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Abstract. This paper is devoted to the complete algebraic classification of complex 5-dimensional nilpotent
Novikov algebras.

Introduction

One of the classical problems in the theory of non-associative algebras is to classify (up to isomorphism)
the algebras of dimension n from a certain variety defined by some family of polynomial identities. It is
typical to focus on small dimensions, and there are two main directions for the classification: algebraic
and geometric. Varieties as Jordan, Lie, Leibniz or Zinbiel algebras have been studied from these two
approaches ( [3,9, 11, 19, 27-29] and [11, 19, 24], respectively). In the present paper, we give the algebraic
classification of 5-dimensional nilpotent Novikov algebras.

The variety of Novikov algebras is defined by the following identities:

(x2)y,
(yx)z — y(xz).

(xy)z
(xy)z — x(yz)

It contains commutative associative algebras as a subvariety. On the other hand, the variety of Novikov
algebras is the intersection of the variety of right commutative algebras (defined by the first Novikov
identity) and the variety of left symmetric (Pre-Lie) algebras (defined by the second Novikov identity, see
about it [6] and references therein). Also, a Novikov algebra with the commutator multiplication gives a
Lie algebra, and Novikov algebras are related to Tortken and Novikov—Poisson algebras [5, 38]. The class
of Novikov (known as Gelfand-Dorfman-Novikov algebras) appeared in papers of Gelfand — Dorfman
[22] and Novikov — Balinsky [1].
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The systematic study of Novikov algebras from an algebraic view started after the paper of Zelmanov
where all complex finite-dimensional simple Novikov algebras were classified [40]. The first nontrivial
examples of infinite-dimensional simple Novikov algebras were constructed by Filippov in [20]. Also,
simple Novikov algebras (under some special conditions) were described in the infinite-dimensional case
and over fields of positive characteristic in some papers by Osborn and Xu [33, 37, 39].

Many other purely algebraic properties of Novikov algebras were studied in a series by papers of
Dzhumadildaev [15-18]. So, Dzhumadildaev and Lofwall described the basis of free Novikov algebras
[17]; Dzhumadildaev proved that the Novikov operad is not Koszul [15]; Dzhumadildaev and Ismailov
found the S,-module structure of the multilinear component of degree n of the n-generated free Novikov
algebra over a field of characteristic 0 [16]. Makar-Limanov and Umirbaev proved The Freiheitssatz for
Novikov algebras [32], and Duisengalieva and Umirbaev constructed a wild automorphism of the three-
generated free Novikov algebra [14]. Novikov central extensions of n-dimensional restricted polynimonial
algebras are studied by Kaygorodov, Lopes and Pdez-Guillan in [29]. Chen, Niu and Meng gave some new
realizations of two Novikov algebras [12]. Lebzioui studied pseudo-Euclidean Novikov algebras in [31].

Filippov proved that each Novikov nilalgebra is nilpotent [21]. Dzhumadildaev and Tulenbaev proved
thatif each left multiplication of a Novikov algebra over K (char K = p, p = 0 orp > n+1) hasnil-index n, then
A? is nilpotent with nilpotency index less than or equal to 7 [18]. Shestakov and Zhang proved analogues
of Itd’s and Kegel’s theorems for Novikov algebras [34]. Another interesting direction in the algebraic
study of Novikov algebras is the description of possible Novikov structures on a certain Lie algebra [7, 36].
Some fundamental results on Novikov algebras satisfying nontrivial identities were received in a paper by
Dotsenko, Ismailov and Umirbaev [13].

The algebraic classification of 3-dimensional Novikov algebras was given in [2], and for some classes of 4-
dimensional algebras, it was given in [8]; 4-dimensional and one-generated 6-dimesional complex nilpotent
Novikov algebras are described in [10, 26], respectively. The geometric classification of 3-dimensional
Novikov algebras was given in [4] and of 4-dimensional nilpotent Novikov algebras in [26].

Our method for classifying nilpotent Novikov algebras is based on the calculation of central extensions
of nilpotent algebras of smaller dimensions from the same variety. The algebraic study of central extensions
of algebras has been an important topic for years [23, 25, 29, 35]. First, Skjelbred and Sund used central
extensions of Lie algebras to obtain a classification of nilpotent Lie algebras [35]. Note that the Skjelbred-
Sund method of central extensions is an important tool in the classification of nilpotent algebras. Using
the same method, small dimensional nilpotent (associative, terminal [28], Jordan, Lie, anticommutative)
algebras, and some others have been described. Our main results related to the algebraic classification of
the variety of Novikov algebras are summarized below.

Theorem A. Up to isomorphism, there are infinitely many isomorphism classes of complex non-split non-one-
generated 5-dimensional nilpotent (non-2-step nilpotent) non-commutative Novikov algebras, described explicitly
in section 2 in terms of 82 one-parameter families, 27 two-parameter families, 5 three-parameter families and 104
additional isomorphism classes.

1. The algebraic classification of nilpotent Novikov algebras

1.1. Method of classification of nilpotent algebras
Throughout this paper, we use the notations and methods well written in [23], which we have adapted
for the Novikov case with some modifications. Further in this section, we give some important definitions.
Let (A, ) be a Novikov algebra over C and V a vector space over C. The C-linear space Z? (A, V) is
defined as the set of all bilinear maps 6: A X A — V such that

O(xy, z) 0(xz, y),
O(xy,z) —0(x,yz) = O(yx,z)— O(y, xz).

These elements will be called cocycles. For a linear map f from A to V, if we define 6f: AX A — V by
5f(x,y) = f(xy), then 6f € Z? (A, V). We define B> (A, V) = {6 = 6f : f € Hom (A, V)}. We define the second
cohomology space H? (A, V) as the quotient space Z* (A, V) / B?(A,V).
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Let Aut(A) be the automorphism group of A and let ¢) € Aut(A). For 6 € Z? (A, V) define the action of
the group Aut(A) on H? (A, V) by ¢0(x,y) = 0 (qb (x), 0 (y)) It is easy to verify that B? (A, V) is invariant
under the action of Aut(A). So, we have an induced action of Aut(A) on H? (A, V).

Let A be a Novikov algebra of dimension m over C and V be a C-vector space of dimension k. For
0 € Z* (A, V), define on the linear space Ag = A @V the bilinear product “ [—, —]5,” by [x + X",y + /'] Ao =
xy+0(x,y) forallx,y € A,x’,y’ € V. The algebra Ay is called an k-dimensional central extension of A by V.
One can easily check that Ay is a Novikov algebra if and only if 0 € Z2(A, V).

Call the set Ann(0) = {x € A : 0 (x, A) + O (A, x) = 0} the annihilator of 6. We recall that the annihilator of
an algebra A is defined as the ideal Ann(A) = {x € A : xA + Ax = 0}. Observe that Ann (Ag) = (Ann(6) N
Ann(A))® V.

The following result shows that every algebra with a non-zero annihilator is a central extension of a
smaller-dimensional algebra.

Lemma 1.1. Let A be an n-dimensional Novikov algebra such that dim(Ann(A)) = m # 0. Then there exists,
up to isomorphism, a unique (n — m)-dimensional Novikov algebra A’ and a bilinear map 6 € Z*(A,V) with
Ann(A) N Ann(0) = 0, where V is a vector space of dimension m, such that A = A’g and A/ Ann(A) = A’.

Proof. Let A’ be a linear complement of Ann(A) in A. Define a linear map P: A — A’ by P(x + v) = x for
x € A’ and v € Ann(A), and define a multiplication on A’ by [x, y]a: = P(xy) for x,y € A’. For x,y € A, we
have

P(xy) = P((x = P(x) + P(x))(y = P(y) + P(v))) = P(P(x)P(y)) = [P(x), P(y)]a-
Since P is a homomorphism P(A) = A’ is a Novikov algebra and A/ Ann(A) = A’, which gives us the
uniqueness. Now, define the map 6: A’ X A” — Ann(A) by 6(x,y) = xy — [x,ylar. Thus, A} is A and
therefore O € Z?(A, V) and Ann(A) N Ann(0) =0. O

Definition 1.2. Let A be an algebra and I be a subspace of Ann(A). If A = Ay & I then I is called an annihilator
component of A.

Definition 1.3. A central extension of an algebra A without annihilator component is called a non-split central
extension.

Our task is to find all central extensions of an algebra A by a space V. In order to solve the isomorphism
problem we need to study the action of Aut(A) on H? (A, V). To do that, let us fix abasis ey, . ..,e; of V, and

S
0 € Z*(A,V). Then 6 can be uniquely written as 6 (x,y) = Z 0; (x,y) e;, where 0; € Z? (A, C). Moreover,

i=1
Ann(0) = Ann(671) N Ann(62) N --- N Ann(6;). Furthermore, O € B2 (A, V) if and only if all 6; € B* (A, C).
It is not difficult to prove (see [23, Lemma 13]) that given a Novikov algebra Ay, if we write as above

s
O(x,y) = 2 0i(x,y)e € 7% (A, V) and Ann(6) N Ann (A) = 0, then Ay has an annihilator component if and
only if [611]_,1[62] ,...,[6s] are linearly dependent in H? (A, C).

Let V be a finite-dimensional vector space over C. The Grassmannian Gy (V) is the set of all k-dimensional
linear subspaces of V. Let G; (H2 (A, C)) be the Grassmannian of subspaces of dimension s in H? (A, C).
There is a natural action of Aut(A) on G, (H?(A,C)). Let ¢ € Aut(A). For W = ([01],[02],...,[6:]) €
G, (H2 (A, C)) define pW = <[¢91] , [qi)@z] L, [chs]) We denote the orbit of W € G, (H2 (A, C)) under the
action of Aut(A) by Orb(W). Given

Wi =([6:1,162],...,[6,]), Wa = ([%1]1,[92], .., [8,]) € G, (H? (A, ©)),
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we easily have that if W; = W, then (| Ann(6;) N Ann (A) = () Ann(9;) N Ann(A), and therefore we can
i=1 i=1
introduce the set

i=1

T(A) = {w =([611,10],...,[6.]) € G, (H? (A,©)) : [ ) Ann(6;) N Ann(A) = o},

which is stable under the action of Aut(A).
Now, let V be an s-dimensional linear space and let us denote by E(A,V) the set of all non-split s-
dimensional central extensions of A by V. By above, we can write

EA,V)= {A@ 10(,y) =) 0 (x,y)e and ([01],16a],...,[0:]) € TS(A)}.

i=1

We also have the following result, which can be proved as in [23, Lemma 17].

S S
Lemma 1.4. Let Ag, Ay € E(A, V). Suppose that 0 (x, y) = Z 0i(x,y)eiand S (x,y) = Z i (x,y)e;. Then the
i=1 i=1
Novikov algebras Ag and A are isomorphic if and only if

Orb ([61],[62],...,[6:]) = Orb ([$1],[92], ..., [S:]).

This shows that there exists a one-to-one correspondence between the set of Aut(A)-orbits on T (A)
and the set of isomorphism classes of E (A, V). Consequently, we have a procedure that allows us, given a
Novikov algebra A’ of dimension # — s, to construct all non-split central extensions of A’. This procedure
is:

Procedure

1. For a given Novikov algebra A’ of dimension 1 — s, determine H?(A’, C), Ann(A’) and Aut(A").
2. Determine the set of Aut(A’)-orbits on T(A’).
3. For each orbit, construct the Novikov algebra associated with a representative of it.

1.2. Notations

Let A be a Novikov algebra with a basis e, e, ...,e,. Then by A;; we denote the bilinear form A;;: A x
A — C with Ajj (ej, ) = 010 Then the set {A,'j :1<4,j< n} is a basis for the space of the bilinear forms
on A. Then every 0 € Z?(A,C) can be uniquely written as 6 = Z cijAij, where ¢;; € C. Let us fix the

1<i,j<n
following notations:
N]lf* — jthi-dimensional nilpotent Novikov algebra with identity xyz = 0
N]l. — jthi-dimensional nilpotent “pure” Novikov algebra (without identity xyz = 0)
N;  — ith 4-dimensional 2-step nilpotent algebra
N; — ithnon-split non-one-generated 5-dimensional nilpotent

(non-2-step nilpotent) non-commutative Novikov algebra

1.3. 1-dimensional central extensions of 4-dimensional 2-step nilpotent Novikov algebras

1.3.1. The description of second cohomology space
In the following table, we give the description of the second cohomology space of 4-dimensional 2-step
nilpotent Novikov algebras.
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No1: ereg = e
HZ,Ro) = <[A12 + Mg, [Avz + Asi], [Ara + An], [Asz], [Ass + Agz], [A44]>
H2(N1) = H2,,,(No1) ® ([An], [As1], [An], [Ass])

moz . €11 = ée3 €26y = €4
H2,,(Npp) = <[A12 + Ap1], [Az + Azi], [Agg + A42]>
H2(Npp) = HZ,,(Ro2) @ ([An1], [As1], [As])

m03 : €16 = ée3 €261 = —€3
H2(Np3) = <[A11], [A1a], [An], [A22], [Aoal, [An], [As2], [A44]>

9?8‘4 : €161 = €3 €16 =63 €6y = ey
H2(NGF0) = <[A12], [A1a], [An], [A22], [A2a], [As], [As2], [A44]> =

H2(N),) = Do @ <[A13]/ [As1 + Az — A23]>

m05 : e1e1 =e3 €16 = ée3 €61 = €3
H2(Nps) = <[A12], [Aa], [An], [A22], [Aoal, [An], [As2], [A44]>

9?06 . €16 = ey €361 = €4
H?2(Npe) = <[A11], [A1z], [A21], [A22], [A23], [As1], [As2], [A33]>

MNo7: e1ea=e3 exe1 =€ €0 =—¢3
H2(Noy) = <[A11], [A2], [Azz = Ars], [Ans], [Azp — Agz], [Ag1 — A14]>

Nig: ee1=e erep=es e =—aes ey =—e4
Ap], [A1], [A1z — alg3], [A1s — Aoy,
HZ gﬁa#:l — [ 12 - ®
( < [Az1 — Ags], [Ag2 — A4l > “
H*(N,) = P1 & <[A32 +Ap — Ay — A14]>

‘thg : €11 = é4 €16y = (xéy €261 = —Qéy €26y = €4 €363 = €4
H2(NG) = <[A12][A12], [Ao1], [Ax2], [A2s], [As1], [As2], [A33]>

9110 : €16y = €4 €163 = €4 €201 = —€4 €26y = €4 €361 = €4
H?(Ny) = <[A12] [A12], [A21], [A2], [Axs], [As1], [As2], [Ass]

[
mn . €11 = é4 €16y = €4 €61 = —€4 €363 = €4
H> (M) = <[A12 [A12], [A21], [A2], [A2s], [As1], [As2], [Ass]

mlz : €16 = ée3 €201 = €4

9?13 : e161 = ey e16y = e3 €261 = —€3 €6y = 263 + es
[A21], [A22], [A1a + Ans], [A13 + 2A14 + Ag4],

H2 (M) = <[A11] [A13], [A1a — Ay, [A22], [Ass — Asn], [An4] >
[Az1 = 2A13 = 2A3p + Ag], [Ag — 2A14 — Ax] >

H2(93) = (

N, 0 eea=es eeg=aes eer=e3

a#0,1 [A11], [A21], [Ans], [A13 + Agal,
HEOU) = ([T [0 = g + g + D]

H2(Y,) = Do @ ([Ava])
HZ,, (M, = <[A11] [A1z + Azp + Apg + Agp], [Axz + A32]>
Hz(mh) = com (<ﬁ14) S <[A21] [A32]/ [A3l + A42]>

) =D,

%15 . €16y = €4 €201 = —€4 €363 = €4
H>(Nys5) = <[A11], [A1z], [A21], [A22], [A23], [As1], [As2], [A33]>

1.3.2. Central extensions of Ngy
Let us use the following notations:
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Vi=[An+An]l, Vo=[A+As]l, Vi=[Au+Aul, Vi=[Az], Vs=[Az+As],
Ve = [Au], V7 = [Ax], Vg = [Az1], Vo =[Au], Vig=[Asg]

10

Take 0 = Y, a;V; € H*(Mg1). The automorphism group of Ny consists of invertible matrices of the form
i=1

x 0 0 O
g > r u
¢ = w 0 t k|
z 0 y I
Since
0 a a a3 ar o a o
qu ar+a; O 0 0 (P _ a + 0(; 0 0 0
ar+ag O oy a5 a2 + ag 0 ajl ag ’

azs+ag 0 as+apg o a + ag 0 az+ay, o

10 10
we have that the action of Aut(9i1) on the subspace (Y. ;V;) is given by (}, a;V;), where
i=1 i=1

a, = Pay,

CVE = rxaq + y(xa3 + was + zaé) + t(xazz + way + z (0(5 + 0610)) ,
ch =  uxaq + Z(Xa3 + was + 2056) + k(Xaz + way +z (0(5 + 0(10)) ,
CVZ = t20é4 +y (2t6¥5 + Yag + talo),

a; = ktag + (It + ky)as + y (la + kaso)

ozz = k2a4 +1 (2ka5 + la6 + kalo) ,

a, = Xa,

ag = rxay + txag + xyag + wyaqg — tzaq,

oy = uxag+ kxag + Ixag + lwaqg — kza,

CY;O = (lt - ky)alo.

