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Abstract. In the present paper, we present some Hermite-Hadamard type inequalities for preinvex
stochastic process using the Caputo fractional derivatives. Using preinvexity of |[X®[, k > 1 we find
the estimates of the difference of the fractional differential inequality. Some special results that reduced
from our findings have also been considered.

1. Introduction

The popularity of fractional calculus (calculus of derivatives and integrals with arbitrary order) and the
interest for the subject have grown astoundingly during the past three decades or so [6, 9, 22, 30]. Several
real life problems have been studied using the fractional derivatives, specifically with the Caputo fractional
derivative which is widely applied in various areas of sciences and engineering [8, 12]. For instance, it is
known that due to their non-locality, fractional differential operators give a better description of systems
with memory effect even though the non-locality takes different forms [6, 12, 22, 30].

There are various ways to define convexity for stochastic processes, it has a wide usage in optimiza-
tion, especially in optimal designs, and also has importance in numerical approximations when there
exist probabilistic quantities [24]. Nikodem [15] mentioned convex stochastic processes and also consider
further properties which can be proved for standard convex functions. Temporal and spatiotemporal
stochastic convexity was defined in [25] and [26], respectively for discrete time stochastic processes with
informative examples. Convexity concepts in sample path sense can also be found in [3], and the refer-
ences therein. Jensen-convex, A-convex, Wright-convex stochastic processes were presented in [29]. Time
stochastic s—convexity was taken into account in [28] by using order preserving functions of majorizations.
Kotrys [10] generalized the classical Hermite-Hadamard inequality to convex stochastic processes. Strongly
convex stochastic processes that generalized convex stochastic processes was also defined by Kotrys in [11].
These results motivated us to establish our paper.
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The following double inequality holds for any convex mapping f

2

The inequality (1) which is called the Hermite-Hadamard has several applications in the theory of proba-
bility and optimization (see[27]). This inequality offer us upper and lower bounds of the mean value of a
continuous convex function f : [k, k] — R. In the viewpoint of probabilistic, (1) provides new estimations
for E[f(X)] where X is uniformly distributed on the interval [«x1, k2] (see[2]). Recently, researchers effort
to obtain considerable integral inequalities containing generalizations, improvements and refinements.
Among others, invex and preinvex functions which stand out as generalizations of convexity introduced
by Ben-Israel and Mond [1], Hanson [7] and Noor [16] respectively. These remarkable findings have found
the opportunity to be applied in many areas such as optimization, statistics and numerical estimations with
probabilistic quantities. [24].

Noor [16] has established the following useful inequality under assumptions that f is a preinvex func-
tion on g = [y, k1 + (K2, K1)]

Ky +77(k2,%1)
2x1 + (K2, K1) 1 f@k1) + f(x2)
f( > ) < pr—— fldx < ————.

K1

This famous inequality took its place in the literature as the inequality of Hermite-Hadamard-Noor in-
equality. Then many similar inequalities were derived for different types of preinvex functions, see [16-21]
and the references therein.

Our main goal in this paper is to obtain Hermite-Hadamard type inequality by using Caputo fractional
derivatives, but now for preinvex stochastic processes.

2. preliminaries

In the sequel of this paper, we use the subsequent notations:

" A stochastic process {X(&) : & € I} is a parameterized collection of random variables defined on a familier
probability space (€, A, P). Here, we denote the time with £. Then X(&), which can also be shown as X(&, w)
for w € Q, is noted to be state or location of the process at time £. For any fixed outcome w of sample space
Q, the deterministic mapping & — X(&, w) denotes a realization, trajectory or sample path of the process.
For any particular £ € I the mapping depends w alone, i.e., then we obtain a random variable. It can be said
that, X(&, w) changes in time in a random manner. We restrict our attention to continuous time stochastic
processes, i.e., index setis I = [0, 00).”

Definition 2.1. "Suppose that I,, # 0 be subset of R". I, is an invex set with respect to the given vector function
n : Iy X I, = R" (or n-invex, or n-connected set) if

K1+ SU(KZI Kl) € L]
forall k1, € I and & € [0,1]”.

