The extremal t-uniform unicyclic hypergraph on Estrada index

Yongde Feng ${ }^{\text {a,b }}$, Zhongxun Zhu ${ }^{\text {c,*, }}$, Yuan Wang ${ }^{\text {c }}$, Meng Zhang ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics and Statistics, Gansu Center for Applied Mathematics, Lanzhou University, Lanzhou,Gansu 730000,P.R. China
${ }^{b}$ College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
${ }^{c}$ Faculty of Mathematics and Statistics, South Central Minzu University, Wuhan 430074, P.R. China

Abstract

For a t-uniform hypergraph $H=(V(H), E(H))$, the Estrada index $E E(H)$ of H is defined as $\left.\sum_{i \in[n]}\right]^{\theta_{i}}$, where $\theta_{1}, \ldots, \theta_{n}$ are the eigevalues of the adjacency matrix of H. In this paper, the extremal t-uniform unicylic hypergraph which has maximum Estrada index are characterized.

1. Introduction

Let $H=(V(H), E(H))$ be a hypergraph with vertex set $V(H)(=[n]=\{1,2, \ldots, n\})$ and edge set $E(H)$, where $E(H) \subseteq 2^{V(H)}$ and $2^{V(H)}$ stands for the power set of $V(H)$. A hypergraph H is t-uniform if $|e|=t$ for any $e \in E(H)$, and 2-uniform hypergraphs are well-known ordinary graphs. For any nonempty subset S of $V(H)$, the subhypergraph $H[S]$ induced by S is $(S, E(H[S]))$, where S is its vertex set and $E(H[S])=\{V(e) \cap S: e \in E(H)\}$. Let $E(v)=\{e \mid v \in e \in E(H)\}$ and let $d(v)(=|E(v)|)$ be the degree of v in H. For any $e \in E(v) \subseteq E(H)$, if $|e| \geq 3$, let $E(v) \backslash\{v\}=\{e \backslash\{v\}: e \in E(v)\}$ be obtained from $E(v)$ by v-shrinking on $E(v)$. Especially, we say that $e \backslash\{v\}$ is obtained from e by v-shrinking on e. Let $N_{H}(v)=\{u \mid u, v \in e \in E(H)\}$. A vertex with degree 1 is called pendent vertex and an edge e is called a pendent edge if e contains exactly $|e|-1$ pendent vertices.

A walk W in H is a sequence of alternating vertices and edges $v_{0} e_{1} v_{1} e_{2} \cdots e_{p} v_{p}$, where $v_{i-1}, v_{i} \in e_{i}$ for $i \in[p]$. If v_{i} (resp. e_{i}) are all distinct for $i \in[p] \cup\{0\}$ (resp. $i \in[p]$), then W is called a path. If $\left|e_{i} \cap e_{j}\right| \leq 1$ for $i \neq j, i, j \in[p], W$ is also called a loose path. A cycle is a loose path satisfying $v_{0}=v_{p}$. For any $u, v \in V(H)$, if there is at least one path connecting u with v, we say that H is connected. An edge $e \in E(H)$ is a cut edge if $H-e$ is disconnected, where $H-e=(V(H), E(H) \backslash\{e\})$. For more detailed notations and terminologies related to walks, please see Table 1.

For a connected t-uniform hypergraph H with order n and size ε, its cyclomatic number $c(H)$ is defined as $\epsilon(t-1)-n+1$. In particular, 0 -cyclic hypergraph and 1 -cyclic hypergraph are called supertree and t-uniform unicyclic hypergraph, respectively. Let $\mathcal{U}(n)$ be the class of t-uniform unicyclic hypergraphs of order n. For $m, t \geq 3$, let $C_{m, t}=v_{1} e_{1} v_{2} e_{2} v_{3} \cdots v_{m} e_{m} v_{1}$ be a t-uniform cycle of length m, for $i \in[m]$,

$$
\begin{align*}
& e_{i}=\left\{v_{i}, v_{i+1}, u_{i 1}, u_{i 2}, \ldots, u_{i, t-2}\right\}, v_{m+1}=v_{1} \\
& V_{0}=\left\{v_{i}: i \in[m]\right\} \tag{1}
\end{align*}
$$

