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Abstract. Fisher information plays a pivotal role throughout statistical inference especially in optimal and
large sample studies in estimation theory. It also plays a key role in physics, thermodynamic, information
theory and other applications. In this paper, we establish some new results on residual Fisher information
distance (RFID) between residual density functions of two systems. Further, some results on RFID and
their relations to other reliability measures are investigated along with some comparison of systems based
on stochastic ordering. A lower bound for RFID measure is provided based on quadratic form of hazards
functions. In addition, RFID measure for equilibrium distributions are studied. Finally, we establish some
results associated with residual Fisher information (RFI) and RFID measures of escort and generalized
escort distributions.

1. Introduction

The Fisher information (FI) is not only integral to statistical inference but also is considered fundamental
in statistics, information theory, physics, and allied disciplines (see, for example, Fisher (1929), Cover and
Thomas (1991), Frieden (2004) and Shao (2003)). Besides, Fisher information has been applied in areas such
as biology, social science, geophysics, and encryption of covert information, etc. FI can be used as a measure
to quantify the amount of information that the acquired data contains about an unknown parameter or
vector of parameters that one wishes to estimate from the data of a statistical model. If the data carries
greater the amount of information about the unknown parameter or vector of parameters, the higher is
the accuracy (i.e., the smaller the standard deviation) of estimation of parameter or vector of parameters.
The amount of information is stochastic in nature and is determined by considering how the likelihood
function of observed data changes with the value of unknown parameter or vector of parameters of interest.
If the likelihood function of the observed data does not change significantly with the change in value of
the unknown parameter or vector of parameters of interest, it indicates that the observed data contains
relatively little information about the parameter or vector of parameters. Whereas, if the likelihood of the
data is sensitive to changes in the value of the parameters of interest, it indicates that the observed data
carries a relatively greater amount of information about the parameter of interest and can be estimated with
relatively high accuracy. Let us consider a random variable X (continuous or discrete) with a distribution
function Fθ having a probability density function fθ, where θ ∈ Θ ⊆ R. We assume throughout the paper
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that fθ(x) is differentiable with respect to both θ and x. The Fisher information of random variable X (or
distribution Fθ) about the parameter θ , based on an observation x of X, is defined as

I(θ) = E
[∂ log fθ(X)

∂θ

]2
.

(1)

If fθ is sharply peaked with respect to changes in θ, it indicates the “correct” value of θ from the data, or
equivalently, the data X provides a lot of information about the parameter θ. If the likelihood function is flat
and spread-out, then it would take many samples of X to estimate the actual “true” value of θ that would
be obtained using the entire population being sampled. Moreover, the Fisher information I(θ) measures
how high the peaks are in the log-likelihood function. It plays crucial role, in both classical and Bayesian
statistical inference, in derivation of optimal estimators particularly in large sample studies when one is
interested to study asymptotic properties of estimators; see, for example Lehmann and Casella (1998) and
Shaked and Shanthikumar (2007). Fisher information is widely used in optimal experimental design.

If a random variable X has density f (x), under the condition that the derivative of f exists for all values
on its support, the Fisher information of the density is defined as

I( f ) = E
[
ρ2(X)

]
, (2)

where ρ(x) = f ′ (x)
f (x) is called the score function corresponding to f .

The definition of the Fisher information distance (relative Fisher information) was first propounded by
Otto and Villani (2000), in context of translationally-invariant case. Thereafter, Fisher information distance
has been used in many applications in different problems and fields; Venkatesan and Plastino (2014), Yáñez
et al. (2008), Yamano (2013), Bobkov et al. (2014) and Johnson (2004). It is to be noted that the first general
analysis of the relative Fisher information was presented by Zegres (2002).