Remark 2.2. “Clearly, any convex set is an invex set with respect to 1n(xa2, k1) = k2 — k1. When interpreted
geometrically, the endpoints of the cluster and line segment joining the endpoints are located in a convex set. Despite
convex sets cannot be disconnected, invex sets can be disconnected. Definition 2.1 essentially says that there is a path
starting from a point 1 which is contained in I,. We do not require that the point 1, should be the one of endpoints
of the path [16]”.
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Definition 2.3. “Suppose that I, C R" be an invex set with respect to 1 : I, X I, — R". Then the mapping (not
necessarily differentiable) f : I, — R is said to be preinvex with respect to 1 if

flcr +Enlia, k1)) < (1= &) f(x1) + Ef(k2), VK1, k2 € I, £ €[0,1].”

Any convex function is preinvex with respect to 1(x2, k1) = k2 — k1, but the converse is not necessarily
true. f(x) = exp(x) is a counterexample, it is preinvex with respect to n(x, x1) = —1.

The following Condition C was introduced by Mohan and Neogy [14], which has played a key role in
the papers related to variational inequalities and optimization theory.

Condition C. Suppose I, is an open invex subset of R" with respect to ) : I, X I, — R and ) satisfies

—&n(x1, x2), )
(1 = Enlxy, x2),

(12,162 + Enlicy, x2))

n(Kl,Kz + &n(1, 1c2)

for any k1, %2 € I and & € [0, 1].

Definition 2.4. "Let (Q, A, P) be an arbitrary probability space. A function X : QO — R is called a random variable
if it is A-measurable. Let I C R be an interval indicating time. A function X : I X QO — R is called a stochastic
process if for every t € I the function X(t,.) is a random variable.

1. If X(t, w) takes values in R" it is called vector-valued stochastic process.

2. If the time I can be a discrete subset of IR, then X(t, w) is called a discrete time stochastic process.
3. If the time I is an interval, R* or R, it is called a stochastic process with continuous time.”

Definition 2.5. “Let (Q, A, P) be a probability space and I € R be an interval. A stochastic process X : I X Q — R
is called:

1. Increasing (decreasing) if for all 11, k> € I such that xkq < 1,

X(Kll ) = X(KZI ‘)/ (X(Kll ) = X(KZ/ ))/ (ﬂe),

2. Monotonic, if it's increasing or decreasing;
3. Continuous in probability in the interval I, if for all ty € I the following limit holds:
P - }mtn X(t,.) = X(to, ),
—to
where P — lim denotes the limit in probability;
4. Mean square continuous in the interval I, if the limit for all ty € I
lim E[X(t, ) = X(to, )I* =0,
—lo

where E[X(t, .)] denotes the expectation value of the random variable X(t, .);
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5. Mean square differentiable in I, if there exist a stochastic process X'(t,) (the derivative of X) such that for
all ty € I we have

K E X(t,.) — X(to,.)

X' (¢ ? 0.”
lim e (to, )] =0.

Definition 2.6. "Let (Q, A, P) be a probability space, I C R be an interval with E[X(t)]* < oo forall t € I.

Let [k1,10] € I, k1 = tg < ty < ... < t, = K be a partition of [a,b] and Oy € [ty_1, k] fork=1,2,...,n.

A random variable Y : QO — R s called mean-square integral of the process X(t, .) on [k1, k2], if the following identity
holds:

tim E[ Y X(0 )t~ i) = YO = 0;
k=1

in such a way, it can be written

b

f Xt )dt=Y() (ae).

a
Also, mean square integral operator is increasing, that is,

b b

fX(t,.)dtsz(t,.)dt (a.e.),

where X(t,.) = Z(t,.) in [x1,K2].”

Throughout this paper, we assume that I C [0,0) is a n-invex interval and the function 7 satisfies
Condition C.

Definition 2.7. "Let (Q, A, P) be a probability space and I C R be an interval. The stochastic process X : IxQ — R
is said to be a convex stochastic process if

X(Ex1 + (1= 8Ky, ) = EX(x1,.) + (1 = E)X(x2,.)

holds almost everywhere for all «1,%, € Land £ € [0,1].”
One of the results of interest for the present work is the following.

Theorem 2.8. Every Jensen-convex stochastic process and continuous in probability is convex.

Using Definition 2.7, Kotrys [10], the Hermite-Hadamard integral inequality version for Stochastic
Processes.

