
j

) ∞∑
i=n

ai +

∞∑
j=n−v+1

(−1) j
(
m
j

) ∞∑
i=v+ j

ai

 .
By Lemma (4.4) and Remark (4.5), conclude that

[c0(Φ)]β = d1 ∩ d2 ∩ d3, [c(Φ)]β = d1 ∩ d3 ∩ d4 ∩ d6 and [ℓ∞(Φ)]β = d1 ∩ d5.
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5. Matrix Mappings on ZΦ

Here, the necessary and sufficient conditions for matrix transformation from the space ZΦ to Z, for
Z ∈ {c, c0, ℓ∞} have been discussed in detail.

We begin with the results which are useful in the characterization of matrix classes about the spaces of
Cesàro and backward difference operators.

Lemma 5.1. [10] Let Z is a BK-space having AK, and Y is a sequence space of s and P = Qt. Then, A ∈ (ZT,Y) if
and only if BA

∈ (Z,Y) and EAr ∈ (Z, c0) for r ∈ N0, where BA with rows BA
r = P(Ar), Ar are the rows of A, and the

triangles EAr are given as

eAr
nv =


∞∑

i=n
ariqiv, 0 ≤ v ≤ n

0, v > n

Lemma 5.2. [10] Let Y be any subset of s. Then, A ∈ (cT,Y) if and only if Pv(Ar) ∈ (c0,Y) and EAr ∈ (c, c) for
every r and Pv(Ar)e − (ρr) ∈ Y, where ρr = lim

n→∞

∑n
v=0 eAr

nv for r ∈ N0 and, e = (1, 1, 1, · · · ). Also, if A ∈ (cT,Y) then,
Az = Pv(Ar)(T(z)) − ν(ρr), for every z ∈ cT and ν = lim

v→∞
Tv(z).

We now characterize some matrix classes concerning the space A ∈ ZΦ for Z ∈ (c, c0, ℓ∞) by considering
the following conditions:

sup
r∈N0

∞∑
v=0

|Pv(Ar)| < ∞ (12)

lim
r→∞

Pv(Ar) = 0, for all v (13)

lim
r→∞

Pv(Ar) exists for all v (14)

lim
r→∞

∞∑
v=0

|Pv(Ar)| = 0 (15)

sup
n∈N0

n∑
v=0

∣∣∣eAr
nv

∣∣∣ < ∞, ∀ r (16)

lim
n→∞

eAr
nv = 0, for all r and v (17)

lim
n→∞

n∑
v=0

∣∣∣eAr
nv

∣∣∣ = 0, ∀ r (18)

lim
r→∞

∞∑
v=0

∣∣∣∣Pv(Ar) − lim
r→∞

Pv(Ar)
∣∣∣∣ = 0 (19)
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lim
n→∞

eAr
nv exists for all r, v (20)

lim
n→∞

n∑
v=0

eAr
nv exists for all r (21)

Pv(Ar)e − (ρr) ∈ Z, for Z ∈ {c, c0, ℓ∞}, ∀ ρr and r ∈N0, (22)

where ρr = lim
n→∞

∑n
v=0 eAr

nv,

with

Pv(Ar) =
(
m + v

v

) arv +

((
m

m − 2

)
−

(
m

m − 1

)) ∞∑
i=v+1

ari +

∞∑
k=2

(−1)k
(
m
k

)  ∞∑
i=v+k

ari


 ,

and

eAr
nv =

(
m + v

v

) n−v∑
j=0

(−1) j
(
m
j

) ∞∑
i=n

ari +

∞∑
j=n−v+1

(−1) j
(
m
j

) ∞∑
i=v+ j

ari

 .
Theorem 5.3. (i) A = (arv) ∈ (c0(Φ), ℓ∞) if and only if (12), (16) and, (17) hold.

(ii) A = (arv) ∈ (c0(Φ), c) if and only if (12), (14), (16) and, (17) hold.
(iii) A = (arv) ∈ (c0(Φ), c0) if and only if (12), (13), (16) and (17) hold.

Proof. Here, part (iii) is considered for verification. One may similarly prove the other parts. The proof
is on similar lines to the Theorem (4.6). For this, to prove that BA

∈ (c0, c0), and EAr ∈ (c0, c0), it suffices to
prove the matrices BA = Pv(Ar) and EAr = (eAr

nv) for r ∈N0 of Lemma (5.1).

Pv(Ar) =
∞∑

i=v

ariqiv

=

(
m + v

v

)
arv +

∞∑
i=v+1

i−v∑
j=0

(−1) j
(
m + v

v

)(
m
j

)
arj

=

(
m + v

v

) arv +

((
m

m − 2

)
−

(
m

m − 1

)) ∞∑
i=v+1

ari +

∞∑
k=2

(−1)k
(
m
k

)  ∞∑
i=v+k

ari




and

env =

∞∑
i=n

ariqiv

=

∞∑
i=n

i−v∑
j=0

(−1) j
(
m + v

v

)(
m
j

)
ari

=

(
m + v

v

) n−v∑
j=0

(−1) j
(
m
j

) ∞∑
i=n

ari +

∞∑
j=n−v+1

(−1) j
(
m
j

) ∞∑
i=v+ j

ari

 .
Hence by Lemma (5.2), we conclude that A ∈ (c0(Φ), c0) if and only if the conditions (12), (13), (16) and

(17) hold.
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From Theorem (5.3), we can state the following Corollaries.

Corollary 5.4. (i) A = (arv) ∈ (ℓ∞(Φ), ℓ∞) if and only if (12), and (18) hold.
(ii) A = (arv) ∈ (ℓ∞(Φ), c) if and only if (12), (14), (18), and (19) hold.
(iii) A = (arv) ∈ (ℓ∞(Φ), c0) if and only if (15) and (18) hold.

Corollary 5.5. (i) A = (arv) ∈ (c(Φ), ℓ∞) if and only if (12)-(14) and (20)-(22) hold.
(ii) A = (arv) ∈ (c(Φ), c) if and only if (12), (14), (16) and (20)-(22) hold.
(iii) A = (arv) ∈ (c(Φ), c0) if and only if (12), (14) and (20)-(22) hold.

References

[1] U.Z. Ahmad and M. Mursaleen, Kothe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd),
42(56) (1987), pp. 57–61.
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