We are interested only in the cases with

(a1, a7) #(0,0), (a2, a4, a5, as, a10) # (0,0,0,0,0),
(063, as, 0e, Ay, alO) # (0/ 0/ 0/ 0/ 0)/ (CK7, as, g, alO) * (01 0/ O/ 0)

txag+ + t k. L lw—k:
1. a1 =0, a7¢0thenchoosmgr——w u=- w , we have o = o = 0.

The family of orbits (@4 V4 +as5Vs +aeVe + a10V10) gives us characterlsed structure of three d1men51onal
ideal whose a one dimensional extension of two dimensional subalgebra with basis {e3, e4}. Let us
remember the classification of algebras of this type.

N(i; Loeer =6

N%; : €161 =63 €267 = €3

N%§ Loe1ep =¢63 €61 = —€3

NOE(A) Loe1e1 = /\63 €61 = €3 €26y = €3

Using the classification of three dimensional nilpotent algebras, we may consider following cases.
(@) as = as = ag = ajp = 0, i.e,, three dimensional ideal is abelian. Then we may suppose ar #0
and choosing y = 0, | = ay, k = —a3, we obtain that a} = 0, which implies (&}, a%, a;, a5,
(0,0,0,0,0). Thus, in this case we do not have new algebras.
(b) ay =1, a5 = ag = a1p = 0, i.e., three dimensional ideal is isomorphic to Ngi‘ . Then a3 # 0 and
choosingx =1,t=1L,k=0,y=0,w=-ap, [ = Z—; and f = +/ay, we have the representative
<V3 + V4 + V7>

10) =
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(c) oy = a6 =1, a5 = ap =0, ie, three dimensional ideal is isomorphic to N3" Then choosing
\/7’ k=y=0l=t=1w= W’ z=- T’ we have the representative (V4 + Vg + V7).

(d) oy = 0% =0,a5 =1,a19 = -2, i.e, three dlmensmnal ideal is isomorphic to N3 Then choosing
\/», k=y=0l=t=1w= QF’ z = \/», we have the representative (V5 + V7 = 2Vi0).

(e) as =A, a5 =0,a6 =1, 10 = 1, i.e., three dimensional ideal is isomorphic to NgZ(A).

X =

ax—A3

. . _ 1 _ _ _ _ _ 0% _
i. If/\iO,thenchoosmgx—%/—D?,k—O,y—O,l—t—l,z— Q/—(%,andw— A%,wehavethe

family of representatives (AV4 + Vg + V7 + Vip)az0.

ii. If A = 0 and a, = a3, then choosing x = %/%77,1(: 0,y=0,l=t=1landz= %,wehavethe
representative (Ve + V7 + Vyp).

iii. If A = 0and a; # a3, then choosing x = 2(;3) k=0,y=0,l=t= M and z = 06(“;—;“3)2,

we have the representative (V, + Vg + V7 + Vyj).
2. a1 # 0, then choosing

txan +xyasHwag+wyas+tzas+yzas+tzaqg

xXaq 4
kxap+Ixas+kway+Hlwas+kzas+lzag+kzaqg

u - xa ’

we have o = ay =0.

(@) as = as = ag = ajp = 0, i.e,, three dimensional ideal is abelian. Then we may suppose ag # 0
and choosing y = 0, | = ag, k = —a9, we obtain that ay = 0, which implies (a;,a;,ag, g, a
(0,0,0,0,0). Thus, in this case we do not have new algebras.

(b) as =1, a5 = ag = ajp = 0, i.e., three dimensional ideal is isomorphic to N3*. Then a9 # 0, and

10) =

choosingx =1,k =0,t = Vag, y = Fas ,1=and w = 0, we have the family of representatives
<V1 +Vi+aV; + Vg)
() as =as =1, a5 = ajp =0, i.e., three dimensional ideal is isomorphic to Ng’; .

. . a2+a? ag(a?+a? ag(aZ+a? ag(a?+a?
i. a7 = 0, then af + ] # 0, then choosing x = ==, t = 8(51 9), y = 9(;1 9), l = 8(51 9),

k= ag(a +a )
0(
ii. ay =0, as + a9 =0, ie, ag = xiag # 0, then choosing x = /ag, t = %, y = %5, 1 = +ixag,
k = xag, have the representative (V; + Vs + Vs).
iii. ay #0, thenchoosingx =1,y =k=0,t =1= yay,z= “;—’:9, w = “2** we have the family of
representatives (aVi + V4 + Vg + V7).
(d) as = a6 =0, a5 = 1,a19 = =2, i.e,, three dimensional ideal is isomorphic to A;.
i. 2a1+a7 # 0, thenchoosingx=1,y=k=0,t= Jaj,l=1,z— 22‘11‘127 andw = 22‘1“1;7, we have
the family of representatives (V1 + V5 + aV7 — 2V1p)az—2.
ii. 2aq + a7 = 0, then in case of (ag, a9) = (0, 0), we have the representative (Vi + V5 —2V7; —2Vy)
and case of (ag, ag) # (0,0), without loss of generality we may assume ag # 0 and choosing
x=1,y=0,l=ag, k=—ay, t = ﬂ , we have the representative (V; + V5 — 2Vy + Vg — 2Vyj).

, we have the representative (V; + V4 + Vg + Vs).

() ey = A a5 =0,a6 =1, 90 =1, i.e., three dimensional ideal is isomorphic to N 1 (1)

i. 0‘1 + a7 + /\a7 # 0, then choosingx =1,y =k =0and

f=1= \/(X_ 7= al(alas+ﬂ4a70€9) — m(az(ag—ag)+aiag)
7 a+oaz+agal a2+ ay+agal

we have the representative (aV1+ AVy+ Vg +V; + Vm)
ii. a + a1y + )toz =0, then choosing y =k =0, w = =7 — xa9, we have oy = 0, a = 1(a1a8 -

7

Aazag). Thus, in this case we have the representatrves (1+— V1“7, + AV, + Ve + V7 + Vyo) and

(A=t ‘1 ) 4+ AV + Ve + Vy + Vg + Vi) depending on ayas = Aazag or not.

Summarizing all cases, we have the following distinct orbits
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(V3 + V4 +V7), (Vs + V7 =2Vy0), (V2 + Vg + V7 + Vi) (V1 + V4 + aV7 + Vy), (V1 + V4 + Ve + V),
<V1 + V5 + Vg), (aV1 + V4 + V6 + V7>, <V1 + V5 + CVV7 — ZV10>,
(Vl + V5 - 2V7 + Vg — 2V10>, <0(V1 + /\V4 + V6 + V7 + V10>,
<#V1 + AV4 + Vg + V7 + Vg + Vyp),

which gives the following new algebras (see section 2):

Nogo, N NA NA’“

No1, No2, Nos, Ng,, Nos, Nos, N, N, 10 - N1y

04’ 08”

1.3.3. Central extensions of oz
Let us use the following notations:

Vi=[Awp+An], Vo=[Ai+Az], Vs=[Au+Ap],
V4 = [Ax], Vs = [Az1], Ve = [Ag].

6
Take 0 = Y, a;V; € H*(N(y). The automorphism group of Ny, consists of invertible matrices of the form
i=1

x 0 0 O 0 x 0 O
loy 0o o y 0 0 0
b1 = z u x2 0} b2 = z u 0 22|
t v 0 ¥ t v oy 0
Since
0 a a, 0 a o] a, 0
rlar +as 0 0 a3 _|al+a a* 0 o
Pllageas 0 0 0" 7|ai+ai 0 0 O

0 as+ag O 0 0 O(§+C¥2 0 0

10 10
we have that the action of Aut(9tp2) on the subspace (}. a;V;) is given by (}_ a;V;), where
i=1 i=1

ay = xyo+uxas +ty(as+ag), oy = Xay, yvas,
a; = xyay + uxas — tya, a; = Xas, @ = Pae.
We are interested only in the cases with
(a3/ 0(6) * (0/ 0)/ (aZ/ CV5) * (0/ 0)/ (CY4, Qas, 0[6) * (0/ 0/ 0)
x(ya1+ua2)

andt—

42}
the representative (V, + V3 + Vy);
2. (as, a6) # (0,0), then without loss of generality (maybe with an action of a suitable ¢,), we can suppose
. _ tyag—xyay .
as # 0 and choosing u = ~——=—, we have a = 0.
(@) asas + (azx + as)ag = 0, then ag # 0.
i. if &y # 0, then choosing x = —= = ——=, we have the family of representatives

}2a.’ a2’
asab ()t50t6

<V1 +aV, —(1 +0()V3 +V5 +V6>'

, we have

1. (as,a6) = (0,0), then ayazay # 0 and by choosing x =

ii. ifa; = 0,thenchoosingx = yi/a we have the family if representatives (aV, — (1 + @)V3 + V5 + Vi) .

X1a5

(b) azas + (0(2 + (15)(16 # 0, then ChOOSll’lg t= oy ey v

we have a] = 0.
i. if ag = 0, then choosing x = y f/g‘f, we have the representative (aV; + V3 + Vs);

ii. if ag # 0, then choosing x = y ﬂg—;’, we have the representative (aV, + V3 + Vs + V6>ﬁ £(lbar) -
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Summarizing all cases, we have the following distinct orbits

(Vz +V3+ V4>, <V1 +aV, — (1 + CY)Vg + Vs + V6>,
(aVy + V3 + Vs), (aVa + V3 + Vs + V)O@h=060),

which gives the following new algebras (see section 2):

N3, N¢,, No., N,

14 V157 N6
1.3.4. Central extensions of N,
Let us use the following notations:
Vi=[An]l, Vao=[Ap]l, Vi=[Aul, Vi=[Axn], Vs5=[A2],
Ve =[M24], V7=[Aunl, Vs=[Ap], Vo=[Aul, Vio=[Az + Az —Ax].

10
Take 6 = }, a;V; € H*() ). The automorphism group of ), consists of invertible matrices of the form

Since

i=1

X 0 0 0
¢ = y x+y 0 0
Tz Eox(x+y) w
u v 0 r
0 m ar  as @ ajt+at oy o
* * £ *
(PT 273 ds —x1p Qe (P — ay, ag —0610 Qg
a1l A1 0 0 a’io a’;o 0 01
a7 ag 0 Qg o ag 0 ag

10 10
we have that the action of Aut(iﬁg ,) on the subspace (Y, a;V;) is given by (} a;Vi), where
i=1 i=1

LR R

=)

\og*oo *NT O\ FUT FE K0 KNI ¥ ¥

A

x?aq + x(t + Y — 2)ap — xyay — ux(ay — ag) — (u — v)(xaz + yae + uag) — y(t — z)a,
x(x + y)(xaz — yano),

wxay + rxasz + ryag + ruag — wyay,

u((x + y)ae + vag) — (x + y)zano + x((x + y)aa + vay + tagg) + y((x + y)az + vag + tay),
(x + y)?as + o((x + y)as + (x + y)ag + vag),

r(x + y)ae + roag — w(x + y)aqo,

rxay + ryag + rucg + w(x + y)aio,

roag + (x + y)(rag + wai),

1’20(9,

x(x + y)*aqo.

Since we are interested only in the cases with

(a2, a10) # (0,0), (asz, as,a7,as,a9) # (0,0,0,0,0),

consider the following subcases:

1. ajp =0, then a, # 0 and choosing w =

r{xasz+yae+uon
_ Hastyastuas) and
X

= X200 — X% a1 HUX A3 —UX A3+ XY — XY Q5 HUY e — VY Qe HUX A7 —UXAs +UZ X9 —UVAg
- Xan ’

we have a) =a;=0.
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. _ xaz+yag _ (x+yasg * o %
(@) a9 # 0, then choosing u = V= we have a’;, = a5 = 0.

i. a5 = ay = ag = 0, then choosing r = /Z—;, we have the representative (V, + Vo) ;

2
.. . Ay (Xg—(; .
ii. a5 = as = 0, ag # 0, then choosing x = 1, y = =——=,r = Z—z, we have the representative

ag
(Vo + Ve +Vy);

iii. a5 =0, ag # 0, ag = 0 then choosing x = g—i, y=0,r= we have the representative

0(2\/079'
(V2 +Vy+Vg);
2
iv.as = 0, ag # 0, ag # 0, then choosing x = , y = aa(as0s—ag) r = — we have the

waZz 7T mas’
representative (V, + V4 + Vg + Vo) ;
v. a5 # 0, ay = as, then choosingx =1, y = 2 5a5, r= \/W’
tives <V2 + V4 + Vs +aVg + V9> ;
vi. a5 # 0, oy # a5, then choosing x =

we have the family of representa-

as—ay _ ay(ag—as) _ (ag—as)?

a 7 Yy = s 7 ar \Jasag

we have the family of

representatives (V, + Vs + aVg + Vo) ;
Xag+yas+ude

(b) as =0, ag # 0, ay = ag, then choosing v = — o

, we have a; = 0.

i. a¢ = —ag,as = 0, then choosing x =1, y =0, r = g—i, we have the representative
(V2 =V + V7 +Vg);
ii. as = —ag, a5 # 0, then choosing x = 1, y = ”‘Za;;“’, r = Z—;, we have the representative

<V2+V5—V6+V7+V8>,’

iii. ag # —ag, @ =0, as = 0, then choosingx =1, y =0, r = Z—;, we have the representative
(V2 + V7 +Vg); .

iv. ag # —ag, ag = 0, a5 # 0, then choosing x = g—i, r = aaa , we have the representative
<V2+V5+V7+V8>,‘

V. ag # —ag, ag # 0, then choosingx =1, y =0, r = Z_Z' we have the family of representatives
(Vo +aVe+Vy +Vg)yso -1 -

() a9 =0, ag #0, ay # ag, then choosing y = —%, we have a7, = 0. Hence,

i. a¢ = —ag, as = 0, then choosing x = 1, u = ‘;z, r = 3—2, we have the representative
(V2 = Vg + Vg); ;

ii. @ = —as, as # 0, then choosing x = Z‘t—i, = %, = 4o, we have the representative
(V2 + V5=V + Vg);

iii. g # —ag, ag = ag = 0, then choosing x =1, v = _Z_Z' r= g—;, we have the representative
(V2 +Vg); .

iv. ag # —ag, a6 =0, ag # 0, then choosing x = ST;' U= —%, r= aj;g,we have the representative
(V2 + V4 +Vg);

V. ag # —ag, ag # 0, then choosing x =1, u = —Z—:, v = —a:fag, r= Z‘—z, we have the family of
representatives (Vo + aVe + Vg) 0 -1 -

(x+y)(xa4+ya5+ua5)

(d) a9 =ag =0, ay # 0, then choosing v = — we have aj = 0. Hance,

xay
i. ag = a5 =0, then choosingx =1, y =0, r= 2, we have the representative (V, + V7);

2
ii. a¢ = 0, as # 0, then choosing x = “5 ,y=0r= % we have the representative

axaz’
(V2 + Vs +V7); o
iii. ag # 0, then choosing x = 1, y =
<V2 + V6 + V7> .
() ag = ag = a7 =0, ag # 0, then choosingx =1,y =0, u = _Z v = —g—:, r = Z—i,wehavethe
representative (Vo + V).