Theorem 2.9. If X : [ xQ) — Ris convex and mean square continuous in the interval T X Q, then for any x1, k2 € T
, the inequality

K2

X(Kl + Kzl.) < 1 fX(t, ) < X(Kl.,) + X(Kz.,)

2 K1 — K2 2
K1

holds almost everywhere.
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Before establishing the main results, it will be given some necessary notions and mathematical prelimi-
naries of fractional calculus theory which are used further in this paper.

Definition 2.10. "Let &« > O and a ¢ {1,2,3,..},n = [a] + 1, f € AC"[a,b], the space of functions having nth
derivatives absolutely continuous . The left-sided and right-sided Caputo fractional derivatives of order « are defined
as follows:

1 [ f
(D510 = oy | gt @>0) ©
and
b
¢ o _ 1 ft)
(Db,f)(x)—r(n_a) f (t_x)a_mdt (x < b). (4)

Ifoa =ne{l,23,..} and usual derivative f(")(x) of order n exists, then Caputo fractional derivative
(CD?+ f)(x) coincides with f™(x) whereas (CD?, f)(x) coincides with f((x) with exactness to a constant
multiplier (—1)". In particular we have

(‘D0 £)e) = (DY) = ),

where n = 1 and & = 0. For more details see [9].”

3. main results

In this section of our paper, we focus to define the important generalizations of convexity for stochastic
processes which are called preinvex and invex stochastic processes. Furthermore, we are in a position to
establish a new variant of Hermite-Hadamard inequality for preinvex stochastic processes. Starting with
motivation of the definition of convexity for random processes [15], we universalize the idea of preinvexity
to processes. We expand the concept of convexity for random variables in [24].

Definition 3.1. “Let X : I X QO — R be a stochastic process (not necessarily mean-square differentiable) on n-invex
index set 1. X(&,) is called preinvex with respect to 1 if

X(Kl + EU(KZI Kl)/ ) (5)
< (1-89X(ky,.)+EX(kp,.) (ae) Vxy,x2€l&e[0,1].

For a preinvex stochastic process, the inequality (5) holds almost everywhere on ), i.e., almost every

sample path of X will be a preinvex function. For instance, the convex stochastic process X : (0,1)x(0,1) —» R
defined by

&£, f#w
X, w) =
0, {=w.

is a preinvex stochastic process with respect to 1(i2, k1) = —«1.

In (5), if & is fixed number in (0, 1), then X is called

(i) £-preinvex stochastic process.

(i) Jensen type preinvex stochastic process for & = 3.

If we choose 1(x2, k1) = k2 — k1, then preinvex X(¢,.) is also a convex stochastic process, that is, class of
convex stochastic processes is contained by the class of preinvex stochastic processes.”
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Theorem 3.2. Let a > 0 and X : [x1, k1 + 1(x2, k1)] X Q — R be a positive stochastic process with n(iz, k1) and
X(&,.) € AC"[Kkq, k1 + (i, 1)) If X(E, ) is preinvex and Condition C holds, then the following inequalities for
Caputo fractional derivatives hold

2K1 + TI(KZI Kl)
o ( 21+ (K2, K1)
S ©)
Th-a+1) X0
X K1 + n(xy, K
17(1{2 Kl))n a ( ] )(( 1 T]( 2 1)) )
- ()
+( 1)( (K1+1](K2,K1))_X )(Klz-)]
XM (k1) + X (s, )
< > )
Proof. Since X™ is preinvex stochastic process, therefore for u,v € [k1, k1 + 1(k2, k1)] we have
M (y . X(n)( )
(X T 1y, %) X"(x,.) + Y,
xo( 5 ) < - / o

Using Condition C and substituting x = k1 + (1 — &)n(kz, k1) and y = x1 + En(ky, k1) for £ € [0,1]. Then
X,y € [x1, %1 + (K2, k1)] and (7) gives

oL ke, k1) ) (8)

2
XM (k1 + (1 = &Nz, x1), ) + XD (11 + Enlica, K1), )
—_ 2 7

multiplying both sides of (8) by £&"~*"!, and integrating over [0, 1] we get

2 K1 + (K2, K1)
(n)
n-— aX ( 2 ’ )
1
< f EIXO ey + (1 Eic, x1), JE
0
1

" fén—a—lx(‘rl)(Kl + EU(KZ/ K1), )d&.