[^0]```
\(W_{k}(H ; u, v)\)
\(M_{k}(H ; u, v)\)
\(W_{k}(H ; u)\)
\(W_{k}(H)\)
\(M_{k}(H)\)
\(W_{k}(H ; u,[v])\)
\(\left(H_{1} ; u_{1}, v_{1}\right) \leq\left(H_{2} ; u_{2}, v_{2}\right)\)
\(\left(H_{1} ; u_{1}, v_{1}\right)<\left(H_{2} ; u_{2}, v_{2}\right)\)
\(\left(H_{1} ; u_{1}\right) \leq\left(H_{2} ; u_{2}\right)\)
\(\left(H_{1} ; u_{1}\right)<\left(H_{2} ; u_{2}\right)\)
```

$W_{k}(H ; u, v)$
$M_{k}(H ; u, v)$
$W_{k}(H ; u)$
$W_{k}(H)$
$M_{k}(H)$
$W_{k}(H ; u,[v])$
$\left(H_{1} ; u_{1}, v_{1}\right) \leq\left(H_{2} ; u_{2}, v_{2}\right)$
$\left(H_{1} ; u_{1}, v_{1}\right)<\left(H_{2} ; u_{2}, v_{2}\right)$
$\left(H_{1} ; u_{1}\right) \leq\left(H_{2} ; u_{2}\right)$
$\left(H_{1} ; u_{1}\right)<\left(H_{2} ; u_{2}\right)$
the set of $(u, v)$-walks of length $k$ in $H$
$\left|W_{k}(H ; u, v)\right|$, that is, the order of $W_{k}(H ; u, v)$
the set of $(u, u)$-walks of length $k$ in $H$
the set of $\bigcup_{u \in V(H)} W_{k}(H ; u)$
$\left|W_{k}(H)\right|$
the set of $(u, u)$-walks of length $k$ which pass through $v$ in $H$
$M_{k}\left(H_{1} ; u_{1}, v_{1}\right) \leq M_{k}\left(H_{2} ; u_{2}, v_{2}\right)$ for any positive integer $k$
$\left(H_{1} ; u_{1}, v_{1}\right) \leq\left(H_{2} ; u_{2}, v_{2}\right)$ and $M_{k_{0}}\left(H_{1} ; u_{1}, v_{1}\right)<M_{k_{0}}\left(H_{2} ; u_{2}, v_{2}\right)$ for some positive integer $k_{0}$
$M_{k}\left(H_{1} ; u_{1}\right) \leq M_{k}\left(H_{2} ; u_{2}\right)$ for any positive integer $k$
$\left(H_{1} ; u_{1}\right) \leq\left(H_{2} ; u_{2}\right)$ and $M_{k_{0}}\left(H_{1} ; u_{1}\right)<M_{k_{0}}\left(H_{2} ; u_{2}\right)$ for some positive integer $k_{0}$

Let $\mathcal{U}(m, n)$ be the class of $t$-uniform unicyclic hypergraph of order $n$ obtained from $C_{m, t}$ (which is described as in (1.1)) by attaching $\frac{n}{t-1}-m$ pendent edges to some vertices in $V_{0}$. Note that $\epsilon(t-1)-n+1=1$, it has $\epsilon=\frac{n}{t-1}$ a nonnegative integer. For some other notations and terminologies which are not given in this paper, please refer to [1].

The adjacency matrix $A(H)=\left(a_{i j}\right)$ of $H$ is defined as

$$
a_{i j}= \begin{cases}\mid\{e \in E(H): i, j \in e \subseteq V(H) \mid, & \text { if } i \neq j, \\ 0, & \text { if } i=j\end{cases}
$$

The characteristic polynomial of $H$ is the determinant $|x I-A(H)|$, where $I$ is the identity matrix of order $n$. The eigevalues $\theta_{1}, \ldots, \theta_{n}$ of $H$ are the zeroes of $|x I-A(H)|$.

In [5], Estrada and Rodrgíuea-Veláquez proposed a measure $\frac{1}{n} \sum_{i \in[n]} e^{\theta_{i}}$ to describe the sub-hypergraph centrality of $H$, which has found extensively applications such as in chemistry, complex networks and other interdisciplinary fields [5, 8]. In [11], the authors named directly $\sum_{i \in[n]} e^{\theta_{i}}$ as Estrada index of $H$, denoted it by $E E(H)$. More applications on Estrada index for ordinary graphs have been proposed, for examples, see $[6,7,9,10]$. At the same time, many mathematical properties about the Estrada index of ordinary graphs have been obtained, such as $[2-4,13,14]$ and references therein. Note that graphs are limited to representing pairwise relationships between entities. However, in real-world there are more multi-way relationships, which can be modeled by hypergraphs. So the applications of theory of hypergraphs have attracted the interest of many researchers, but this research is still in its beginning stage. Since Li et al. [11] generalized the notation of Estrada index from graphs to hypergraphs, few results in this field have been obtained. Recently, some extremal properties of Estrada index on $t$-uniform hypergraphs are obtained[12, 15, 16]. In this paper, we will continue to study the properties on Estrada index for hypergraphs.