Qa7 — — Q2
-, U = = T—a—é,

a e’ we have the representative

X(x+y)ag+y(x+y)as +uxae+uyas +oxar +oyag +HUvag—Xza10—yza g r((X+y)as +7J0(9)

2. ajp # 0, then choosing t = — ' . o and w = — Gran
have aj = ag = 0. Now we consider following subcases:
. _ (x+y)ag+2xay _ (x+yas e
(@) a9 # 0, then choosing u = — T S U=, we have a; = a;, = 0. Hence,
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i ap=-a as = a1 =0, a3 = 0, then choosing x = 1, y = 0, r = /<, we have the
representative (—V, + Vg + Vi) ;
iil. @ = —ay, as = a1 =0, az # 0, then choosingx =1,y = -1+

representative (—V, + V3 + Vg + Vyp);

\/M r= ‘;‘73, we have the

iii. ap = —ayg, a5 =0, a1 # 0, then choosingx =1, y=-1+ ‘,0610 r= ,/%, we have the family

of representatives (Vi — V, + aVsz + Vo + Vyg), where O(a) =~ O(-a);

. . Jod Q!
iv. ap = —a0, a5 # 0, a1 = as, a3 = 0, then choosing x = 5—]50, Y= = a;‘\/gig, we have the
representative (V1 — Vo + V5 + Vg + Vi) ;
— — . _ Qs as \/7_0‘5\/@ _ azas
V. ap = —aqg, as # 0, a1 = a5, az # 0, then choosing x = YT T avae T T man Ve have
the representative (Vi =V, + V3 + V5 + Vo + Vi) ;
: — . as —as+ V“S(—al‘*as) _ asyas—ay
vi. ap = —aq0, a5 # 0, a1 # as, then choosing x = Y= o = e we have
the family of representatives (=V;, + aVs + Vs + Vg + Vyg), where O(a) ~ O(-a);
Vil ap # —ay, as = a3 = g = 0, then choosing x = 1, y = 5T20, r = % we have the
representative (Vg + Vyg);
_ _ _ . _ mag _ mm _ mapyar
viil. ap # —a19, as = az = 0, oy # 0, then choosing x = Gt Y= Goran? T = Vataran?’ Ve
have the representative (Vi + Vg + Vi) ;
. _ 0 O th h . _ 0( 0(10 0!2(!§ _ agam h
1X. ap # —aq0, as =0, az # U, then choosing x = ag(azmm)z’ y= oo r= Farran)?’ we have

the family of representatives (a¢Vq + V3 + Vg + Vyp);

X. ay # —ao, as # 0, then choosing x = ;"150, y=2r= w, we have the family of
representatives (aVi + V3 + Vs + Vg + Vyg), Where O(a, B) = O(a, —P).
(b) ag =0, ag # 0, then choosing v = m , we have a; = 0. Hence,
i ap = —aip, a3 = as, ay = 0, a1 = 0, then choosingx =1, y =0, r = ““‘ , we have the
representative (—V, + V3 + Vg + Vyp);
il. ap = -0, a3 =, a7y =0, a1 # 0, then choosingx =1,y = -1 + mO L r = ‘alal , we have
the representative (Vi — Vo + V3 + Vg + Vyg) ;
iii. ap = —a0, a3 = a6, ay # 0, then choosing x =1, y = “1“;6“6, u = % r = “7“10 , we have the
representative (=V, + V3 + Vg + V7 + Vyg) ;
iv. ap = —a1g, az # @, a3 + a7y = ag, @ = 0, then choosing x =1, y = —;‘—z, 7= _(as—;vﬂ, we
6
have the representative (—V; + V¢ + V7 + Vi) ;
- _ — : _ o mag __monas
V. ay = Zcmzo, as # as, a3 +ay = as, a1 # 0, then choosing x = aan ¥V = T catan
r= —(%_m)%o we have the representative (V1 — V, + Vg + V7 + Vyg) ; ( |
H — — as — 44 — az—ae)x10
Vi. ap = —aqg, az # as, a3 + ay # a, then choosing x =1, y = —o U= m, r= S
we have the family of representatives (=Va+ Ve +aVy 4+ Vio)as;
vii. @y # —aq9, then choosing y = 72, we have a}, = 0.
A. a3 = —ay, a1 = 0, then choosmg x=1,r = “10 , we have the family of representatives
<0(V3 + Ve - aV7 + V10>,'
2
_ . _ o _
B. a3 = —a7, ag # 0, then choosing x = ao T = %am, we have the family of representatives
<V1 + OéV3 + V6 — (XV7 + Vm),‘
C. a3 # —ay, then choosing x = 1, u = a:fj”, r= ”t‘;o, we have the family of representatives

(aV3 + Ve + ﬁV7 + V10>
(c) ag=a=0, a7 #0.
Lho

i ap = —aqo, a3 = —ay, a5 = a1 = 0, then choosing x = 1, y = 0, r = =2, we have the
representative (—V, — V3 + V7 + Vyg) ;

a+p#0 *
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ii. ap = —an0, a3 = —ay, as =0, a; # 0, then choosingx =1,y = % -1,r= g—;, we have the
representative (V1 — Vo — V3 + V7 + Vyg) ;
2
1o,y =0,r= 2, wehave the

Vas(as—ai)—as as(as—aq)

iv. ap = —an0, a3 = —ay, as # 0, a1 # as, then by choosing x = ;‘—j}, Y= o Jr=20,
we have the representative (=V, — V3 + V5 + V7 + Vi) ;

iii. ap = —ao, az = —ay, as # 0, a; — as = 0, then choosing x =
representative (Vi — Vo — V3 + Vs + V7 + Vyg) ;

alo

u(az+ay)—a alo

ora, =g we have the

V. ap = —aq, a3 # —ay, as = 0, then choosingx =1,y =0,v =
family of representatives (—V, + aV3 + V7 + Vw)[# 15
2

— Dt
AL = 2 we

vi. ap = —ay9, az # —ay, as # 0, then choosing x = am, y=0,u=00v= oo o

have the family of representatives (=V, + aVs + V5 + V7 + Vig) s 15
vii. @ # —aq, then choosing y = 2,

if a3 # —ay, then choosing u = 1% we have o

aztay
o) = 0, u=v=0.

A. as =0, then choosingx =1, r = ““’ , we have the representative (aV3 + V7 + Vyg) ;
2

we have ay = 0. If a3 = —ay, then choosing v = Z—;,

1 = 0. Thus, we always can assume

B. as # 0, then choosing x = =%, r =

= , we have the representative
107 aﬂho
<CYV3 + V5 +V; + V10> .

X2y +oxas+y(x+y)as )ag—xyasas
(Pa +oxas +y(e+ylas)an-ryazas ,we have a] = 0.

(d) a9 =ay = as =0, then az # 0, and choosing u =

Xazaqo
i ap = —a, as = 0, then choosing x =1, y = 0, v = “1“, we have the representative
(=V2+ V3 + Vy); ,
ii. ap = —ajyp, as # 0, then choosing x = “w, y=0r= asaw, we have the representative
( V2+V3+V5+V10>'
iii. ap # —a9, as = 0, then choosing x =1, y = 0(120 r = %, we have the representative
(V3 +Vyo);

2 2
. _ . _as _ mas _az(axtan)
iv. ap # —aig, as # 0, then choosing x = o Y= o r= Tmd,

<V3 +Vs5+ Vl()).

, we have the representative

Summarizing all cases, we have the following distinct orbits

(V2 + Vi), (Va2 + Vg + Vo), (Vo + Vi + Vo), (Vo + Vs + Vg + Vo), (Vo + V4 + V5 + aV + Vy),
<V2 + Vs +aVg + Vg), <V2 +Vs+Vy+ Vg), <V2 +Vs—Ve+Vy+ V8>, <V2 +aVg+ V; + Vg), <V2 + Vs + Vg>,
(V2 + V5 = Ve + Vs), (Va2 + aVe + Vs), (Vo + V7), (V2 + V5 + V7), (V2 + Vg + V7), (V2 + Ve), (V2 + Vg + Vy),
(—VZ + V3 + Vg + VlO)r (Vl — Vz + O[V3 + Vg + V10>O(Q)ZO(_0{), <V1 — V2 + V5 + V9 + V10>,
(=Va +aV3 + Vs + Vg + V1) 0@=0C0) (V) —V, + V3 + Vs + Vo + Vig), (Vo + Vag), (V1 + Vo + Vao),

<6¥V1 + V3 + Vg + V10>, <0(V1 + ﬁV3 + V5 + Vg + V10>O(a,ﬁ):O(a,—ﬁ)’ <—V2 + Vg + V6 + V10>,

<V1 -V, +V3+Vg+ V10>, <—VZ +V3+Vg+Vy+ V10>, <V1 —Vo+Vg+V;+ Vl()), <—V2 + Ve +aVy + V10>,

<V1 +aVz+ Vg —aVy + V10>, (lXV3 + Ve + ﬁV7 + V10>, <V1 -V —=V3+V,+ V10>, <—V2 +aV3+ Vs + V10>,

<V1 -V, =V3+Vs5+V;+ V10>, (-Vz +aV3;+ Vs +V; + Vl()), <C¥V3 + Vs + Vl()), (aV3 +Vs+ V7 + Vm),
(=V2 + V3 + Vyg), (=V2 + V3 + V5 + Vi), (V3 + V1g), (V3 + V5 + Vip),

which gives the following new algebras (see section 2):

Ni7, Nig, Nig, Nao, N21, N3,, N2, Nog, N35, Nog, No7, st' N29, N3o, Na1, N3z, N33, Naa, N35, Nae, N3, Nag,
Nag, Nao, Ny, N42 , Nag, Naa, Nus, Nag, Ny, N, N49 , Nso, Ns1, N5z, N5, Nz, N, Nsg, N5z, Nsg, Nsg.

1.3.5. Central extensions of Noy
Let us use the following notations:
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Vi=[Aul, V2=[Ax], V3 = [Azz — Ag3],
Vy=[Ax], Vs5=[Azx—A13], Ve=1[Ay — Al

6
Take 0 = Y, a;V; € H*(Nyy). The automorphism group of No; consists of invertible matrices of the form
i=1

x 0 0 O
0 x 0 O
¢ = z u x> 0
t v 0 A2
Since
a1 0 —az—as —ag ay a” —ag—oap -y
(PT 0 a a3 vy ¢ = at -t +a ag “Z
0 as 0 0 0 oy 0 0|
ag 0 0 0 oy 0 0 0

6 6
we have that the action of Aut(9ty;) on the subspace (), a;V;) is given by (}. a;V;), where
i=1 i=1

a; = x(xar —z(az + as)), ay = XPaz, ay = Xas

ay = x(xax+ovay+zas—vae), « = Xy, @ = Xa.

We are interested only in the cases with (a3, as) # (0,0), (as, a6) # (0,0).

1. as # 0, then choosing z = —W, we have a; = 0. Now we consider following subcases:
(a) ag #0.
i. if a3 = —as, a; = 0, then we have the family of representatives (—V3 + aVy + V5 + Vs) .
ii. if @z = —a5, ag # 0, then choosing x = Z—;, we have the family of representatives
<V1 —V3+aVy+ Vs +/3V6>a¢0;

iii. if a3 # —as, then choosing u = 7”‘)‘3(“4MGZ)(;;ESS{U(““%» , we have the family of representatives

()/V3 +aVy+ Vs + ﬁv6>a¢0,yifl :
(b) ag =0,a¢ # 0.
i. if a3 = —as, a1 = 0, then we have the family of representatives (—V3 + Vs + ﬁV(,)ﬁ 207
ii. if a3 = —a5, aq # 0, then choosing x = g—;, we have the family of representatives
(Vl —V3+ Vs + ﬁV6)ﬁ¢0;
iii. if a3 # —as, then choosing v =
(V3 + Vs +BVe),. 1 5z0-
2. a5 =0, az # 0, then choosing z = %, we have a; = 0.
(a) if ay = ap, ap = 0, then we have the family of representatives (V3 + aV4 + aVe) 20
(b) if ay = a6, ap # 0, then choosing x = z—;, we have the family of representatives
(Vo + V3 +aVy+aVe)yu;
(c) if a4 # a6, then choosing x = 1, v = ——2—, we have the family of representatives

ag—ag’
<V3 + 0(V4 + 5V6)a#ﬁ/ (@p)#(0,0) -

Summarizing all cases, we have the following distinct orbits

as(xay —2uas)-2ua—4uasas

i) , we have the family of representatives

(V1 =Vs3+aVy+ Vs + BVe)ap 200, (¥Vs+aVe+ Vs + BVe)ap=00),
(Vs + aVy + BVe)ap00), (V2 + V3 + aVy + aVe)azo,

which gives the following new algebras (see section 2):

@HEO0) \(@HZO0) N @HEO0 Njaz0
NGO 4 N61 4 N62 4 Ngﬁ’) '
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1.3.6. Central extensions of R3Z!
Let us use the following notations:

Vi = [Ar2], Vi = [An], V3 = [A13 — aly3],
Vi=[Au—Anl, Vs=[Az1—Aiz], Ve=[Aw— Ayl

Take 0 = Z a;V; € H(M3¥). The automorphism group of N3¥! consists of invertible matrices of the
i=1

form
x 0 0 O 0 ax O 0
0 x 0 O x 0 0 0
P = t v x2 0 ol #0) = t v 0 —a2x?
u w 0 22 u w —x 0
Since
0 a1 az—as ay a* a; +a” ag - a; ajl
¢{ an 8 —06a3 —a4 — ag b1 = a; —*aa —g** —c(k)ag —aZO— ag ’
a5 5
0 ag 0 0 0 oy 0 0

6 6
we have that the action of Aut(mgg 1) on the subspace (). a;V;) is given by (}. a;V;), where
i=1 i=1

o= x(een +o(l - @)az —vas +uae), oy = Xaz, ay = xas

@ = x(ax—u(l-a)ag+ovas —uag), a, = ¥Yai, a, = X

Q
|

We are interested only in the cases with (a3, a5) # (0,0), (s, ) # (0,0).