0

By the change of variable we get

2 K1 + 1(Kk2, K1) )
n—a 2 a

K1

f <K1 + (2, K1) — M)”“"‘l X (u, ')du

(2, K1) n(k2, k1)

X(ﬂ)(

IA

K1+1(Kk2,K1)
K1+1(ic2,K1)

( U — K1 )”—“—1 X(”)(v, J)
n(x2, x1) n(x2,%1)

+

I'in—a)
(12, K1)

HD (DL sy X)1, )],

[(cDi;X(n))(Kl + (K2, k1), .)
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which gives the first inequality in (6). In order to prove the second inequality of (6).
It is used the preinvex property of the stochastic process X:

XO(er + (1= )iz, 1)), ) + X er + Enliez, 1)), )
< Xk, ) + X (ks ).
Multiplying both sides of the above inequality by &"~%7!, and integrating over [0, 1] we have

1 1

fX(")(Kl + (1 = Enlra, k1)), )dE + fX(")(Kl + En(i, k1)), )dE

0 0
1
< [X(n)(K1/~)+X(n)(1<2,.)]f5"_a_ld5-
0

From which one can have

F(n—a) c
| (DL X)) (e + (2, 11)), -
(12, K1) [( K )(( 1+ (2, %1)) )
~1y(‘D* )
+( 1) (D(K1+T](K2,K1))’X )(Klr-)]
XM (ieq, ) + X (13, )
< > )
The proof is completed. [

Remark 3.3. If we take n(xz, k1) = k2 — k1, then Theorem 3.2 reduces to [5].

Lemma 3.4. Let X : [x1,x1 + 1(k2,%k1)] X Q — R be a square mean differentiable stochastic process such that
X € AC"[Kq, k1 + n(xc2, 1)] with n(xcz, 11) > 0. IfX(”“) is a square mean differentiable stochastic process, then the
following inequality for Caputo fractional derivatives holds almost everywhere:

X®(x1,.) + XD (1 + (2, k1), .)

I )
Tn—a+1) e,
_W[( DK;X)((Kl +1(k2, K1), )

1y (‘D* Xk, .
+( )( (K1+11(Kz,1<1)) )(Kl )]

n(KZr Kl)

1
= f [@ = = = =0 XD e + (1= iz, 1)), et
0

2

Proof. First, it must be noted that

1
[T - ey - e+ 1 - e ), e
0

1

- f (1= &Y XD ey + (1= )l k1), JE

0

1
- f XN (e + (1 — E)ica, k1)), M,
0
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and using integration by parts it is obtained
1
[ a-erx i + (- oo ko), e

0

K1+7(K2,K1)

_ XO(k1 + (K2, 1), ) S f (K1 +1(c2, 1) — u)n—zx—l X"(u, ')du
(k2 x1) n(x2, x1) 1n(x2, %1)
K1
X (k1 +1(k2,%1), ) Tn—a+1) (€
B -1 ( D(K1+'l(K2,K1))‘ X)(Kl’ )

U(Kz, K1) 2(7](1{2/ K1 ))n—a+1

and similarly,

1
f FEXO e, 4 (1 (o, ), il
0

XM (xy,.) In—a+1)
= - + D*,. X)(x1 + n(x2,%1),.),
M) B rpeet D X0 0z .
Adding these get results we get the desired result.

The proof is completed. []

Theorem 3.5. Let X : [k1, k1 + n(k2, k1)] X Q — R be a square mean differentiable stochastic process such that
X € AC"[x1, k1 +1(K2, k1)) with n(k2, 1) > 0. If| X"V is a preinvex stochastic process, then the following inequality
for Caputo fractional derivatives holds almost everywhere:

‘X(”)(Kl, )+ XP(k1 + (K, k1), )

2 (10)
‘%—iﬁﬁz[(b 5 X) (1 + (02, x1), )
(Dl X))
Z(Trll(iz(,xki)l) (1 ~ an_a)[|x(n+l)(K1’ I+ XD (i, ')ll'
Proof. Using Lemma 3.4 and the convexity of [X"*!|, it is obtained that
|X(n)(K1’ )+ X (k1 + (k2 %1), ) (11)

2

T D (D2 X)(k + 020,

T 2(n(icz, 11))e
(DY ey X))

1
< ’7("22' K1) f|(1 — &) = XD (g + (1= Enlxa, k1), )dE
0
< 77(1(22/ K1) f((l — gy gn—a)(glx(nﬂ)(Kl, J+@0- 5)|X("+1)(K2, )|)dU
0

n(KZI Kl)