Given two random variables X and Y with absolutely continuous density functions f and 1, respectively,
the Fisher information distance (FID) between X and Y (or f and 1) is defined by

D( f , 1) = E f

[(
ρ f (X) − ρ1(X)

)2]
, (3)

where ρ f (x) and ρ1(x) are the score functions corresponding to f and 1, respectively. Recently, time-
dependent version of (2) and (3) have been proposed by Kharazmi and Asadi (2018). These information
measures so-called RFI and RFID.

The purpose of this work is to establish some new properties of RFID measure between two residual
lifetime distributions. Let X be a nonnegative random variable denoting a duration such as a lifetime
where we assume that it has the distribution function F, and the probability density function f . The
random variable of interest is the residual random variable, Xt = X|X > t, on the set

St = {x : x > t} t ∈ (0, b) b ≤ ∞.

Hence, the distribution of interest for computing information is the residual distribution with survival
function

F̄t(x) =
{ F̄(x)

F̄(t) x ∈ St

1 otherwise,
(4)

provided that F̄(t) < ∞,where F̄ = 1− F denotes the survival function of X; see Barlow and Proschan (1975)
for pertinent details.

In this work, our main objective is to establish some new results for RFID measure. We examine
the relationship between RFID and some of reliability quantities. Moreover, we study RFID measure for
equilibrium and escort distributions. The rest of this paper is organized as follows. In Section 2, we first
establish some new results for RFID measure and provide results associated with stochastic ordering in
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order to compare the system lifetimes. We then obtain a lower bound for the RFID measure based on
quadratic form of hazards functions. In Section 3, we study RFID measure for equilibrium distributions.
It is shown that RFID measure between two equilibrium distributions is connected with hazard and mean
residual functions of underlying variable. In Section 4, we establish some results associated with RFI and
RFID measures of escort and generalized escort distributions. Finally, some concluding remarks are made
in Section 5.

2. New results for Residual Fisher information distance (RFID)

Assuming that ft(x) and 1t(x) denote the density functions corresponding to residual lifetimes variables
X and Y, respectively. We now introduce RFI and RFID measures that will be used in the sequel.

Definition 2.1. Let Xt be a residual random variable with an absolutely continuous density function ft(x).
The residual Fisher information of ft(x) is defined as

I( f ; t) = E
(
ρ2(X)|X > t

)
, (5)

where t > 0 and b ≤ ∞ the right extremity of the support of X, i.e., F(b) = 1.

Definition 2.2. The RFID between ft and 1t is defined as

D( f , 1; t) = E
[(
ρ f (X) − ρ1(X)

)2
|X > t

]
. (6)

Clearly for a non-negative random variable X, RFID reduce to FID, when t→ 0.

For more details, see Kharazmi and Asadi (2018). Next, we establish some new results associated with
RFID measure.

Theorem 2.3. Given two random variables X and Y with RFID measure D( f , 1; t). Then under the condition of
Lemma 2.1 from Kharazmi and Asadi (2018), we have

D( f , 1; t) ≥
(
r f (t) + E

(
ρ1(X)|X > t

))2
, (7)

where r f (t) =
f (t)
F̄(t) is hazard function of variable X.

Proof : From Lemma 2.1 of [20], with 1(x) ≡ 1, gives E
[
ρ f (X)|X > t

]
= −r f (t). Hence we get

Var
[(
ρ f (X) − ρ1(X)

)
|X > t

]
= E

[(
ρ f (X) − ρ1(X)

)2
|X > t

]
−E2
[(
ρ f (X) − ρ1(X)

)
|X > t

]
= D( f , 1; t) −

(
r f (t) + E(ρ1(X)|X > t)

)2
≥ 0.

Given two random variables X and Y with absolutely continuous density functions f and 1, respectively.
The variable X is said to be less than Y in hazard rate order, X ≤hr Y, if r f (x) ≥ r1(x), for all x in the union
of supports of X and Y, where r f (x)(r1(x)) is the hazard rate of X(Y). The following theorem provides an
interesting lower bound for RFID measure based on the hazard functions.