1. as = ag =0, then azay # 0, and choosing u = ﬂfﬁ’ v = —afﬁ, we have a] = a) = 0 and obtain the

representative (Vs + V4),.q -
2. (as,a6) # (0,0), a # 0, then with an action of a suitable ¢, we can suppose as # 0 and choosing
_ u((l-a)as+ag)—xan
= SR
(@) asas + (@ — Dazay # azas, then choosing u =
representatives (V3 + yVy + Vs + 6Ve), 1+ (a-1)8y2p5,

(b) asas + (@ — Dazay = azas, a1 = 0, then we have the family of representatives (Vs + yVi + Vs +
6v6>w+(c¥ 1)y=pos

(c) asas + (oz - Dazay = azae, a1 # 0, as # (1 — a)as, we have the family of representatives (V; +
ﬁV3 + - 1) +1V4 + V5 + 6V6>§¢ 1,

(d) Qqats + (@ — Dazay = a3, A1 # 0 a5 = (1 — a)as, then a3 # 0 and ag = 0. Hence, we have the

, we can suppose @, = 0. Now we consider following subcases:
X105
(I=a)(agas—az((1-a)as+ae))’

we have the family of

3. (as,a6) # (0,0), a = 0. If a5 # 0, then we obtain the previous cases. Thus, we consider the case of
as = 0. Then azas # 0 and choosing u = @ we can suppose a; = 0. Now we consider following
subcases:

(a) a4 # —ae, then choosing v = —
(BV3 + ¥Vy + Ve)a=0y%-1,

(b) ay = —as, az = 0, then we have the family of representatives (V3 — V4 + Ve)a=o,

(c) as = —ae, ap # 0, then we have the family of representatives (V, + V3 — V4 + Vg )a=o.

X0
as(as+as)”

we obtain ) = 0 and obtain the family of representatives

Summarizing all cases for the algebra %t3¥!, we have the following distinct orbits:

(V3 + BVa)az, ﬁ;to/ (BV3 +yVi+ Vs +0Ve)az1, (V1 + pV3 + = 1)ﬁ+1 g Va+ Vs +0Ve)pe 1 o
(V1 + 7=V3 + Vs + Vs)az1, (BVa + Vi + Ve)azo, (V2 + BV3 — Vi + Ve )amo,
which gives the followmg new algebras (see section 2):

a#1p20 \qa#l B0 \qaELp#E LD a:tlﬁ By NP
N64 4 N65 4 N66 o 4 N N68 4 N
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1.3.7. Central extensions of N
Let us use the following notations:

Vi = [Arn], Vo = [An], V3 =[A1z = Axs], Vi=[A1s— Ayl
Vs =[As1 —Az], Ve=[Awp—Nl, V7=[Azn+ Ay — Ay — Ayl

7
Take 0 = Y, a;V; € H*(,). The automorphism group of 9, consists of invertible matrices of the form
i=1

x Y 0 0
o= x+y—-z z 0 0 '
t v x(z-y) y(z-y)
u w (x+y-z)z-y) zlz-y)
Since
0 a1 az—as as—ay o aj+a” ay-ap ap-a;
rlee 0 -—az—a7; —as—ag| , |a,—a"  —av —ay-a; —a)—ay
¢ as  ay 0 0 ¢ = a; @ 0 0 ’

a7 Qe 0 0 az a 0 0

7 7
we have that the action of Aut(ﬂtés) on the subspace (}. a;V;) is given by (} a:V;), where
i=1 i=1

*

o] = (x+yza +ylx+ y)a — (vx — ty)as — (w(x + y) — z(u + w))ae
—(x(v +w) — y(u —v) —z(t + v))ay,

*

@, = (@+y+y-—z)a+x(x+ya+ (ox - ty)as + (wlx + y) — z(u + w))as
+(x(v + w) — y(u —v) — z(t + v))ay,

ay = (- as+ (x+y—2)ay),

a, = (z-y)P (yas +zay),

a; = (z-yEas+ @ +y-2)((x + y — 2)as + 2xaz))

ay = (z—yYPas + z(zas + 2yay)),

a, = (z—y((x+y—2)(zas + yaz) + x(yas + zaz)).

We are interested only in the cases with

(0(3/ as, 0(7) * (Or Or O)r (0(4, Qe, 0[7) # (Or O/ 0)

_y
ay ’

1. (as,a6,a7) = (0,0,0), then a3 # 0, g # 0. If @y # —a3, then choosing z =
which implies (a}, a;, a;) = (0,0,0). Thus, we have that a3 = —ay.
(@) (a1, a2) =(0,0), then we have the representative (V3 — Vy);
(b) (a1, a2) # (0,0), without loss of generality, we can suppose a1 # 0.

i. a1 = —ay, then choosing x = z—?, y =0,z =1, we have the representative (V; — V, + V3 — Vy4);
3

we obtain that a, =0

a

_ 1 7 = aja
(ar+az)?as” (v +az)2a1a3

ii. aq # —ap, then choosing x = 0, y =
(V2+V3=Vyg).
2. (as,a6,a7) # (0,0,0), then without loss of generality we can assume as # 0 and consider following
subcases:
(a) agas = a%, ay = —as5, a4 = —az, a1 = —ap, then takingv =u =w =0, t =
family of representatives (V3 — fV4 + V5 + Vg — V7);
(b) asas = a2, a7 = —as5, ay = —a3, a1 # —ay, then taking

(a1+as) F= ay (g +az)
as 7 - az 4

, we have the representative

m, we have the

y:v:u:w:()/z:x:

we have the family of representatives (V, + V3 — V4 + V5 + Vg — V7)) ;
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(¢) agas = a%, a7 = —as, ay # —a3, then we can choose y and z such that aj = 0, & # 0. Thus we can
suppose ay = 0, moreover takingv=u=w=0,t = %, we can also suppose a; = 0.
i. if ap =0, then choosingx =1,z = ‘ﬁ , we have the representative (V3 + V5 + Vg — V7);

2
(12015

ii. ifay # 0,thenchoosingx = —* “2“5
3

,Z2= ,wehave therepresentative (V, + V3 + V5 + V4 — V7).

(d) asas = a2,as # —ay, then choosing y = —ﬂ w=00v=

az = 0. Since (ay, ag, a7) # (0,0,0), we have that ay # 0.

zZ( as—aray)

m(asray,) ¢ We can suppose a; = ag =

(14

i. @y =0, then choosing x = z , /=, we have the family of representatives (V3 + V4 + Vs).

ii. ap # 0, then choosing x = ZE—S \/0: z = 22, we have the representative (V, + fV3 + V4 + Vs).
(e) asrs # a3, then choosing suitable value of z and ysuch that y —z # 0, and we can suppose ag = 0
and a7 # 0.
i. as = —2a7, a4 =0, 1 = —ap, then choosingy =u=v=w=0,f= ml , we have the family

of representatives (V3 — 2Vs + V7);

ii. a5 = —2ay, a4 =0, a1 # —ap, then choosingy=u=v=w=0,f = —%, z= @, we have
the family of representatives (V, + fV3 — 2Vs + Vy);
iii. a5 = —2a7, a4 # 0,11 = —ay, then choosingy =u=v=w=0,t= —%, z = =2, we have the
family of representatives (V3 + V4 —2V5 + Vy);
iv. as = =2ay, ayg # 0, a1 # —ay, then choosing
ay+as)a?
y=u=v=w=0,t=-71x= ( 10(;) iz = (“1;%2)“4,
we have the family of representatives (V, + fV3 + V4 —2Vs5 + V7);
V. a5 # —2ay, a1 = —ap, then choosingy =u=v=w=0,z = X(Z“a;:’m, t= ’if; we have the
family of representatives (V3 + yV4 + V7);
vi. as # —2ay, a1 # —ay, then choosing
y=u=v=w=0,x= {5 2= 200 p= X

we have the family of representatives (V, + V3 + yVy + V7).

Summarizing all cases for the algebra 9t , we have the following distinct orbits

08”

(V3 =Vi)ae1, Vi =Vo+ V3 =Vi)osy, (Vo + V3 = Vi) y , (BV3 =BV + V5 + V6 = V7)1,
(V2 +BV3 =BV +V5+Ve=Vy) 1, (V3+V5+Vs—=V7),1, (Vo +V3+V5+ Vs =V7),q,
<5V3 +Vyi+ V5>a=l , <V2 + ﬁVg, + Vi + V5>a:1 , (ﬂV3 —2V5 + V7>a:1 , <V2 + ﬁv;:, —2V5 + V7>a:1 ,
<ﬁV3 + V4 - 2V5 + V7>a=1 , <V2 + ﬁV3 + V4 — 2V5 + V7>a=1 , <ﬁV3 + ]/V4 + V7>a:1 , <V2 + ‘BV3 + )/V4 + V7>

a=1"

which gives the following new algebras (see section 2):

N0, N71, N7, b, NP, N7s, Nzg, Nb, Nbg, Nbg, Ng o, NE | NG, NG NM

737 7747 787 7797 7807 © 7817 7 7827~ 783 7

1.3.8. Central extensions of N1»
Let us use the following notations:

Vi=[Au]l, Vi=[A], V3 = [A1g — Ay,
Vy=[An], Vs5=[Ax3—-Az] Vs=[Ax].

6
Take 0 = Y, a;V; € H>(Myy). The automorphism group of Ny, consists of invertible matrices of the form
i=1

x 0 0 O 0 x 0 O
{00y 0 0 |y 0 0 0
=1, % xy O P2=17 o 0 xyf

u t 0 xy u t xy 0
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Since
a 0 a a3 aq @ ag
rl O sy Qas Qg | a” “Z o ag
Pl o —as 0 0|?7| 0 —a; 0 0
—az 0 0 0 -y 0 0 o0

6 6
we have that the action of Aut(9t12) on the subspace (Y. ;V;) is given by (}, a;V;), where
i=1 i=1

*

ay
1
ay

x(xan +z) @y = XPymy, ay = xyas,
_ 2 2
y(yas +vas), a; = xy-as, ag XY~ .

We are interested only in the cases with
(a2/ a5) # (0/ O)/ (a3/ 0(6) # (0/ 0)

1. (az,a6) = (0,0), then az #0, as # 0.
(@ a3 =0, a; =0, then choosingx =1, y = Z_Z' we have the representative (V3 + Vs);
(b) as =0, ay # 0, then choosing x = %, y= g—;, we have the representative (V; + V3 + Vs);
3

(c) as # 0,thenchoosingx = g—:, y= “;gi,we have the family of representatives (aV; + V3 + V4 + Vs);

2. (a2, a6) # (0,0), then without loss of generality, we can suppose as # 0 and choosing v = —=—, we
have a; = 0.
4

(@) az #0,thenchoosingx =1, y =2,z = —;ﬂ,we have the family of representatives (V, + aV3 + Vs + Vi) ;

(b) ap =0, az = a; =0, then we havae4 the famzily of representatives (aVs + Vi) 0

() ap =0, a3 =0, a1 # 0, then choosing x = Z_?/ y = 1, we have the family of representatives
(Vi +aVs+ Ve)uzos
(d) ap =0, a3 # 0, a1 = 0, then choosing x = j—z, y = 1, we have the family of representatives

(V3 +aVs+ V)05
(e) a2 =0, az # 0, a1 # 0, then choosing x = %, Y= %, we have the family of representatives
3

(Vi+V3+aVs +Ve)z0;
Summarizing all cases, we have the following distinct orbits
(V3 + Vs), (V1 + V3 + V), (aV; + V3 + Vg + V5)0@=0@") (V) 4 aV; + V5 + V) O@P=06) (aV5 + VYoo,
(Vi +aVs + Ve)azo, (V3 + aVs + Ve)azo, (Vi + V3 + aVs + Ve)azo,

which gives the following new algebras (see section 2):

a ap a#0 a#0 a#0 a#0
Nas, Nss, N87’ N88 ’ N89 ’ N90 ’ N91 ’ N92 :

1.3.9. Central extensions of q3
Let us use the following notations:

Vi = [An], Vo = [An], V3 = [Ag + Ag],
Vi =[Aog — A1z +2A14], Vs =[Ap —2A13+Az1 —2Az], Ve =[Asn —2A14 — Az].

6
Take 0 = Y, a;V; € H*(My3). The automorphism group of 93 consists of invertible matrices of the form
i=1

x 0 0 O 0 x O 0
0 x 0 O x 0 O 0
P = z u x2 0} b2 = z u —x* 2x?
t v 0 x? t v 0 x?
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Since
0 0 —ay — 205 a3+ 204 — 20
rlor an as a4 —
(]51 a5 —26¥5 — Qg 0 0 (Pl -
(073 a5 0 0
o a™ —a; - 20% 3t 2a4 - Za
_ ay—a” ay+at+2a" o o
oy =20 — ay 0 0 ’
oy o 0 0

6 6
we have that the action of Aut(9;3) on the subspace (). a;V;) is given by (} a;V;), where for ¢1:
i=1 i=1

af = x(xap+(©+z)as+ (t—u+20)ay + (t —u—2z)as — (v + 2)ae),
@y = x(xay —(t—u+20)az — (2t —2u + 30 — z)as—
(2t —2u — v —b5z)as + (t — u + 4v + 2z2)a),
a; = Xas,
a, = Xy,
a; = xzag,,
O(Z = ag.
for ¢:
@) = x(xap +(t+u)as + (2t +0-z)ay — Qu — v+ z)as — (t + u)as),
@y, = —x(2xap +xax+ 2u -0+ z)asz + (t+u)ay + (t + u)as + (2t + v — 2)ae),
ay = (g +2as),
a, = x(az—2Qas+ ap)),
a; = xX*Qas+ag),
a; = —x>(Bas + 2ap).

We are interested only in the cases with (a3, a4, as, as) # (0,0,0,0).