+
2

1
f (& = (1 = &) (EXT D ey, )] + (1 = D)XV (ka, )] ),

2
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which allow us to write
[ (@= g e emm e, o+ (1 - XV, e
0

. (%)n—aﬁl ]

(n—a+1)(n—a+2)_n—az+1

, (%)nﬂwrl ]

(n—oc+2)_n—oc+1

|X<”+”(1<1,.>|[

HXOD ey, .)|[

Analogously

1

f (7 = (1 = &) (EX Dy, )] + (1 = HIXT (o, ) JdE

1
i . (%)n—oﬁl ]

(n—a+2)_n—a+l

1 (%)n—aﬁl ]

m-—a+2)n—a+1) n-a+l

- |X<”+”(K1,.>|[

HXO D, )
Suitable rearrangements completes the proof. O

Remark 3.6. If we take n(ky, k1) = k2 — k1, then Theorem 3.5 reduces to [5].

Theorem 3.7. Let @ > 0 and X : [k1, k1 + 1(k2,k1)] X Q — R be a positive stochastic process with n(kz,x1) > 0
and X(t,.) € AC"[x1, 11 + n(k2, k1)]. IfX(")(é, .) is preinvex and Condition C holds, then the following inequalities

for Caputo fractional derivatives hold

2K1 + (K2, %1)
1= 7/
X( 5 ) (12)
21T (= + 1) e
O sty X ) (K2,
(T](Kz, Kl))n_a [( (2K1+1];7\2,T\1))+ )(KZ )

+<CD?M)7 X)(Kl, )]
2

X" (k1,.) + XP(ks, )
< 5 :

Proof. Since X™ is preinvex stochastic process, therefore for x, y € [x1, k1 + 1(k2, k1)] we have

() ()
X(n)(Zx + g(y,x)/ ) < X"(x,.) ;— X"(y, .)’ (13)

Using Condition C and putting x = x; + %r}(Kz, k1) and vy = k1 + %n(xz, x1) for & € [0,1], we have
X,y € [x1, k1 + (K2, k1)]. The above inequality becomes

ZX(n)(ZKl + 772(1(2, Kl), )

< X(n)(Kl + %n(m, K1), ) + X(”)(Kl + #q(;@, K1), )
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Multiplying both sides of above inequality with £"-%"! and integrating over [0, 1], we have

1
2X(n)(2K1 +T]2(1<2, Kl),.)fgn—a—ldé

1
1-—
fén—a—lx(”)(Kl + Tén(KZ’ Kl)/ )dé
0

1

+ f 5”‘“‘1X(”)(1<1 + 1+

0

5 TI(KZI Kl)/ )dél

By using the change of variables we have

2
n—-a

X(n)(ZKl + 172(K2, Kl), )

2k +1(ip,K1)

on-a 2 2K + U(K ,K ) n—a—1
W[ f (1) X(,)du

K1+1(k2,%1)
(v 21 + (i, K1)

: )™ X(o, )do]

+
on— al—' 7’l 01)
(n(KZ, K1 )" a [( 2’*1*’1(@ nl))+ )('U, )
C
3 D sy X)(w,.)]
which implies that

X(n)(ZKl + 1]2(1(2, Kl), )

210 (n —a + 1) &
GRS
+(D (oo X)(x1,)]

o
( 2k +1(xkp,x1) )+ X)(KZ/ )
2

Similarly, preinvexity of X gives

1- 1+
X(")(Kl + TSW(KL K1), ) + X(")(Kl + Téﬂ(Kz, K1), )
< XM(xq,) + XD (ky, ).
Multiplying both sides of the above inequality with &"~*! and integrating over [0, 1], we have

1

1-—
fén—a—lx(”)(Kl + Tén(KZ’ Kl)/ )dé

0
1

+fén—a—1x(n)(1<l 4 1+¢&

0

r[(KZI Kl)/ )dé

6578

(14)
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1

< [X(n)(Klz-)+X(n)(Kz,-)]fén_adé,

0

from which one can have

2110 (n - + 1) e
(n(xc2, k1))« [( P
+(CD‘(Xw)_X)(K1, ~)]

X (1, )+ X" (ic,, )
< > .

o
(2K1+1](K2,K1) )+ X)(K2/ )
2

Combining inequality (14) and (15), we get inequality (12). O
Remark 3.8. If we take n(kz, k1) = k2 — k1, then Theorem 3.7 reduces to [5].