Theorem 2.4. Given two random variables X and Y with hazard functions r f (x) and r1(x), respectively. If ρ1(x) is
decreasing and X ≤hr Y, then

D( f , 1; t) ≥
(
r f (t) − r1(t)

)2
. (8)
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Figure 1: Plots of D( f1, f2; t) measure (solid line) and it’s corresponding lower bound (dashed line) for some selected values of α1, α2
and λ.
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Proof : Since E
[
ρ1(Y)|Y > t

]
= −r1(t) and using the Theorem 2.3 and assumption X ≤hr Y, we have

D( f , 1; t) ≥

(
r f (t) + E(ρ1(X)|X > t)

)2
≥

(
r f (t) + E(ρ1(Y)|Y > t)

)2
≥

(
r f (t) − r1(t)

)2
,

where the second inequality follows from the fact that X ≤hr Y implies E(ϕ(X)|X > t) ≤ E(ϕ(Y)|Y > t) for
any increasing function ϕ(x) (see Shaked and Shanthikumar (2007)).

In a similar way, we can show that if ρ f (x) is decreasing and Y ≤hr X, then

D(1, f ; t) ≥
(
r f (t) − r1(t)

)2
.

From Theorem 2.4, we have (
r f (t) − r1(t)

)2
≤
D( f , 1; t) +D(1, f ; t)

2
.

Example 2.5. Let Xi, i = 1, 2, be distributed as gamma distribution with density

fi(x) =
λαi

Γ(αi)
xαi−1e−λx, x > 0, αi, λ > 0, i = 1, 2.

For α1 > 2, we have

D( f1, f2; t) = λ2 (α2 − α1)2Γ(α1 − 2, λt)
Γ(α1, λt)

,

where Γ(α1, t) =
∫
∞

t xα1−1e−xdx, is incomplete gamma function. On other hand, the hazard rate function is

r fi (t) =
λαi tαi−1e−λt

Γ(α1, λt)
, i = 1, 2.

Now using the Theorem 2.4, a lower bound for D( f1, f2; t) is given as

D( f1, f2; t) ≥
(
λα1 tα1−1e−λt

Γ(α1, λt)
−
λα2 tα2−1e−λt

Γ(α2, λt)

)2
.

The plots of D( f1, f2; t) measure and it’s corresponding lower bound have been plotted in Figure 1.
We now give some theorems corresponding to RFID measure between densities of two transformed

variables.

Theorem 2.6. Given two random variables X and Y with absolutely continuous density functions f and 1, respec-
tively, and ϕ be a nonnegative increasing, twice differentiable and invertible function. Then

D( fϕ, 1ϕ; t) = E
[ 1

ϕ′(X)2

[
f ′(X)
f (X)

−
1′(X)
1(X)

]2 ∣∣∣X > ϕ−1(t)
]
. (9)

Proof: Using the definition of dynamic Fisher information distance and transformed variables ϕ(X) and ϕ(Y),
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we have

D( fϕ, 1ϕ; t) =
1

F̄(ϕ−1(t))

∫
∞

t

 (
f (ϕ−1(x))
ϕ′ (ϕ−1(x)) )

′

f (ϕ−1(x))
ϕ′ (ϕ−1(x))

−

( 1(ϕ
−1(x))

ϕ′ (ϕ−1(x)) )
′

1(ϕ−1(x))
ϕ′ (ϕ−1(x))


2

f (ϕ−1(x))
ϕ′ (ϕ−1(x))

dx

=
1

F̄(ϕ−1(t))

∫
∞

ϕ−1(t)

1

ϕ′(x)2

[
f ′(x)
f (x)

−
1′(x)
1(x)

]2
f (x)dx

= = E
[ 1

ϕ′(X)2

[
f ′(X)
f (X)

−
1′(X)
1(X)

]2 ∣∣∣X > ϕ−1(t)
]
.