1. (as,a6) = (0,0). Let us consider the following subcases for automorphisms of type ¢;:

(@) a3 =0, then ay # 0, then choosingu =v =0,z = —’((2“&1—:6'2) t= ml , we have the representative
(Va);

(b) az # 0, a3 = —a4, a1 = —ay, then choosing u = v = z = 0, t = =* we have the representative
(V3 =Vy);

() a3 # 0, a3 = —a4, a1 # —ap, then choosing u =v =z =0, t = —’%2, X = al{”‘z we have the

representative (Vq + V3 — Vy);
(d) asz #0, ag # —a3, then choosing
x(azas+as(as+2as)) t= x(azaz—aiay)
(a3+ay)? (az+ag)? 7/
we have the family of representatives (Vs + Vi), 1 ;
2. (as,a6) # (0,0), then without loss of generality (after an action of ¢»,), we can suppose as # 0 and
consider the following subcases for automorphisms of type ¢;:
(@) ag = —as, az = 2a5 + ag, a1 = 0, then choosingu =v=2=0, t =
representatives ((2 + a)Vz — V4 + V5 + aVe) ;
(b) as = —as, az =2as5+as, a1 # 0, then choosingu =v=2z=0, t =

u=v=0,z=-

3 - we have the family of

“21:;2 ,x = =1, we have the family

of representatives (Vi + (2 + a@)V3 — V4 + V5 + aVe) ;
(c) as = —as, az # 2as5 + ag, a3 # @, then choosing t = u =0,
x = (a3 — ag)(as — 25 — ), 2 = 201 (a5 + 6) + 502205 + A6 — a3) — 103
and v = %0{2(&3 —2a5 — 0(6) - 0(1(2&5 + 0(6),
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we have the family of representatives (aVs — V4 + V5 + yV6> Vyi2)
(d) as = —as, az # 2a5 + as, az = as, then choosing z = ’2% and v = 0, we have two families
of representatives (¢V3 — V4 + V5 + aV) and (Vy + aV; — V4 + V5 + aVe), depending on apas =
—ai(as + 2a5) or not. The last family for @ # —2 under an action of ¢, gives a case with ay # —as,
which will be considered below.
(e) ag # —as, a3 + o + 20a5 + 2304 + (a5 + a6)* # 20306, then by choosing
X = a3+ a5 + 2005 + 203(a — ag) + (a5 + a)?, u = o — a3 — 204) + a1 (as + dag — 203 — 3ay),
v =—ay(ag + as) — a1(az + 204 + 205 —ag) and z = £ = 0,
we have the family of representatives
<(XV3 + ﬁV4 + Vs + ’)/V6>5¢,1, Q2+2+2p+2ap+(1+))2£2ay ;
(f) ay # —as, a3 + o + 20405 + 203004 + (a5 + (06)* = 230, then by choosing u =
we have two families of representatives
<V2 + EV3 + 0(V4 + V5 + ﬁV6)a¢_1 and <EV3 + aV4 + V5 + ﬁV6>a¢_1 ,
where E = - + \/-2af — 2a — 28 — 1, depending on
ao(ag + as) + aq(ag + 205) # aq \/—2a4(a5 + ag) — as(as + 2ae)) or not.

andz=t=0,

a+a

Summarizing all cases, we have the following distinct orbits

(Va), (V3 + aV)O@=0@D) (V) 4+ V5 = V), (V1 + (2 + @)V3 — V4 + V5 + aV)0@=0@+0™),
24B a=2(2+y) 3+2y
(V2= 2V3 = V4 + Vs — 2V), (Vs + BVs + Vs + pVe) OO0 25235
<V2 + (ﬁ o+ \/ Zaﬁ 200 — Zﬁ 1)V3 + OCV4 + V5 + 5V6>a¢_1,

<V2 + (‘8—0(— \/—Zaﬁ—ZOz—Zﬁ— 1)V3 +aVy +V5 +ﬁV6>

L2,

agl-1-32

which gives the following new algebras (see section 2):

N97 Naﬁy Naﬁ Naﬁ

N93/ N94/ N95/ Ng, 99 7 “N100°

96’

1.3.10. Central extensions of 91(1)4
Let us use the following notations:

Vi=[Aul, Va=[An], V3 =[Ax], Vi=[Az+Aul,
Vs =[As], Ve=[Awn—NMul, V7=[Ayul]

7
Take 0 =), a;V; € H?(NY,). The automorphism group of NY, consists of invertible matrices of the form

x z 0 O
10y 0 0
?=lw u v 0
t v yz xy
Since
a1 0 ay ay a; @ a o
ng a, 0 a3 ag—ag ¢ a, a” ag aZ—ag
0 a5 O 0 {0 a; 0 0 ’
0 a O 0 0 a; O 0

7 7
we have that the action of Aut(iﬁ(l’ ) on the subspace (X, a;V;) is given by (} a;Vi), where
i=1 i=1
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a) = x(xay +way + taz),

oy = xzag +xyas + wyas + (ty + wz)ay — tyas + tzaz,
ay = y(yPas +zQQyas — yas + zay)),

a, = xg (yas + zaz),

a; =y (Zya5 + zag),

a% = xzy g,

067 = X'yasz.

We are interested only in the cases with

((X3/ Qy, a5) # (0/ O/ 0)/ (a4/ Qe, 0(7) # (Or Or 0)

. _ _Yyos _ _Xantway
1. a7 # 0, then choosing z = o E= T

and consider following subcases:

,we have a] = &, = 0. Thus, we can suppose a1 = a3 =0

(@) as # 0, then choosing x =1, y = /aza; Lw= —a2a31, we have the family of representatives
<V3 + 5V4 + ’}/V6 + V7>,’
(b) az =0, then a5 # 0.
i. ap = 0,thenchoosingx =1, y = a70z5 !, wehave the family of representatives (Vs + Vs + V7);

ii. ap # 0,thenchoosingx = a7, y= we have the family of representatives (V, + Vs + Vg + V7).

Vasaz’
_Yyas
ag 7

2. a7y =0, ag # 0, then choosing z =
following subcases:
(@) ag =0, then a3 # 0 and choosing f =
subcases:
i. aq =0, then choosing x = g_Z’ y = 1, we have the representative (V3 + Vi) ;

we have a; = 0. Thus, we can suppose a5 = 0 and consider

%2, w =0, we can suppose a, = 0. Consider following

2
ii. a7 # 0, then choosing x = %, y = %17, we have the representative (V1 + V3 + Vs).
6

(b) a4 = ag, then choosing w = —=*1, we can suppose a1 = 0 and consider following subcases:
i. ap =0, a3 =0, then we have the representative (V4 + Vs) ;

ii. ap =0, a3 # 0, then choosing x = ﬁ—i, y =1, we have the representative (V3 + V4 + Vi) ;

iii. ap #0, a3 =0, then choosingx =1, y = “2 , we have the representative (V, + V4 + Vg) ;

iv. ap #0,a3 # 0, thenchoosing x = a2“3, y= Zz,we have the representative (Vs + V3 + V4 + Vg).

x(aqa3 —aza4)

(0) a4 # ae, ay # 0, then choosing t = =F7F—755,

following subcases:
i. a3 =0, then we have the family of representatives (Vs + V6>ﬁ 201
ii. a3 # 0,thenchoosingx = £, y = 1, wehave the family of representatives (V3 + gV, + V6)so1

w=— ai;, we can suppose a1 = ap = 0 and consider

yas oy x(a1a3—awag)
20(4’ - ai 4 w=

xal

3. a7 =0, a6 = 0, then a4 # 0 and choosing z = — ,wehavea] =a;=a;=0

and consider following subcases:

(a) as =0, then we have the representative (Vy4);
(b) as # 0, then choosing x = z—i, y = 1, we have the representative (V4 + Vs).

Summarizing all cases, we have the following distinct orbits

<v3 + ﬁv4 + )/v6 + V7>O(ﬁ,)f)ﬁ0(*ﬁﬁ7) , <V2 + VS + ﬁv6 + V7>O(ﬁ):0(*ﬁ) i <V5 + ‘BV6 + v7>0(ﬁ):0(7ﬁ) ,
(Vi+V3+Ve), (Vo +V3+Vy+Ve), (Vo+Vi+Ve), (Vs+ Vs +Ve), (BVs + V6>5¢0 , (V4 +Vs5),(Vy).

1.3.11. Central extensions of N},
Let us use the following notations:
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Vi =[Au], Vo =[Ax], V3=[Ax],
Vy=[Aiz+Axul, Vs=[An], Ve=[As1+Agp].

6
Take 0 = Y, a;V; € H*(0],). The automorphism group of %}, consists of invertible matrices of the form
i=1

x z O 0
10 v O 0
*=lw u v 0
t v 2yz xy
Since
ar 0 ag O aj aroa 0
rlae 0 az aa|, a+a at oay o
¢a6a500¢_ ay a; 0 0
0 as 0 O 0 ag 0 0

6 6
we have that the action of Aut(‘Jt% ,) on the subspace (}. a;V;) is given by (}_ a?V;), where
i=1 i=1

ap = x(xar+w(ag +ag)),

oy = xgcm + wyas — (ux — ty — wz)ag — wyas + (ux — ty — wz)ae,
@y = y(yas+3zas),

a, = xytay,

ay =y (yas+3za5),

a; = xy’ae.

We are interested only in the cases with

(g, ag) # (0,0), (a2, a3 — a5, a4 — ag) # (0,0, 0).

1. as # 0, then choosing z = g as , we have a; = 0. Thus, we can suppose a5 = 0 and consider following
subcases:
(a) a4 # as, then choosing t = %, we can suppose a; = 0 and consider following subcases:
i. ag = —ag, a1 =0, a3 = 0, then we have the representatlve (=V4+Vg);
ii. ag = —ag, a1 = 0, a3 # 0, then choosing x = 1, y = g—g, we have the representative
(V3 =V4+Vg);
iii. a4 = —ag, &1 # 0, a3 = 0, then choosing x = Z_?r y = 1, we have the representative
(V1 =Vy+Vg); .
iv. g = —a, ;1 # 0, a3 # 0, then choosing x = %, y = “;‘:3 we have the representative

(V1 +V3=V4+Vg);

V. ag # —ag, a3 = 0, then choosing x =1, w = —
BVs+Ve6)gg11)5

vi. ay # —ae, az # 0, then choosingx =1, y = Z—g w= MW ,
tives <V3 + ﬂV4 + V6>[3¢[—1,1} .

(b) as = as, then a3 # 0 and choosing w =

7112 we have the family of representatives

we have the family of representa-

"“2 , we can suppose a, = 0 and consider following

subcases:
i. a1 =0, then choosing x =1, y = “"’ , we have the representative (V3 + V4 + V) ;
ii. a; #0, then choosing x = —2, y = “1“3 , we have the representative (V1 + V3 + V4 + V).
_ . oy _ (3a4(ua4 yaz)+ya1 (2a3—3a5)) _
2. ag =0, then a4 # 0, and choosing z = —ﬁ, t= S , W= ff‘: wehavea) = a =

a; = 0 and consider following subcases:
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(@) as =0, then we have the representative (Vy4);
(b) as # 0, then choosingx =1, y = Z—i, have the representative (V4 + Vs).

Summarizing all cases, we have the following distinct orbits

(V1 +V3+Vy+Vs), (Vi +V3=Vy+Ve), (V1 = Vi + Ve), (V3 + BVy + Vi), (BVa + Ve)pz1, (V4 + Vs), (Vy).

1.3.12. Central extensions of %"

Let us use the following notations:
Vi =[Au], Vo =[An], Vi =[Ax3],
Viy=[Aiz+Axu], Vs=[Azn], Ve=I[(a—1)Au+als + Ap].

6
Take 0 = ), a;V; € H2(9?‘1Yf0’1}). The automorphism group of ‘R‘ffo’” consists of invertible matrices of the
i=1

form
X z 0 0
10 vy 0 0
*=lw u e 0
t v 1+a)yz xy
Since
a1 0 ay 0 o] a o ay 0
rla 0 a ag+(@—Das|, _|aj+aa” a” a) o)+ (@-1ag
¢ ang as 0 0 ¢= aay a; 0 0 !
0 a O 0 0 a 0 0

6

ag{0,1

we have that the action of Aut(9t);

6 6
]) on the subspace (}, a;V;) is given by (}, a;V,-), where
i=1 i=1

) = x(xa +w(as + aas)),

ay = xz(1-a)m +xyay + wyas + (ty + wz — uxa)ay — wyoas — (ty — uxa + wza®) e,
ay = yryas +z(2+ a)as — (1 - a?)ag)),

a, = xyioy,

ar = y(yas +z(1 +2a)ae),

ay = xy’ae.

We are interested only in the cases with (a4, as) # (0,0).

1. ag # 0, then consider following subcases:

(a) oy #+ —ag, a4 # ag, then by Choosing u=0w= —ﬁ and t = x(al(yaa+a(;;¥;;_y:;5);;fci()3;$az(0(4+¢ma)),
we have a] = a; = 0.
ia = —%, as = 0, then choosing z = —%, we have the family of representatives
<:BV4 + V6>ﬁ¢{1,—a}, a=-1 ;
. a= —%, as # 0, then choosing x = 372, y=1z= —3(2353%) we have the family of representa-
tives (V4 + Vs + Vé)m“,_a}/ =1’
iii. a # —3, then choosing z = _(132% we have a; = 0.

A. a3 =0, then we have the family of representatives (V4 + V6>ﬁ${1,_a}

, a;’:—% 4
a

B. a3 # 0, then choosing x = 32, y = 1, we have the family of representatives

<V3 + ﬁV4 + V6>/3¢{1,—0(], 0#_% .

(b) as # —aas, as = @, then choosing w = — =4

T O+a)ag”

we have a; =0.



ii.

ii.

iv.

K. Abdurasulov et al. / Filomat 37:20 (2023), 6617-6664 6639

a = —%, as = 0, ap = 0, then choosing y = 1, z = —‘3%2, we have the representative

(Vg + V6>a—_% ;

a= ——, as =0, ap # 0, then choosing x =1, y = gz, = —42‘;2‘3, we have the representative
6

(Va+Vy+ Vo) 15

o= —%, as # 0, ap = 0, then choosing x = z—:, y=1 z= g‘“ we have the representative

(Vg + Vs +Ve)ae-1;

a=—3,as#0, a, # 0, then choosing x = “2—‘2"5, y= E z= 4;‘2‘2)‘3 we have the representative

(Vo + V4 + Vs + V6o 1

a # —1, then choosing z = —% we have a; = 0.

A. a3 = a = 0, then we have the representative (V4 + V6)agi-1 1y
B. a3 =0, ap # 0, then choosing v = Z—z, we have the representative (V, + V4 + V6 agi-
C. az #0, ap =0, then choosing x = Z—z, y =1, we have the representative
(V3 +Va+Ve)og1,-1y5
D. a3z #0, ay # 0, then choosing x = “22‘3, y = 22, we have the representative
(Vo + V3 +Vy+ V6>a¢{—1,—%} .

1,-3}7

(c) as = —aae, a # —1, then choosingu =0, w=0, t = X yas) , we have a;; = 0. Hence,

ii.

ii.

iv.

V.

Vi.

Vii.

y(1+a)ae

o= —%, as = a1 = a3 = 0, then we have the representative <§V4 + V6>a

17

=3

a=-% as =a; =0, az # 0, then choosing x = &,y = 1, we have the representative

1

+:5Vyi+V ;

< 3 2 6>a:7%

a = %, as =0, a1 # 0, az = 0 then choosing x = z—f, y = 1, we have the representative

<V1 + V4 + V6>

-1
-2

2
a=-3,a5=0a #0, az # 0, then choosing x = a%) y = 93, we have the representative
X & 6
V1+V3+ V4+V6> Y
a==;
, a5 # 0, a1 = 0, then choosing x = £y =1, we have the family of representatives

Qg
17
2

a =
<ﬁV3 + V4 + Vs + V6>
a

= —%, as # 0, ag # 0, then choosing x = al“f’

,y—

,we have the family of representatives
<V1 + ‘BV3 + %V4 + Vs + v6>a:

1
a # —1, then choosing z = —ﬁ we have a; = 0.
A. a1 =0, az =0, then we have the family of representatives (—aV4 + V6>a¢{_1,_%} ;

B. a1 = 0, az # 0, then choosing x = g—z, y = 1, we have the family of representatives
(V3 =aVy+Ve)og 1, -1y;

C. a1 # 0, az = 0, then choosing x = g—j, y = 1, we have the family of representatives
(Vi—aVy+ V6>a¢{_1,_%] ;

2
D. a; #0, az # 0, then choosing x = 0?53, y = %2, we have the representative
6 6
<V1 + V3 - 0(V4 + V6>

1
a#=1,—3

(d) as = —aag, @ = -1, then choosing z = %’5, we have a; = 0.