The following lemmas are useful in our main results.
Lemma 1.1. [12] For a $t$-uniform hypergraph $H=(V(H), E(H))$ with a cut edge $e=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}, t \geq 3$, if $d_{H}\left(u_{1}\right)=1$ and $d_{H}\left(u_{2}\right) \geq 2$, then $\left(H ; u_{1}\right)<\left(H ; u_{2}\right)$.

Lemma 1.2. [12] For a hypergraph $H=(V(H), E(H))$ with $u, v \in V(H)$ and $E_{0}=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$, where $e_{h} \in$ $2^{V(H)}, e_{h} \cap\{u, v\}=\emptyset$ for $h \in[s]$. Let
$E_{u}=\left\{e_{h}^{\prime}=e_{h} \cup\{u\}: e_{h} \in E_{0}, h \in[s]\right\}$,
$E_{v}=\left\{e_{h}^{\prime}=e_{h} \cup\{v\}: e_{h} \in E_{0}, h \in[s]\right\} ;$
$H_{u}=H-E_{0}+E_{u}$ and $H_{v}=H-E_{0}+E_{v}$. If for any $w \in \bigcup_{h \in[s]} e_{h},(H ; u)<(H ; v)$ and $(H ; w, u) \leq(H ; w, v)$, then $E E\left(H_{u}\right)<E E\left(H_{v}\right)$.

## 2. Extremal $t$-uniform unicyclic hypergraph with maximum Estrada index

In this section, we consider the extremal structure of $t$-uniform unicyclic hypergraph with maximum Estrada index.

Lemma 2.1. For a t-uniform unicyclic hypergraph $H$ with unique cycle $C_{m, t}$ (which is described as in (1.1)), let $u \in V_{0}$ and $u_{1}$ be a pendent neighbor of $u$ in $H$, then $\left(H ; u_{1}\right)<(H ; u)$.

Proof. Let $u_{1} \in f=\left\{u, u_{1}, u_{2}, \ldots, u_{t-1}\right\}$.
Case 1. $f \notin E\left(C_{m, t}\right)$, then $f$ must be a cut edge of $H$, by Lemma 1.1, we have $\left(H ; u_{1}\right)<(H ; u)$.
Case 2. $f \in E\left(C_{m, t}\right)$.
Let $A_{1}$ be the hypergraph obtained from $H$ by $u$-shrinking on $E(u)$, and $A_{2}$ be the hypergraph obtained from $H$ by $u_{1}$-shrinking on $E\left(u_{1}\right)$. Then

$$
\begin{aligned}
W_{k}\left(H ; u_{1}\right) & =W_{k}\left(A_{1} ; u_{1}\right) \cup W_{k}\left(H ; u_{1},[u]\right) \\
W_{k}(H ; u) & =W_{k}\left(A_{2} ; u\right) \cup W_{k}\left(H ; u,\left[u_{1}\right]\right) .
\end{aligned}
$$

Further we have

$$
\begin{aligned}
M_{k}\left(H ; u_{1}\right) & =M_{k}\left(A_{1} ; u_{1}\right)+M_{k}\left(H ; u_{1},[u]\right) \\
M_{k}(H ; u) & =M_{k}\left(A_{2} ; u\right)+M_{k}\left(H ; u,\left[u_{1}\right]\right)
\end{aligned}
$$

It is easy to see that

$$
\left.M_{k}\left(A_{1} ; u_{1}\right) \leq M_{k}\left(A_{2} ; u\right)\left(\operatorname{res} p ., M_{k}\left(A_{1} ; u_{1}, u_{i}\right)\right) \leq M_{k}\left(A_{2} ; u, u_{i}\right)\right)
$$

for any nonegative integer $k$ and $i \in[t-2] \backslash\{1\}$, and for $k=2$, by direct calculation, we have

$$
M_{2}\left(A_{1} ; u_{1}\right)=t-2<t-2+\left(d_{H}(u)-1\right)(t-1)=M_{2}\left(A_{2} ; u\right)
$$

For any $W \in W_{k}\left(H ; u_{1},[u]\right)$, let $W=W_{1} W_{2}$, where $W_{1}$ is either a walk which consists of $\left(u_{1}, u_{1}\right)$-section of length $l_{1}-1$ in $A_{1}$ and a $\left(u_{1}, f, u\right)$-section of length 1 or $\left(u_{1}, u_{i}\right)$-section of length $l_{1}-1$ in $A_{1}$ and a $\left(u_{i}, f, u\right)$-section of length 1 for $i \in\{2, \ldots, t-1\}$; and $W_{2}$ is a $\left(u, u_{1}\right)$-section with length $l_{2}$ in $H$. Then we have