Following lemma is useful for our next results.

6579

(15)

Lemma 3.9. Let X : [k1,x1 + 1(k2,k1)] X Q — R be a square mean differentiable stochastic process such that
X € AC"[kq, k1 + 1(xc, 11)] with n(x2, k1) > 0. If X0+ s g square mean differentiable stochastic process, then the

following inequality for Caputo fractional derivatives holds almost everywhere:

C
124

D(ZK1+1](K2/K1))+ X)((Kl + TT(KZ/ K1), )
ESRUCEY

2011 (= @ + 1) I
(K2, k1))@

+(—1)”(CD‘(‘ X)(k1,)

2K +1(xp,K7)
2

_X(n)(ZKl + 1]2(K2, K1) )]

1
' 1 —_
0

1

_ fén—ax(nﬂ)(Kl + %1’[(1{2, K1), )dé]

0

Proof. Since

1
’ 1—
17(1<i1 K1) f 5n—ax<n+1><m + TET](KZ, K1), ,)dg
0
_ (i, k1) [—Zén—aX(n)(Kl + 1;—51](1(2, K1), ) |1
4 (2, x1) 0
1
2(n—a) N 1-&
+—77(1<2/ P bfé Ix( )(K1 = 1(x2,0), .)dcf]
(2, %1)

-2 X(n)(ZKl + n(x, Kl))

4 [ n(KZI Kl) 2

(16)
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2m=a-1T(p — o + 1)(
(T](KZI Kl))n—a+1

‘Do X)(x2,)]

2K +1(xp,x7)
2

Analogously, we have

1
_n(K42, Kl) fén—ax(r&l)(Kl + %TI(KZI Kl)/ )dé
0

_TI(KZ/ Kl) [ 2 X(n)(ZKl + T](KZI Kl))
4 n(x2, 1) 2
21 (n — a + 1)(

(n(x2, 1c7))r-o+t

_(_1)7‘1

‘pe X)(x1,)]

2K +1(kp,K7)
2

Adding above equalities we get the required equality. [

6580

Theorem 3.10. Let o > 0 and X : [k1, k1 + 1(x2,4)] X Q — R be a positive stochastic process with n(xz, k1) > 0
and X(&,.) € AC"[x1, k1 + n(ka, x1)]. If XW(&,.) is preinvex on [k, 11 + 1)(k2, %1)] for k > 1, then the following

inequalities for Caputo fractional derivatives holds

nzn—a—ll"( _ 1) c
X L gy N vt

+(—1)”(CD‘(* X)(k1,)

2K +n(K K1)
2

_x<n>(2’<1 M ’72(K2' Kl))”

T](KZ/ Kl) 1 % (n+1) k
dn—a+ 1)(2(n -a+ 2)) [(IX D1, )

=

+(2(n - @) + 3)X" (i, )IF)

+(201 - @) + B)XT D ey, ) + XDy, .)|k)i}.

Proof. Using Lemma 3.9 we have

2071 (n — a + 1) [(c
(K2, k1))@

D* +X)<(K1 + I](Kz, K1), )

2k +1(xkp,K1)
2

+(-1)"('Ds X)(k1,2) = XO(

2icq +1(ip, 1)
2

1
T](Kz, Kl) n—a
< 1 f 3
0

1
e
0

211 + 1, k1)

dg

1-
X(”H)(M + Téﬂ(Kzl K1), )

dé.

1+¢
(n+1) -5
X (K1 + > n(x2, 1), )

(17)

(18)
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Applying power mean’s inequality we have

20T —a+ 1) e,
(T](KZI Kl))n—a [( D(leﬂgxz,ﬁ))J'X)((Kl + U(KZ’ K1), )
+(-1)"('Ds X)(k1,)

2K +1](K2,K1)
2

_x<n>(2’<1 * ’72(’<2' "1))”
1
( ! ) 1 1_% n—a|y(n+
< UKZTQ (n_a+1) [[fé X 1)(1<1

0

1 —
+T£T](Kz, K1), )

1
+[ f(gn—a
0

Also from preinvexity of | X"*D}1, we have

X(n+1)(1<1 + #W(KZI K1), ) kdé]%]