1.
ii.
iii.

as = a1 = ap = 0, then we have the representative (V4 + Vg ) =1 ;
as =a; =0, ap # 0, then choosing y = g—z, we have the representative (V, + V4 + Vg)oo_1;

as = 0, a1 # 0, ap = 0, then choosing x = g—i, y = 1, we have the representative
Vi+Ve+ Ve 1
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iv.az =0, a1 # 0, ap # 0, then choosing x = %, y =
(Vi+V2+Vy+Ve)ye;

v. a3 # 0, &1 = 0, then choosing x = 1, y =
(V3 +Vy+Ve)eq; .

vi. ag # 0, a7 # 0, then choosing x = a;—?, y="gw= —%?"3, we have the representative
<V1 + V3 + V4 + v6>a:_1 .

2. ag = 0, then a4 # 0 and choosing w =

Q2
a

Q6
0(3’

[45]

_xay _ X(ag(uaay—yaz)+ai(yas+zaas—yaas))
ag " T yas

Thus, we can suppose a1 = a, = 0 and consider following subcases:
(a) @ =-2, az = a5 =0, then we have the representative (V,);

as

(b) @ =-2, a3 =0, as # 0, then choosing x = Y= 1, we have the representative (V4 + Vs);

1

2, we have the representative

w = -2, we have the representative

,we have ot = o = 0.

(c) a=-2, az # 0, thenchoosing x = z—i, y = 1,wehave the family of representatives (V3 + V4 + fVs);

(d) a # -2, a5 =0, then choosingy =1, z = —Qfﬁ, we have the representative (V). 5 ;

() a # =2, a5 # 0, then choosing x = g—i, y=1z = _(zfﬁ' we have the representative

(Vi+Vs5)psn.

Summarizing all cases for the family of algebras 9},, we have the following distinct orbits:

<V3 + ﬁV4 + )/Ve, + V7>Si%}’)20(—ﬁ,—y) , <V2 + V5 + ﬁV6 + V7>Si%)20(—ﬁ) , <V5 + ﬁV6 + V7>Si%)zo(_ﬁ) ,
(V1+Vs3+Vi+Vedaz1, (Vi + Vo + Vi + Vedaz—1, (V3 + Vi + BV5)az—2, (V1 + V3 + 1V4 + V5 + V6)a=—1.,
(BV3 + 2V4+ Vs + V6)az—1p20, (V2 +Va+ V5 +Ve)oo 1, (BVa+Vs+Ve)oo 1,(Va+ V3 + Vit Ve),, 1,

(Vo + V4 + Vi), (V1 + V3 —aVy + V), (Vi —aVy + Ve)azo, (Va + V4 + Ve), (BVa + Vi), (V4 + V5), (Vy),

which gives the following new algebras (see section 2):

N’fgl, NIfO%, Nfoy Nio4, N1os, Nf%, wa, Nfosf Niog,
B alaF=3) \Ja o a(a#0) \j&P ap o o
Niior Ny s Nip, Niysr Nygy ™ Ny, Nyje, Nij7r Ny

1.4. 1-dimensional central extensions of two-generated 4-dimensional 3-step nilpotent Novikov algebras
1.4.1. The description of second cohomology space

In the following table, we give the description of the second cohomology space of two-generated

4-dimensional 3-step nilpotent Novikov algebras.

Ny i eler=e; eer=e3

H*(N;) = <[Alz], [A13 = Ag1], [Aa], [Aa], [A44]>

Ngz(/\) Doeep=e e1ep=e3 e = Aes

HANG (A # 1) = ([A1a], [A1], [2 = A)A1s + 1Az + AAst], [An], [Ass])
HZ (Ng(D) = <[A13 + Ax + Az1], [A1g + Ay, [A44]>

Comm

FANG(D) = HE | (NG1) @ ([An], [Aa])

Comm

Ny(a): elev=e; elex=es exe1=aey ee3=ey
HA(NE,) = ([M1s], [An], [Aa], [Ass])

Nys: erle1=e; eex=es eles=e; ey =e4 e3e3=¢4
H*(NG,) = <[A13]/ [An], [As1], [A33]>

Ngé(a #0): eeg=ey eex=e4 e163=e4 0] = ey

HA(Ng (a2 0)) = <[A13], [Ax1], [As], [52 A1 + Ax + Ags — Ay + Agi], [A33]>
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N617 : €11 = e €201 = €4 €363 = €4
HA(NG) = <[A12], [As3], [As], [A33]>
Ny : eer=e; ees=e; e =e

H2(Ngg) = <[A12]/ [Ao1], [As1], [Ass], [—A1a + Az — Azp + A41]>
Ny: eer=e; elex=es eze1=¢e4

HA(Ng,) = <[A13], [Ax1], [As1], [Ass], [Arg + A32]>

Njy: eex=es eez=e

HA(N})) = <[A11], [A1a], [An], [An2], [A2s — A32]>

4. — — —
/V11 : e1ey = €3 e163 = €4 €261 = €4

HANE) = ([Au], [Axn], [Az], [A2s - As])

N{lz : €16 = €3 €263 = €4 €36) = —€4

H2(N) = ([An], [Ass], [Ax], [Az])

N elea=es eer=es ees=es ezer =—ey
HA(NE) = ([An], [Ass], [Ax], [Az])

N{Z .o e1ep =¢e3 €163 = €4 €263 = €4 €36 = —€4

HA(N}) = <[A11]/ [A1z], [A], [A22]>

Nis: elex=es elep=ey eez=eq exe3=e5 €36 =—€4
HA(NY) = <[A11]/ [A13], [Az1], [A22]>

Nig: eea=es eez=es eer=e

HA(N}) = <[A11]/ [A21], [A22], [A1s + Ans], [-A2s + A32]>

N : eex=es eles=es eer=ey eer=e

H2(NY,) = <[A11], [A21], [Ax2], [A2s — A32]>

Nig: elea=es eer=es ees=e; e3er =—ey
HA(NY) = ([An], [An], [An], [Ax])
N{lg I 016 =63 €161 = €4 €p6) =€4 €203 =64 €362 = —C4

H2(NE) = ([An], [A1a], [An ], [An])
Ny(@): etex=e3 elep =aey eles=es e =65 €03=0 €302 =—¢4
H2(N;) = <[A11], [A1], [A21], [A22]>

1.4.2. Central extensions of Ny,

Let us use the following notations:

Vi=[Awn], Vo=[Ai—-Axnl, Vi=[Awul, Vi=[Aul, Vs=[Ayl]

5
Take 6 = ¥, a;V; € H*(Ny,). The automorphism group of Ny, consists of invertible matrices of the form
i=1

x 0 0 O
2
ly x 0 0
¢=13 xy x>t
u 0 0 r
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Since
0 m a az ar a; a azg
0 0 0 O a* 0 0 0
T _
¢ -, 0 0 O ¢ = -—a; 0 0 OFf
as 0 0 as Iy 0 0 o

5 5
we have that the action of Aut(Ngl) on the subspace (} a;V;) is given by (} a:V;), where
i=1 i=1

a
(84

x2(xaq + yay), ay = xay, ay = txap +rxas + ruas,
—txen + rxag + ruas,  ay = ras.

[T

We are interested only in the cases with

(a3l Ay, 0(5) # (0/ 0/ O)r ap # 0.

Since a, # 0, then choosing y = —%, t= —M%Z‘%), we have a} = a} = 0.
1. If as # 0, then choosing x = 1, u = —;745, r= Z—;, we have the representative (V, + Vs).

2. If a5 =0, then a4 # 0 and choosing x =1, r = —g—i, we have the representative (V, + V,).

Therefore, we have the following distinct orbits
(V2+Vs), (V2+Vy),
which gives the following new algebras (see section 2):

N119, Ni2o.

1.4.3. Central extensions of Ngz(A 1)

Let us use the following notations:

Vi=[Aul, Va=[An]l, V3=[2-A)Ai3+AA»n +AA3], Vi=[Ayl, Vs5=[Ay]

6642

5
Take 0 = Y a;V; € H*(Np,(A # 1)). The automorphism group of Nj,(A # 1) consists of invertible matrices

i=1

of the form
X 0 0 0
y x2 0 0
¢ = z (1+A)xy 2 t|
u 0 0 r
Since
0 0 Q2-MNas m ar at 2-MNay ]
rl o  Aas 0 0 _ |+ A Aag 0
s 0 o 0?7 Taay 0 o ol
4 0 0 as Iy 0 0 ar

4 5

5 5
we have that the action of Aut(Ngz(A # 1)) on the subspace (}. @;V;) is given by (}_ a:V;), where
i=1 i=1

*

) rxay +tx(2 - Aas +ruas, a; = x* (xozz -yl - /\)Azag,), ay = xias,

a txAas + rxag + ruas, a. = Pas.

We are interested only in the cases with
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as # 0/ (all Ay, (15) # (O/ O/ O)

_ . _ rlxag+uas)
1. A =0, then choosing t = - ==

(@ as=a> =0, ag # 0, then choosingx =1, r = Z—z, we have the representative (V3 + Vy);
(b) as =0, ap #0, ag = 0, then choosing x = Z—i, we have the representative (V, + V3);

, we have o) =0.

3
() a5 =0, ap # 0, ag # 0, then choosing x = z—z, r= ;—24, we have the representative (V, + V3 + Vy);
3

(d) a5 #0, ap =0, then choosingx =1, r = ,/z—i, u= —g—g, we have the representative (V3 + Vs);

2
(e) as # 0, @ # 0, then choosing x = g—;, r = Z—g z—z, u = —%, we have the representative
<V2 + Vg + V5> .
2. A #0, then choosing y = (1_;32%, t= —r(xi‘;\z%)' we have a; = o) = 0.

(@) as # 0, then choosing u = 20{%, x=1r=, /g—z, we have the representative (V3 + V5) .0,
(b) a5 =0, a1 # 0, then choosingx =1, r = g—?, we have the representative (V1 + V3),. .
Summarizing all cases, we have the following distinct orbits:

(V3 + Vi)i=0, (V2 + Va)a=0, (V2 + V3 + V)i,
(Vo + V3 + Vs5)1-0, (V3 + V5)a1, (V1 + V3)az0,1,

which gives the following new algebras (see section 2):

A1 \JA#01
Ni21, N2z, Ni23, Niog, N7, N7

1.4.4. Central extensions ongz(l)
Let us use the following notations:

Vi=[Au+Aul, Vo=[An]l, Vi=[A+Axn+An]l, Vi=[Aul, Vs=[Aul

5
Take 0 = Y a;V; € H2(N§2(1)). The automorphism group of N§2(1) consists of invertible matrices of the
i=1

form
x 0 0 O
2
|y » 0 0
¢=z xy x> t|
u 0 0 r
Since
0 0 a3 m ar at oy o
(PT an az 0 O ¢ = ay +a ag 0 0
as 0 0 O - o 0o 0 oY)
ar+ag 0 0 as a’i+az 0 0 a;

5
we have that the action of Aut(NSé(l)) on the subspace (}, @;V;) is given by (}_ a:V;), where
i=1 i=1

rxaq + txaz +ruas, @y = xXay, ay = x'ag,

X, a; = ras.

a
(84

[T RS

We are interested only in the cases with

a3 * 0/ (all Qy, 0(5) # (O/ O/ 0)/ (0(2/ 0(4) # (0/ 0)

_ rlxag +uas)

v We have a] = 0.

as # 0, then choosing t =
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2

ay _ a : .
o = ovaa We have the representative (V, + V3 + Vs);

2. a4 #0, ap =0, a5 =0, then choosingx =1, r = Z—i, we have the representative (V3 + Vy);

@y _ a : .
o T —\/013_0[;, we have the representative (V3 + V4 + Vs);
5
asay’

1. a4 =0,thenas # 0, ap # 0. Choosing x =

3. as #0, ap =0, a5 # 0 then choosing x =

4. a4 #0, ap # 0, then choosing x = g—;, r= we have the representative (V, + V3 + V4 + aVs).

Summarizing all cases, we have the following distinct orbits
(V2+V3+Vy), (V3+Vy), (V3+Ve+Vs), (Vo+V3+Vy+aVs),
which gives the following new algebras (see section 2):
Ni27, N12s, N129, N5,

1.4.5. Central extensions of Ny (cx # 0)
Let us use the following notations:

Vi=[A], Va=[An], Vs=[Asn] Vi=[E2Au+An+Ap—An+Agl, Vs=[Asz]

5
TakeO = Y a;V; € Hz(Ng6 (a # 0)). The automorphism group of Ngé(a # 0) consists of invertible matrices
i=1

of the form
X 0 0 O
2
_ly X 0 O
¢ = z 0 2 0
u x(1+a)y+z) o x°
Since
0 0 m 2%"044 o at ap+a” %"‘az
rlas as og 0 ¢ = ay +aa” a o 0
¢ a3 —ag  as 0 - o, -a; a; (I
a0 0 0 al 0 0 0

5 5
we have that the action of Aut(Ngé(a # 0)) on the subspace (}. @;V;) is given by (}_ a:V;), where
i=1 i=1

a, = «x (xzoq - (U(a —-2)+x (22(1 —a)+y (2 +a- az))) alag + xzoz5),
a; x2 (xaz + 2z — y(1 — a))aas),

ay = x (x2a3 + (0 —xy)ag + xza5) ,

a, = x'ay,

a; = x'as.

We are interested only in the cases with ay # 0. Choosing

x(2xaasay —2yaai —xaas—y(a—1)aasas)
7 ’
4

z=5((1-a)y-32)and v =~

2aar

we have & = ay = 0.

Xy
ay

2. a #1,(a—1)%as = —as, a1 = 0, then we have the representative <V4 + ﬁw);

1. a =1, then choosing y = =1 we have the family of representatives (V4 + fVs);

3. a#1,(a—1)72as = —ay, a; # 0, then choosing x = g—;, we have the representative
<V1 + V4 + ﬁV5>;
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4. a # 1, (@ — 1)*as # —ay then choosing y = m, we have the family of representatives

(V4+[‘3V5>5¢ 1.

(a-1)2

Summarizing all cases, we have the following distinct orbits

(Va +BVs), (V1 + Va + 25 Vsdas,

which gives the following new algebras (see section 2):

a#0,p a#0,1
N131 ’N132 :

1.4.6. Central extensions of Nyg
Let us use the following notations:

Vi=[Awn], Vo=[An]l, Vi=[Axn], Vi=[Az], Vs5=[Ax— Az — A+ Ayl

5
Take 6 = ¥, a;V; € H*(N,). The automorphism group of Ny, consists of invertible matrices of the form
i=1

Since
0 o 0 -as a” o at —ag
(PT a 0 a5 O ¢ = ay +a” 0 o 0
a3 —as ay O - a; —ay a0 [
as 0 0 O a; 0 0 0
5 5
we have that the action of Aut(Ngs) on the subspace (}. &;V;) is given by (} a;V;), where
i=1 i=1
a; = xXP(xay - (y +22)as), ay = x(Paz+xzag+ (0 -xy)as), ay = xlas.
ay = x(Pay—xzag+ (0 +2x2)as5), a, = x'oy,

2

We are interested only in the cases with a5 # 0. Choosing

_ x(xaq(m; —2a5)+as (Zya5—2xaz—ya4))
- 202

_ Xa1—yas
,and z = T

%

we have a;=a;=0.