As a special case, when ϕ is linear, that is ϕ(x) = ax + b, we get

D( fϕ, 1ϕ; t) =
1

F̄((t − b)/a)

∫
∞

(t−b)/a

1
a2 [

f ′(x)
f (x)

−
1′(x)
1(x)

]2 f (x)dx

=
1
a2D( f , 1;

t − b
a

).

Theorem 2.7. Given two random variables X and Y with absolutely continuous density functions f and 1, respec-
tively, and ϕ be a differentiable and invertible function. Then:

(i) If ϕ is convex and increasing,D( fϕ, 1ϕ; t) ≤ 1

(ϕ′ (ϕ−1(t)))2D( f , 1;ϕ−1(t));

(ii) If ϕ is concave and decreasing,D( fϕ, 1ϕ; t) ≥ 1

(ϕ′ (ϕ−1(t)))2D( f , 1;ϕ−1(t)).

Proof: By using the assumptions and Theorem 2.6, we have

D( fϕ, 1ϕ; t) =
1

F̄(ϕ−1(t))

∫
∞

ϕ−1(t)

1

ϕ′(x)2

[
f ′(x)
f (x)

−
1′(x)
1(x)

]2
f (x)dx

≤
1(

ϕ′ (ϕ−1(t))
)2 1

F̄(ϕ−1(t))

∫
∞

ϕ−1(t)

[
f ′(x)
f (x)

−
1′(x)
1(x)

]2
f (x)dx

=
1(

ϕ′ (ϕ−1(t))
)2D( f , 1;ϕ−1(t)),

as required for Part (i). Part (ii) can be proved similarly.

Theorem 2.8. Let X, Y and Z have densities f , 1 and h, and distribution functions F, G and H, respectively. Then:

(i) If h is increasing,D( fH, 1H; H(t)) ≤ 1
h(t)2D( f , 1; t);

(ii) If h is decreasing,D( fH, 1H; H(t)) ≥ 1
h(t)2D( f , 1; t).

Proof: From Theorem 2.7, and the assumption that 1 is increasing, we have

D( fH, 1H; H(t)) =
1

F̄(t)

∫
∞

t

1

h(x)2 [
f ′(x)
f (x)

−
1′(x)
1(x)

]2 f (x)dx

≤
1

F̄(t)

∫
∞

t

1

h(t)2 [
f ′(x)
f (x)

−
1′(x)
1(x)

]2 f (x)dx

=
1

h(t)2D( f , 1; t),

as required for Part (i). Using the assumption that 1 is decreasing, Part (ii) can be proved in similar manner.
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Theorem 2.9. Let X and Y be lifetime variables with the densities f and 1, the score functions ρ f (x) and ρ1(x), and
cumulative hazard functions R f (x) and R1(x), respectively.Then, for k > 0, we have

E[Lk
ρ(X)R f (X)] =

∫
∞

0
f (u)E[Lk

ρ(X)|X > u]du,

where Lρ(x) = |ρ f (x) − ρ1(x)| and R f (t) =
∫ t

0 r f (x)dx.

Proof: We have

E
[
Lk
ρ(X)R f (X)

]
=

∫
∞

0
Lk
ρ(x)R f (x) f (x)dx

=

∫
∞

0

{∫ x

0
r f (u)du

}
Lk
ρ(x) f (x)dx

=

∫
∞

0
r f (u)

{∫ ∞

u
Lk
ρ(x) f (x)dx

}
du

=

∫
∞

0
f (u)E

[
Lk
ρ(X)|X > u

]
du.

The theorem has the following special cases.

• When k = 1, from E[ρ f (X)|X > u] = −r f (u), we get

E[Lρ(X)R f (X)] =
 −E[r f (X)] −

∫
∞

0 f (u)E[ρ1(X)|X > u]du, ρ1(x) ≤ ρ f (x),
E[r f (X)] +

∫
∞

0 f (u)E[ρ1(X)|X > u]du, ρ f (x) ≤ ρ1(x).