2071 (n — a + 1) [(c
(n(x2, k1))@

D¢ X)(Ger + (e, 1), )

21y +1( K1)
2

+(—1)”(CD‘(‘ X)(k1,)

_X(n)(21<1+n—(1<2’1<1))”

2
1

ez )1 )H“ f gr-a[ L€ oy,

IA

4 n—a+1 2
0
1

148 o ?
P X0y, e |

1 1
1 1-— %
+[fén—a[ ZE|X(”+1)(K1,.)|k+ 5 é|X(11+1)(K2,_)lk]dé] }
0

_ U(KZ/ Kl) 1 % - r
C dn-a+ 1)(2(11 —a+ 2)) [(|X( Dk, )l

i

+(2(n - @) + 3)X" Vs, )

i

+(201 = @) + 3)X" Dy, ) + XD ey, )IF)

|

Next we use the Holder inequality along with Lemma 3.9 to obtain the following result.

The proof is completed. [

Theorem 3.11. Let o > 0 and X : [x1, k1 + n(k2, k1)] X Q — R be a positive stochastic process with (i, k1) > 0
and X(&,.) € AC"[k1,x1 + n(2,a)]. If IXW(E, ) is preinvex on [x1, %1 + k2, k1)] for k > 1Twith k™' +s71 =1
then the following inequalities for Caputo fractional derivatives holds
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2" T(n—a+1) (

(n(xc2, 1)) D +X)((Kl + 1(x2, K1), )

2xq +1(p,K1)
2

+(—1)”(CD‘(1 X)(k1,.)

2K +1(x9,K7)
2

—X(”)(zKl + 1(x2, 1) )]

2
k k
o), 1 X0 |+ 3X e, )|
B 4 <ns—as+1 | 4 ]

k k
BXC (i, )|+ XDz, )

+[ 1 H

Proof. Using Lemma 3.9 we have

2=y — a4+ 1) e,
T (Kz,ijq))f*: [( D (2K1+q;K2rN1))+X)<(K1 +1(x2, K1), )
+(-1"('D* X)(k1,)

21 +n(ic,1q)
2

_X(n)(ZKl + T]Z(Kz, K1) )”
1

n(x2, K1) n—a
< Tfé
0
1
_fén—a
0

Applying Hélder’s inequality we have

X(”+1)(1<1 + ! ; 577(1<2, K1), .)'dé

1+&
2

X(n+1)(K1 + n(x2,%1), .)’dé.

2m=a-1T(n — o + 1) fe.
(U(KZ/ Kl))n_a [( D(Z’fl*'l;KzM))JrX)((Kl * T](K2, Kl)’ )
+(-1('Ds X)(k1,)

2K +1(xp,x7)
2

—xin(Zat ’72(’% <) )|

< T](K24,K1)<j.£nsasd5)1“j
0 0

! ; éTT(Kz, K1), -)'kdé]i

X(r1+1)(K1

+
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(19)

(20)
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1

+[f|X(n+1)(K1 + #n(xz, K1), .)|kd5]]1].

0

Since |X"*D[¥ is preinvex, so we have

2101 (- + 1) e,
(n<1<2,7:<1)>i-a (D (zm,,;xz,xl)yx)((’q +n0e ),
+-1( D" X)(x1, )

(ZK] +1(xg,K1) )7

—X(”)(ZKl + (2, Kl))”

1
( 7 ) n+
= nKZKl <ns—as+1 “f X( Ve, )’
0

1+£

1He xoy,, )| ]

1

1 + 1- kT
f 5 X(n+1)( ) > élx(n+l)(1<2, )‘ )dé] ]
0
1 k 1 k
k), 1 X0 )|+ 3XO e, )]
B 4 <ns —as+1 [ 4 ]

k
3IX* D (i, )

k
+ X0y, )| ]; }

1 ;

The proof is completed. [

Remark 3.12. If we take n(x2, k1) = k2 — «1, then Theorem 3.11 reduces to [5].

Conclusion:

6583

In this article, we have derived a few inequalities of Hermite-Hadamard type for preinvex stochastic
processes that possess a first derivatives on the interior of an interval of real numbers, by utilizing the

Caputo fractional derivatives and assumptions that the mappings |f'[¥, k >

inequalities exhibited here surely give new bounds.
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