1. a4 = a3z = 0, then we have the representative (Vs) ;
2. ay =0, az # 0, then choosing x = z—i, we have the representative (V3 + Vs);

3. a4 # 0, then choosing y = %’, we have the family of representatives (aV4 + V5),q -
Summarizing all cases, we have the following distinct orbits
(V3 + Vs), (aVy + Vs),
which gives the following new algebras (see section 2):

a0 a#0,1
N133 4 N134 :
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1.4.7. Central extensions of Ny,
Let us use the following notations:

Vi=[Ai], Vo=[Anul, Vi=[Axn]l, Vi=[Az], Vs5=[An+As].

5
Take 6 = ) a;V; € HZ(Ngg). The automorphism group of Ngg consists of invertible matrices of the form
i=1

X 0 0 O
2

_ly X 0 0

¢ = z 0 ¥ 0

u x(y+z) v 2

Since
0 0 m as a a” a) ag
e 0 0 o] | @ 0 0 0
¢ a3 as ag O ¢ = ay+a” ay oay 0f

O 0 0 O 0 0 0 O

5 5
we have that the action of Aut(Ngg) on the subspace (}. a;V;) is given by (}_ a:V;), where
i=1 i=1

= xay,
= 2oy, o = x'as.

= x(x%a; + xzas +vas), «
= X’(xaz +z(as — 2a5)), «

(04

.
2
2
& 4

[T

We are interested only in the cases with a5 # 0. Choosing v = —X(ml—:m)

, we have o] =0.

1. ay = 2as5, a3 = ap = 0, then we have the representative (2V4 + Vs);
2. ag =2as5, a3 =0, ap # 0, then choosing x = Z—;, we have the representative (V, + 2V, + Vs);
3. ay =2as, az # 0, then choosing x = Z—;, we have the family of representatives (a¢V, + V3 + 2Vy + Vs) ;

as
Qg *20{5 4

4. a4 # 2a5, ay = 0, then choosingx =1, z = - we have the representative (V4 + Vs5),.5 ;
a3

(as—2as)as’

5. as # 2a5, a, # 0, then choosing x = 2, z = —

0(5’
(Vo +aVy+Vs)aum .

Summarizing all cases, we have the following distinct orbits

we have the family of representatives

<6¥V2 + V3 +2Vy + V5>, (aV4 + V5>, <VQ +aVy + V5>,

which gives the following new algebras (see section 2):

Na

1357 Ni

1367 Ni

137°

1.4.8. Central extensions of N,
Let us use the following notations:

Vi=[Aul, Vo=[Aul, Vi=[Anl, Vi=[An], Vs=[Ay-As]

5
Take 6 = Y a;V; € H*(N7;). The automorphism group of N}, consists of invertible matrices of the form
i=1

x 0 0 O
oy o o
¢ = 0 z xy O
u v xz 2%y
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Since
o 0 0 a a; af ot A
qu az ag as O ¢ = o a;y a; 0
0 —-as 0 O 0 —a; 0 OFf
0 0 0 0 0 0 0

5 5
we have that the action of Aut(NfO) on the subspace (}. a;V;) is given by (} a:V;), where
i=1 i=1

ap = x(xatuap), @, = yay, @y = xyas,
* *

2 2
@, = Y, a; = xy-as.

We are interested only in the cases with a; # 0. Choosing v = —~, we have a] = 0.

1. as = a3 = a4 = 0, then we have the representative (V) ;
2. as =a3 =0, ag # 0, then choosingx =1, y = z—z, we have the representative (V, + Vy);

3. a5 =0, a3 # 0, ag =0, then choosing x = ‘/Z—z, we have the representative (V, + V3);

4 a5=0, az #0, as # 0, then choosing x =, /Z—Z, y= Z—Z z—z we have the representative (V, + V3 + Vy);
5. a5 #0, a3 =0, ag =0, then choosingx =1, y = g—é we have the representative (V, + Vs);

a _ ma}

as’ - ag 7

6. as #0, a3 =0, ag # 0, then choosing x we have the representative (V, + V4 + Vs);
7. as # 0, az # 0,then choosing x = g—z, y= g—z,we have the family of representatives (V, + V3 + aVy + Vs) .
Summarizing all cases, we have the following distinct orbits

(V2), (Vo + V), (V2 + V3), (Vo + V3 + Vy), (Vo + V5), (Vo + V4 + V5), (Vo + V3 + aVy + V5),

which gives the following new algebras (see section 2):

Nias, N13o, N14o, N141, N14z2, Nias, N7,

1.4.9. Central extensions of N
Let us use the following notations:

Vi=[Aul, Va=[Anl, Vi=[An], Vi=[Au+Ax], Vs=[-Axp+Ap].

5
Take 6 = ¥, a;V; € H*(N},). The automorphism group of N}, consists of invertible matrices of the form
i=1

x 0 0 O
0 ¥ 0 0
¢=1o y ¥ 0
u v oxy x*
Since
a; O 0 y a’i ar a” “Z
rlax as as—as O | ag+a” a)—a;g 0
P10 a5 0 0|?7|0 a 0 ol
0 o0 0 0 0 0 0 0

5 5
we have that the action of Aut(Nfé) on the subspace (}, a;V;) is given by (} a:V;), where
i=1 i=1
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a; = xgxoq +uay), o = xiaz, ay = x'as,
“Z = X 0y, a; = x’as.
We are interested only in the cases with ay # 0. Choosing u = 31, we have a;] = 0.
1. a3z = ap = 0, then we have the family of representatives (V4 + aVs);
2. a3 =0, ap # 0, then choosing x = g—j, we have the representative (V, + V4 + aVs);

3. a3 # 0, then choosing x = Z_i' we have the representative (aV, + V3 + V4 + fVs) .

Summarizing all cases, we have the following distinct orbits
<V4 + 0(V5>, <VQ + Vg + (XV5>, ((XVQ + Vg +Vy+ ‘8V5>,
which gives the following new algebras (see section 2):

N« Narﬁ

a
N 1467 ~ 7147°

145/
1.5. 2-dimensional central extensions of two-generated 3-dimensional nilpotent Novikov algebras

1.5.1. The description of second cohomology spaces.

In the following table, we give the description of the second cohomology space of two-generated
3-dimensional nilpotent Novikov algebras

N§; .oe1e1 =6

H2(NG) = ([Awz + An], [Asz + As], [An], [As], [Ass])
N§; .o e1e1 =¢63 €6y = €3

H(N3;) = ([Aw2], [Az1], [An])

N§; .o e =¢63 ére1 = —e3

H*(NG) = ([Aul, [An], [An])

N§Z(A * 0) .oee = /\63 €61 = €3 €26y = €3
H (NG (A #0)) = ([A12], [An], [A2])

N3*(0) : €162 = €3

HANZ(0)) = ([An] [Aus] [A], [An], [An] - [Ax])

1.5.2. Central extensions of N3;
Let us use the following notations:

Vi=[An+An], Vo=[Aiz+Axn], Vs=[An]l, Vi=[Azn], Vs=[Asz]

The automorphism group of N3 consists of invertible matrices of the form
0 0
¢ = 2wl

0 vy
0 a1 A a” o] A
flar+as 0 0 |p=|a}+aj 8 0|,

ar+ay 0 as a+ay

NS R

Since

5 5
the action of Aut(Ngi*) on subspace < Y, aN,-> is given by < Y, a;V,-), where
i=1 i=1



K. Abdurasulov et al. / Filomat 37:20 (2023), 6617-6664 6649

3

a; = x°aq,

a, = wxay + xyaz + yzas,
ag = Xx°as,

@, = x(was+yay),

a; = yas.

We are interested only in 2-dimensional central extensions and consider the vector space generated by
the following two cocycles:

91 = 0(1V1 + Cszz + 0[3V3 + CY4V4 + 0(5V5 and 62 = ﬁNl + ﬁsz + ﬁ4V4 + ﬁ5V5.
Our aim is to find only central extensions with (a3, a4, 83, f4) # 0. Hence, we have the following cases.

1. a3 # 0, then we have

a = Xa, o= XBy,
a; = u;xoq + xyay + yzas, ; = wxPr +xyPs + yzps,
o = xas, 5 = 0,
o, = xgwa3 + yau), = x¥ﬁ4,
a; = y Qas, g = y ﬁ5.
(@) Bs # 0, then we can suppose a5 = 0 and choosing w = —%‘, z= —m“ﬁ#ﬁﬁ”, we have a = ; = 0.

Thus, we can assume a4 = ff, = 0 and consider following subcases:
i. ap = B4 = p1 =0, then we have the family of representatives (a«V; + V3, Vs);

ii. ap = B4 =0, B1 # 0, then choosing x = ,3/ﬁ5ﬁ1‘ L y = 1, we have the family of representatives
(aV1+ V3, Vi +Vs);
iii. ap =0, B4 # 0, B1 = 0 then choosing x = 55521, y = 1, we have the family of representatives
(aV1+ V3,V +Vs);
iv. ap =0, B4 20, p1 # 0, then choosing x = pi6,'B5', v = B3p;'B5* we have the family of
representatives (aV; + V3, V1 + V4 + Vs) ;
v. ap # 0, B4 = p1 =0, then choosing x =1, y = aza; 1 we have the family of representatives
(aV1+ V3 +V3,Vs);
vi. ap 20, py =0, B1 # 0, then choosing x = a3p1a5°;', y = a;p7a3°B;?, we have the family of
representatives (aV; + V, + V3, V) + Vs) ;
vii. @y # 0, Bs # 0, then choosing x = mpsaz'fs', v = mpPia;'fs?, we have the family of
representatives (aVy + Va2 + V3,V + Vi + Vs);
(b) p5=0,B4 # 0.
ias = p1 = 0, a1fs # azPy, then choosing y = 1, w =
representatives (aVi + V3, BV, + Vy)

%, we have the family of

a#tp ’

ii. as =p1 =0, 0184 = azPa, a3 = a1y, then choosing y =1, w = —aya
of representatives (aVy + V3, aVy + Vy);

iii. as = 1 =0, a1fs = azfr, aras # ajay then choosing x = asfly — azfs, ¥ = —asPa(aafs — azfs),
and w = ayfs(asfo — azPfs), we have the family of representatives (aVi + Vo + Vi, aV, + Vy) ;

iv. a5 =0, f1 # 0, then choosing

-1

5 we have the family

_ (asPoraspi—aipa)— V(aspataspi—an pa)?—4aspr (@upa—aps)

- azfa ’
we have the family of representatives (aVi + V3, V1 + Vo + V) ;

v. as # 0, f1 = 0, then choosing

le,y:g—j,w

_ vVazas(ayfa—asps)
azfo—a1fs 4
we have the family of representatives (aVi + V3 + Vs, V2 + V) ;
vi. as # 0, f1 # 0, then choosing

x=as5,y=—+azas,z=0and w =
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2 203 2
@3 a a2po as(a1f2—azp1
[j%r = ;%/ZU— 3554 ndz = ’ 3.3[5,
aspy asfy asfy af]

we have the family of representatives (a¢Vi + V3 + V5, V1 + Vy);

(c) Bs =0,B4 =0, B1 # 0, then we can suppose a; = 0 and consider following subcases:

_Yyp
ﬁ 7
A. if ap = a4 = 0, then we have a split algebra;

B. if ap =0, a4 # 0, then choosing x = 1 y = %, we have the representative (V3 + V4, V1) ;

i. as =0, then choosing w = we have 8 = 0.

C. if ap # 0, then choosing x = 1, y = =2, we have the family of representatives
<V2 + V3 + 0(V4, V1>
ii. a5 # 0, B2 = 0, then choosing x = a5, y = +fazas, z = —az and w = 0, we have the

representative (V3 + Vs, Vi) ;
iii. a5 # 0, By # 0, then choosing

Blaapr-aify)
= Zjﬁ% y= Zgi,z = SRl

we have the representative (V3 + V5, V; + V3).

and w =0,

y4

(d) Bs = Ps = p1 = 0,2 # 0, then we can suppose a, = 0 and choosing w = , we have aj = 0.

Thus, we have following subcases:
i. if a5 = 0, then we have the family of representatives (aV; + V3, V,);

ii. if a5 # 0, then choosing x = 1, y = ,Jazaz’,
((le + V3 + V5, Vz) .

2. az =0, a4 # 0, then we can suppose 4 = 0

we have the family of representatives

a = P, g = 2B,
ay = wxay +xyon +yzas, B = wxPy+xyPa + yzPs,
@ =0, B =0,
a; = xgoq, B, = 0,2
as = yas, Ps = YPbs
_ X(wp1+yp2)

(@) Bs # 0, then we can suppose a5 = 0 and choosing z =
following subcases:

B we have g = 0. Thus, we have

i. if By = 0, then a; # 0 and choosing x = 1, y = Zi—i’ w = —3—2 we have the representative
(V1 +Vy, Vs);
ii. if ;1 # 40, ;1 = 0 then choosing x = 1, y = 2—;, we have the family of representatives
(aVy + V4, Vi +Vs);
iii. if ,812 * Oil 0111 * 05then choosing x = 32;, y = %ﬁ z, w = %, we have the representative
(V1 +Vy, Vi + Vs).
(b) ps = 0,1; ;: 0, i}:reni/ve can suppose a1 = 0 and choosing w = yﬁﬁ 2 we have g5 = 0. Thus, we

have following subcases:
i. if a5 = 0, then we have the representative (aVz + V4, Vi);
ii. if as # 0, then choosingx =1, y=2%, z=-=2 > we have the representative (V4 + Vs, Vi).
(c) Bs =P1 =0,B2 #0, thenwe can suppose az =0. Smce in case of a3 = 0, we have a split extension,
we can assume a3 # 0, Thus, we have following subcases:
i. if as = 0, then choosingx =1, y = ‘ﬂ , we have the representative (Vi + Vg4, V3);

2 3

ii. if as # 0, then choosing x = o we have the representative (Vi + V4 + V5, V).

alas’ y = al

Now we have the following distinct orbits:
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<C¥V1 + V3, V5>, <0(V1 +V;3, Vi + V5>, <0(V1 +V;3, Vi + V5>, <0(V1 +V;3, Vi +Vy + V5>, <C¥V1 +V, +V;3, V5>,
<C¥V1 + Vz + Vg, V1 + V5> , <C¥V1 + Vz + V3,‘BV1 + V4 + V5>, <0(V1 + V3,‘BV2 + V4>,
<0(V1 + Vz + V3, OCVZ + V4>, <0(V1 + V3,V1 + ﬁVQ + V4>, <0(V1 + V3 + VS,ﬁVQ + V4>,
(@V1+V3+ V5, Vi + Vi), (V1,V3+Va), (V,Va+ Vs +aVy), (V1,V53+Vs5,), (V1 +V3,V3+V5,),
(@V1+V3,V2), (aV1+V3+V5,Va), (V1 + V4, Vs), (V1 +Vs5,aVy+ V), (V1+Vy, Vi +Vs),
(V1,aVa +Va), (V1, Vi +Vs), (V1 +Vy, Vi), (V1 +Vs+ V5, V).