• For k = 2, based on the definition ofD( f , 1; t), we can obtain

E[L2
ρ(X)R f (X)] =

∫
∞

0
f (u)E[L2

ρ(X)|X > u]du

= E[D( f , 1; X)].

Let X and Y be continuous variables with density functions f and 1, respectively. Variable X is said to
be less than variable Y in likelihood ratio order, X ≤lr Y, if 1(x)

f (x) is increasing in x for all x in the union of
supports of X and Y.

Definition 2.10. Let X and Y be two random variables with residual Fisher information distanceD( f , 1; t)
and D(1, f ; t), respectively. X is said to be less than Y in residual Fisher information distance, denoted by
X ≤RFID Y, ifD(1, f ; t) ≤ D(1, f ; t), for all t.

Theorem 2.11. Let X and Y have densities f and 1, respectively.

(i) Assume that f
1

is log-concave. If X ≤lr Y, then X ≤RFID Y,

(ii) Assume that 1f is log-convex. If Y ≤lr X, then X ≤RFID Y.

Proof: X ≤lr Y implies that f ′ (x)
f (x) ≤

1
′
(x)
1(x) for all x. Since f

1
is log-concave, therefore,

(
ρ f (x) − ρ1(x)

)2
is

increasing. Hence from the fact that X ≤lr Y⇒ X ≤hr Y, we get∫ b

t

(
ρ f (x) − ρ1(x)

)2
f (x)dx

F̄(t)
≤

∫ b

t

(
ρ f (x) − ρ1(x)

)2
1(x)dx

Ḡ(t)
, (10)

where the inequality follows from the fact that X ≤hr Y implies E(ϕ(X)|X > t) ≤ E(ϕ(Y)|Y > t) for any
increasing function ϕ(x) (see, Shaked, and Shanthikumar (2007)). From (10), Part (i) is proved. Similarly,
Part (ii) follows part (i) from the assumption that 1f is log-convex.
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Theorem 2.12. Let X, Y and Z have densities f , 1 and h, respectively. If Z ≤lr Y ≤lr X, then

D( f , 1; t) ≤ D( f , h; t).

Proof: Z ≤lr Y ≤lr X implies that f ′ (x)
f (x) ≤

1
′
(x)
1(x) ≤

h′ (x)
h(x) for all x. From this, we have

(
ρ f (x) − ρ1(x)

)2
≤

(
ρ f (x) − ρh(x)

)2
.

Hence, we have

∫ b

t

(
ρ f (x) − ρ1(x)

)2
f (x)dx

F̄(t)
≤

∫ b

t

(
ρ f (x) − ρh(x)

)2
f (x)dx

F̄(t)
,

as required.

3. RFID measure for equilibrium distributions

Assume that F̄(x) is the survival function of a nonnegative continuous random variable X with
finite mean µ. The random variable Xe is said to be the equilibrium random variable corresponding to the
random variable X, if the density function of Xe is given by

fe(x) =
F̄(x)
µ
, x > 0. (11)

The equilibrium distributions arise in renewal theory as the asymptotic distributions of the waiting time
till the next event and the time since the last event at time t. Before presenting the theorem, we recall that
the mean residual lifetime (MRL) of continuous random variable X with survival function F̄ is defined at
time t as

m(t) = E(X − t|X > t) =

∫ b

t F̄(x)dx

F̄(t)
,

provided that F̄(t) > 0. Note that m(0) = µ is the mean of X.
Let X and Y be two continuous random variables with density functions f and 1 and corresponding

equilibrium densities fe and 1e, respectively.