Hence, we have the following new 5-dimensional nilpotent Novikov algebras (see section 2):

a « a a a a ap ap a ap ap a
N148[’¥N149 Niso/ N151:1 N152:1 Nis/ N154;(N155f N156[’1N157’ Nisg Nisg Nieo,
N7¢; Nie2, Niea, Ni ., N, Niso, Ni, Nies, Ny, Nizo, N171, Nizo.

1.5.3. Central extensions of NSZ(O)

Let us use the following notations:
Vi=[Aul, Va2=[Ai], Vi=[Anl, Vi=[An], Vs5=[Ax-Az]

The automorphism group of N3;(0) consists of invertible matrices of the form

¢:{ Sy].

aq 0 m a; af o
O as as as [p=|a; o a |,

N O ®R

0
y
t

=

Since

0 —x5 0

5 5
the action of Aut(NgZ(O)) on the subspace (}, ;V;) is given by (}_ aV;), where
i=1 i=1

o] = x(xay +zap);
o, = Xy

oy = y(xas +zas);
o = vay

a; = xytas.

We consider the vector space generated by the following two cocycles:
61 = 0(1V1 + OQVZ + 0(3V3 + CK4V4 + 0(5V5 and 62 = ﬁ1V1 + ﬁ3V3 + ,34V4 + ﬁ5V5.
We are interested only in (ay, as, B2, f5) # 0. Hence, we have the following cases.

1. ap # 0, then we can suppose , = 0 and have

ay = x(xaq+zan), B, = xBy,
a, = x*ym, B, = 0,
ay = ylxastzas), By = yxPs+zPs),
* _ 2 * -_— 2
o, = Yay, 54 = Y ﬁ4/
a; = xytas, B: = xy*Ps.
(@) Bs # 0, then we can suppose a; = 0 and choosing z = —%, we have g} = 0 and we will suppose

that 83 = 0. Thus, we have following subcases:
i. a1 = a3 = a4 = Py = f1 = 0, then we have the representative (V,, Vs) ;



ii.

1ii.

iv.

Vi.

Vii.

viii.

iX.

Xi.

Xii.

xiii.

Xiv.

XV.
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a1 =az3 =ag = P4 =0, p1 # 0, then choosing x = ’Z—f, y = 1, we have the representative
(V2,V1 +V5);
a1 = a3 = ag = 0,84 # 0, p1 = 0, then choosing x = ;%’ we have the representative

(V2, V4 +Vs);
ar=az=as =0, s #0, f1 # 0, then choosing x = g—;‘, y=- §1ﬁ4 we have the representative

(V2, V1 + V4 +Vs);
a;=az3 =0, ag #0, By = 1 =0, then choosingx =1, y = g—i, we have the representative
(V2 +Vy,Vs);

2
o =a3 =0, as #0, fs =0, f1 # 0, then choosing x = :/%, y = :/Zﬁ;, we have the
2.

representative (V, + V4, Vi + Vi) ;

2
a; = a3 =0, ag # 0, By # 0, then choosing x = ﬁ—4, y = Zz—gg,

Bs
representatives (V, + V4, aV1 + V4 + Vs) ;
a1 =0, a3 # 0, ag = p1 = 0, then choosing x = Z%, we have the family of representatives
(V2 +V3,aVy + Vs);
a1 =0, a3 #0, ag =0, p1 # 0, then choosing x = g—i, y =
representatives (V, + V3, Vi + aVy + Vs) ;

we have the family of

azpr

wp;» We have the family of

2
, we have the family of representatives

a1 =0, a3 #0, ag # 0, then choosing x = Z‘TZ, Y=o

<V2 + Vg + V4, aV1 +ﬁV4 + V5>;
a; #0, a3 = ag = p1 = B4 = 0, then choosing y = Z—;, we have the representative (V; + Vy, Vs);

B4 a1

a1 #0, a3 = ag = p1 =0, s # 0, then choosing x = Y= we have the family of
representatives (Vi + Vy, V4 + Vs);

2
ar # 0, a3 = ag = 0, p1 # 0, then choosing x = 225, y = ;, we have the family of

representatives (Vi + V,, V1 + aVy + Vs);
\/6!10(4

a1 #0, az =0, ag # 0, then choosing x = =

<V1 + VZ + V4, OéV1 +ﬁV4 + V5>,‘
ar # 0, az # 0, then choosing x = Z‘TZ, y = g—;, we have the family of representatives
<V1 + Vz + V3 + OLV4,ﬁV1 + ‘)/V4 + V5> .

, y = L, wehave the family of representatives

(b) p5 =0, B4 # 0, then choosing z = Hahfy) e can suppose a; = «; = 0 and have following
subcases:

i.

ii.

iii.

iv.

Vi.

Vii.

viii.

axpfs

az = a5 = B3 = p1 = 0, then we have the representative (V;, V4);

gl, we have the representative

as = as = f3 =0, 1 # 0, then choosing x = 1, y =
(V2, Vi +Vy);

az = a5 =0, B3 # 0, then choosing x =1, y = ﬁ—j, we have the family of representatives
<V2, (le + V3 + V4>,‘

as =0, as # 0, then choosing x = g—z, we have the family of representatives

<V2 + V5,6¥V1 + ‘BV3 + V4>,‘

az #0, as = B3 = p1 = 0, then choosing x = Z‘é—i, we have the representative (V, + V3, Vy);

as #0, a5 = B3 =0, p1 # 0, then choosing x = £, y = o VB

B
(V2 +V3, Vi +Vy);
a3 20, a5 =0, B3 # 0, then choosing x = ‘f, y= Zz?' we have the family of representatives
(Vz + V3, (le + Vg + V4>,’
as # 0, as # 0, then choosing x = Z—;, y = Z—;, we have the family of representatives
<V2 +V3+Vs,aVy + ﬁV3 + V4> .

we have the representative

(c) Bs=0, p2=0, 3 # 0.



i

ii.

iii.
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as = f1 = ay = 0, then we can suppose a; = 0 and choosing x =1, z = _%’ we have the
representative (V,, V3);
as = 1 =0, ag # 0, then choosing x =1, y = Z—i, z = —Z—;, we have the representative
(V2 +Vy,V3);
a5 =0, 1 #0, ag = 0 then choosingx =1, y = g—;, z = %;;133, we have the representative
(V2, V1 +V3); i

iv. as =0, B1 # 0, ag # 0, then choosing x = %ﬁ;, = %ﬁaé’ = %égaw, we have the

V.

Vi.

Vii.

Viii.

iX.

representative (V, + V4, Vi + V3);
azfr—a1f3
azfa—aspr”’

as # 0, asfz # asP1, ag =0, then choosingx =1,y = z_;’ zZ=
representatives(V, + Vs, aVi + V3),.1;

we have the family of

as(azfi—a1fs)

wstfoasp We have the

. Q. (05109
as # 0, axfz # aspi, as # 0, then choosing x = ﬁ, y = fx—§4, z =

family of representatives (V, + V4 + Vs, aVi + V)41 ;
as # 0, Py = asP1, a3 = a1as, ay = 0, then choosing x = 1, y = 2, z = —5I, we have the
representative (V, + Vs, Vq + V3);

— —_ : _ Q4 _ 20y — a1ay4
as #0, azfs = asP1, araz = mas, ag # 0, then choosing x = Y= Pl z= -, we have
the representative (V, + V4 + V5, Vi + V3);
as # 0, afs = asP1, aaz # ajas, then choosing x = 2419 ) = ‘”aé;glas, 7 = —alan mas)

%

we have the family of representatives (V, + V3 + aVy + V5,V + V3).

&

(d) B5=0,p1=0, 3 =0, p1 # 0, then we can suppose a] = 0 and consider following subcases:

i
ii.
iii.

iv.

as = ag = az = 0, then we have the representative (V,, V1) ;

as =ay =0, az # 0, then choosing x = z—z, y = 1, we have the representative (V, + V3, V1) ;

a5 =0, ag #0, a3 = 0, then choosingx =1, y = g—z, we have the representative (V, + Vg, V1) ;
2

as = 0, ag # 0, azg # 0, then choosing x = g—z, Yy = £—;4, we have the representative

(Vo +V3+Vy,Vi);

v. as #0, ay = 0, thenchoosingx =1, y = f:—:, z= —z—z,we have the representative (V, + Vs, V1) ;
vi. as # 0, ag # 0, then choosing x = z_:, y = %, 7 = —“2?4, we have the representative
5 5
(V2 + V4 +V5,Vy).
2. ap =0, then a5 # 0 and we have
* — 2 * — 2
a = Xy, By = xPu,
a, = 0, B, = 0,
ay = ygx% +zas), By = x]2/53,
a, =Y ?4/ .34 = YPa
ag = xy-as, g = 0.

(@) Bs # 0, then we can suppose &, = 0 and consider following subcases:

i

ii.

ii.

iv.

a1 =Pz = p1 =0, then choosingx =1, z = —Z—;, we have the representative (Vs, Vy) ;

ar = B3 =0, B1 # 0, then choosing x =1, y = \/’gjl, z = —g—z, we have the representative
(V5, V1 +Vy);

a1 =0, B3 # 0, then choosingx =1, y = g—i, z = —Z—g, we have the family of representatives
(V5,aV1+ V3 +Vy);

ar # 0, p1 = f3 = 0, then choosing x = qjas, y = a1, z = —aja3, we have the family of

representatives (Vi + Vs, Vy4);

ar # 0, B3 =0, B1 # 0, then choosing x = %, y = Z;\/Z_j, z = —a;g—;f‘*, we have the

representative (Vi + Vs, Vi + Vy);



K. Abdurasulov et al. / Filomat 37:20 (2023), 6617-6664 6654

@mpy o wmps w0
asp’ T asPs’ - a2z’
representatives (Vi + Vs, aVi + V3 + Vy).
(b) ﬁ4 =0, ‘33 # 0.
i. ay =p1=a; =0, then choosingx =1, z = —3—2, we have the representative (Vs,V3);
ii. a4 = p1 = 0, a1 # 0, then choosing x = Z—f, y =1, z = =22, we have the representative
(V5 +Vy,V3);
iii. a4 = 0, p1 # 0, then choosing x = 1, y = ’Z—;, z =
(V5, V1 +V3);

vi. a1 # 0, p3 # 0, then choosing x = we have the family of

a1f3—asfi

wp We have the representative

iv. ag #0, p1 = a1 = 0, then choosing x = = =z = “3‘:4 we have the representative (V4 + V5, V3) ;
V. a4 #0, 1 =0, a1 # 0, then choosing x = ‘;4, Y= m, z= “3“4 , we have the representative
(V1 +Vy4+V5,V3);
vi. ag # 0, By # 0, then choosing x = o= Ly = Z‘;g; z = %, we have the representative
(V4+Vs5,V1 +V3).
(c) B+ =P3 =0, p1 # 0, then we can suppose a; = 0 and choosing z = -2, obtain a}; = 0.

i. ay =0, then we have the representative (Vs, V1) ;
ii. a4 # 0, then choosing x = z—g, we have the representative (V4 + Vs, V1) .

Now we have the following distinct orbits:

(V2,V5),(V2, V1 +V5),(V2, Vs + V5),(V2, Vi + Vy + V5) , (Vo + V4, V5), (V2 + Vy, V1 +V5),
<V2 + V4, onl + V4 + V5>, <V2 + V3, 0(V4 + V5>, <V2 + V3, Vl + 0(V4 + V5>, <V2 + V3 + V4, aVl + ﬁV4 + V5>,
<V1 + Vz, V5> , (Vl + Vz, V4 + V5> , (Vl + Vz,vl + aV4 + V5> , (Vl + VQ + V4, OZV] + ﬁV4 + V5>,
<V1 + Vz + V3 + OCV4,ﬁV1 + )/V4 + V5>, <V2, V4>, <V2, Vl + V4>, <V2, aV1 + V3 + V4>,
(Vz + V5,C¥V1 + ﬁV3 + V4> , <V2 + V3,V4>, <V2 + V3, V1 + V4>, <V2 + V3, onl + V3 + V4>,
(Vo +V3+Vs5,aVy + V3 +Vy), (Va, V3), (Vo + V4, V3), (Vo, Vi + V3), (Vo + V4, Vi + V3)

(Vz + V5,0[V1 + V3>, <V2 + V4 + V5,0¢V1 + V3>, <V2 + Vg + 0(V4 + VS, Vl + V3>, <V2,V1>, <V2 + V3, V1>,
(V2 + V4, V1), (Vo + V3 + V4, Vi), (Vo + V5, V), (V2 + Vi + V5, V1), (V5,Va), (V5, V1 + Vy),
(Vs,aV1+ V3 + V), (V1 + V5, V), (V1 + V5, V1 + Vy), (V1 + Vs5,aV1 + V3 + Vy), (V5,V3), (V5 + V1, V3),
(Vs5,V1+V3),(Vys+V5,V3), (V1 + V4 +V5,V3) , (Vs + V5, V1 + V3),(V5,V1), (Vs + V5, V).

Hence, we have the following new 5-dimensional nilpotent Novikov algebras (see section 2):

af NgBy 0,0

Ni7s, Ni7a, N175, Ni76, N177, Nizs, N179, Nigor Nigy/ N182, Nig3, Niss, Nooo, Njot, Nie”, Nigs, Nigo, Ngy,
0,1},0
NEOUL Nygo, NG
191/

Nisz, Nigs, N&,, Ni2 Ngo N9y Nigg, N§o., Nooo, N4, Naoo, Naot, Nooz, N2os, Naos, Nags,
N2o6, Naoz, Nj

Joa V1957
NY.,, Nago, N¥ N211, No12, N213, Na14, Nois, Noig, N1z, Noss.

2087 © 1147 210”7

It should be noted that the family of orbits (V,, aV; + V3 + V4), gives the algebra Ng’; in case of @ = 0,
the parametric family N gjfl ¥ in case of a ¢ {0,1} and the algebra N9 in case of o = 1.

2. Classification theorem for 5-dimensional nilpotent Novikov algebras

The algebraic classification of complex 5-dimensional nilpotent Novikov algebras consists of two parts:

1. 5-dimensional algebras with identity xyz = 0 (also known as 2-step nilpotent algebras) are the inter-
section of all varieties of algebras defined by a family of polynomial identities of degree three or more;
for example, it is in the intersection of associative, Zinbiel, Leibniz, etc, algebras. All these algebras
can be obtained as central extensions of zero-product algebras. The geometric classification of 2-step
nilpotent algebras is given in [24]. It is the reason why we are not interested in it.

2. 5-dimensional nilpotent (non-2-step nilpotent) Novikov algebras, which are central extensions of
nilpotent Novikov algebras with nonzero products of a smaller dimension. These algebras are
classified by several steps:
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(a) complex split 5-dimensional nilpotent Novikov algebras are classified in [26];
(b) complex non-split 5-dimensional nilpotent commutative associative algebras are listed in [30];

(c) complex one-generated 5-dimensional nilpotent Novikov algebras are classified in [10];
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(d) complex non-split non-one-generated 5-dimensional nilpotent non-commutative Novikov alge-
bras are classified in Theorem A (see below).

Theorem A. Let IN be a complex non-split non-one-generated 5-dimensional nilpotent (non-2-step nilpotent) non-
commutative Novikov algebra. Then IN is isomorphic to one algebra from the following list:
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