Theorem 3.1. The RFID between two equilibrium distributions fe and 1e can be represented as

D( fe, 1e; t) =

E


(

r f (X)−r1(X)
)2

r f (X) |X > t


m f (t)

,

where m f (t) denote the MRL of variable X.
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Proof: From the definition of RFID measure, we have

D( fe, 1e; t) =

∫ b

t

{
f ′e (x)
fe(x) −

1
′

e (x)
1e(x)

}2

F̄(x)dx∫ b

t F̄(x)dx

=

∫ b

t

{
r f (x) − r1(x)

}2

F̄(x)dx∫ b

t F̄(x)dx

=

∫ b

t

{
r f (X)−r1(X)

}2
r f (X) f (x)dx∫ b

t F̄(x)dx

=

E


(

r f (X)−r1(X)
)2

r f (X) |X > t


m f (t)

. (12)

4. RFI and RFID measures for escort and generalized escort distributions

Let X be a variable with density function f . Then, the variable Xe is said to be the escort random variable
corresponding to X, if for any positive real number η, the density function of Xe is given by

fη(x) =
f η(x)∫
f η(x)dx

,

provided
∫

f η(x)dx < ∞. It should be noted that this is a special case of weighted distributions in which
the weight function has been chosen to be w(x) = f η−1(x). An extension of escort distribution is known as
generalized escort distribution. Assume that variables X and Y have density functions f and 1, respectively.
Then, the corresponding generalized escort density is given by

hη(x) =
f η(x)11−η(x)∫
f η(x)11−η(x)dx

.

Note that this again is a special case of weighted distributions in which the weight function has been

chosen to be w(x) =
{ f (x)
1(x)

}η−1
. Escort distributions have found many applications in different areas. The

significance of this distribution in chaos theory and thermodynamics has been emphasized by Beck and
Schögl (1995). Further, this distribution finds application in coding theory wherein it can be used to
modify the weights of the words with low probabilities (see, Bercher (2012)). Moreover, it was proved by
Bercher (2012) that escort distributions can be used as one of the solutions for a minimum Kullback-Liebler
discrimination related to state transition model framework. For more details, see Asadi et al. (2018).
The following theorems present RFI and RFID measures associated with the escort and generalized escort
distributions.

Definition 4.1. Let X, Y and Z be three random variables with score functions ρ f (x), ρ1(x) and ρh(x)
respectively. It is said that Z has additive proportional score function if ρh(x) = ηρ f (x) + (1 − η)ρ1(x), where
η is positive constant.

Theorem 4.2. Let X, Y and Z be three non-negative absolutely continuous random variables with score functions
ρ f (x),ρ1(x) and ρh(x) respectively. If X, Y and Z have additive proportional score functions, then

h(x) =
f η(x)11−η(x)∫

∞

0 f η(x)11−η(x)dx
.
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Proof: Since ρh(x) = ηρ f (x) + (1 − η)ρ1(x), then h′ (x)
h(x) = η

f ′ (x)
f (x) + (1 − η) 1

′
(x)
1(x) by integrating both sides of this

differential equation we obtain

log
(
h(x)
)
= η log( f (x)) + (1 − η) log(1(x)) + c,

so we have h(x) =M f k(x)11−k(x). Since h is density function, we get M = 1∫
∞

0 f η(x)11−η(x)dx
.

Theorem 4.3. Let X, Y and Z be lifetime variables with densities f , 1, h and score functions ρ f (x), ρ1(x) and ρh(x),
respectively. If ρh(x) = αρ f (x) + (1 − α)ρ1(x), 0 < α < 1, then

(i) D(h, f ; t) ≤ (1−α)2

Mt
α

{
αD( f , 1; t) + (1 − α)D(1, f ; t)

}
;

(ii) D(h, f ; t) = (1 − 1
α )2
D(h, 1; t),

where Mt
α =
∫
∞

t f α(x)11−α(x)dx.

Proof: By using Theorem 4.2, it is evident that h(x) is the generalized escort distribution with order α. Let
us define Mt

α =
∫
∞

t f α(x)11−α(x)dx, so we have

D(h, f ; t) =

∫
∞

t

{
αρ f (x) + (1 − α)ρ1(x) − ρ f (x)

}2 f α(x)11−α(x)
Mt
α

dx

= (1 − α)2
∫
∞

t

{
ρ f (x) − ρ1(x)

}2 f α(x)11−α(x)
Mt
α

dx

≤
(1 − α)2

Mt
α

∫
∞

t
(
{
ρ f (x) − ρ1(x)

}2{
α f (x) + (1 − α)1(x)

}
dx

=
(1 − α)2

Mt
α

{
αF̄(t)D( f , 1; t) + (1 − α)Ḡ(t)D(1, f ; t)

}
≤

(1 − α)2

Mt
α

{
αD( f , 1; t) + (1 − α)D(1, f ; t)

}
,

where first inequality follows from the inequality of arithmetic and geometric means. This completes proof
of Part (i). Since

D(h, f ; t) = (1 − α)2
∫
∞

t
(ρ f (x) − ρ1(x))2 f α(x)11−α(x)

Mt
α

dx

and

D(h, 1; t) = α2
∫
∞

t
(ρ f (x) − ρ1(x))2 f α(x)11−α(x)

Mt
α

dx,

so, we haveD(h, f ; t) = (1 − 1
α )2
D(h, 1; t), as required for Part (ii).

Theorem 4.4. Let X, Y and Z be lifetime variables with densities f , 1, h, distributions F, G, H and score functions
ρ f (x), ρ1(x) and ρh(x), respectively.

(i) If ρh(x) = 3ρ f (x), then I
(
F(Z),F(t)

)
=

4F̄(t)
Mt

1
I( f , t);

(ii) If ρh(x) = 3ρ f (x) + (1 − 3)ρ1(x), then I
(
F(Z),F(t)

)
=

4F̄(t)
Mt

2
I(G(X), t),

where Mt
1 =
∫
∞

t f 3(x)(x)dx and Mt
2 =
∫
∞

t f 3(x)11−3(x)dx.
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Proof: From Theorem 2.1 of [20], we have

I(ϕ(X), t) =
1

F̄(ϕ−1(t))

∫
∞

ϕ−1(t)

1

ϕ′(x)2 [
f ′(x)
f (x)

−
ϕ′′(x)
ϕ′(x)

]2 f (x)dx. (13)

Using the assumption, it is seen that h(x) is escort distribution of f (x) with order 3.
From Mt

1 =
∫
∞

t f 3(x)(x)dx, we have

I(F(Z),F(t)) =

∫
∞

t

1
f 2(x)

(3ρ f (x) − ρ f (x))2 f 3(x)
Mt

1

dx

= 4
∫
∞

t
ρ2

f (x)
f (x)
Mt

1

dx

=
4

Mt
1

∫
∞

t
ρ2

f (x) f (x)dx

=
4F̄(t)
Mt

1

I( f , t),

as required for Part (i).
From assumption of Part (ii), h(x) is generalized escort distribution of f (x) and 1(x) with order 3. Since

Mt
2 =
∫
∞

t f 3(x)11−3(x)dx,we have

I

(
F(Z),F(t)

)
=

∫
∞

t

1
f 2(x)

(3ρ f (x) − 2ρ1(x) − ρ f (x))2 f 3(x)11−3(x)
Mt

2

dx

= 4
∫
∞

t

(ρ f (x) − ρ1(x))2

12(x)
f (x)
Mt

2

dx

=
4

Mt
2

∫
∞

t

(ρ f (x) − ρ1(x))2

12(x)
f (x)dx

=
4F̄(t)
Mt

2

I(G(X), t),

which is proves Part (ii).

5. Conclusion

In this paper, we have considered RFID measure and established some new properties associated with
stochastic ordering in order to compare the lifetimes of two systems. We have shown that a lower bound for
RFID measure can be expressed based on quadratic form of the corresponding hazard functions. In addition,
we have provided some results of RFID measure in context of equilibrium and escort distributions. Besides,
we have shown that RFID measure between two equilibrium distributions is connected with hazard and
mean residual functions of underlying variable. Finally, we established some results associated with RFI
and RFID measures of escort and generalized escort distributions.
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