$$
\begin{aligned}
M_{k}\left(H ; u_{1}\right)= & M_{k}\left(A_{1} ; u_{1}\right)+\sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(A_{1} ; u_{1}\right) M_{l_{2}}\left(H ; u, u_{1}\right)+ \\
& \sum_{i=2}^{t-1} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(A_{1} ; u_{1}, u_{i}\right) M_{l_{2}}\left(H ; u, u_{1}\right)
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
M_{k}(H ; u)= & M_{k}\left(A_{2} ; u\right)+\sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(A_{2} ; u\right) M_{l_{2}}\left(H ; u_{1}, u\right)+ \\
& \sum_{i=2}^{t-1} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(A_{2} ; u, u_{i}\right) M_{l_{2}}\left(H ; u_{1}, u\right) .
\end{aligned}
$$

Hence $M_{k}\left(H ; u_{1}\right) \leq M_{k}(H ; u)$ for any nonegative integer $k$ and $M_{2}\left(H ; u_{1}\right)<M_{2}(H ; u)$. So $\left(H ; u_{1}\right)<(H ; u)$.
Lemma 2.2. For $m \geq 2, t \geq 3$, let $H_{0}$ be a $t$-uniform unicyclic hypergraph with maximum Estrada index among $t$-uniform unicyclic hypergraphs of order $n$ with unique cycle $C_{m, t}$ (which is described as in (1)), then $H_{0} \in \mathcal{U}(m, n)$.

Proof. Let $u$ be a vertex in $V_{0}$, if there exists a non-pendent neighbor $u_{1}$ of $u$ outside $C_{m, t}$ or in $V\left(C_{m, t}\right) \backslash V_{0}$, for $i \in\left[d_{H_{0}}\left(u_{1}\right)-1\right]$, let $\tilde{e_{i}}$ be the edge which is incident to $u_{1}, e_{i}=\tilde{e_{i}} \backslash\left\{u_{1}\right\}$ but $u \notin e_{i}$. For convenience, let

$$
\begin{aligned}
E_{0} & =\left\{e_{1}, e_{2}, \ldots, e_{d_{H_{0}}}\left(u_{1}\right)-1\right. \\
E_{u} & =\left\{e_{i} \cup\{u\}, e_{i} \in E_{0}, i \in\left[d_{H_{0}}\left(u_{1}\right)-1\right]\right\}, \\
E_{u_{1}} & =\left\{e_{i} \cup\left\{u_{1}\right\}, e_{i} \in E_{0}, i \in\left[d_{H_{0}}\left(u_{1}\right)-1\right]\right\} .
\end{aligned}
$$

Further let $H=H_{0}-E_{0}$. Then we have the following results:
(i) $d_{H}\left(u_{1}\right)=1$ and $d_{H}(u) \geq 2$. By Lemma 2.1, $\left(H ; u_{1}\right) \prec(H ; u)$;
(ii) For any $w \in V\left(E_{0}\right), M_{k}\left(H ; w, u_{1}\right)=M_{k}(H ; w, u)=0$, then $\left(H ; w, u_{1}\right) \leq(H ; w, u)$;
(iii) $H+E_{u}$ is also a $t$-uniform unicyclic hypergraphs of order $n$ with unique cycle $C_{m, t}$.

By Lemma 1.2, we have $E E\left(H_{0}\right)<E E\left(H+E_{u}\right)$, a contradiction. Thus $H_{0} \in \mathcal{U}(m, n)$.
From Lemma 2.2, in order to obtain $t$-uniform unicyclic hypergraph with maximum Estrada index in $\mathcal{U}(n)$, we only need to consider the hypergraphs in $\mathcal{U}(m, n)$.

Lemma 2.3. For $U \in \mathcal{U}(m, n)$ with unique cycle $C_{m, t}$ (which is described as in (1)), there exist $n_{i}\left(n_{i} \geq 0\right)$ pendent edges attaching at $v_{i}$ for $i \in[m]$. Let $H$ be the hypergraph obtained from $U$ by $v_{1}$-shrinking on $e_{m}$. If $m \geq 4$ and $n_{1} \leq n_{3}$, then
(i) $\left(H ; v_{1}\right)<\left(H ; v_{3}\right)$;
(ii) $\left(H ; w, v_{1}\right) \leq\left(H ; w, v_{3}\right)$ for $w \in\left\{v_{m}, u_{m 1}, u_{m 2}, \ldots, u_{m, t-2}\right\}$.

Proof. (i) Let $\hat{H}$ be the hypergraph obtained from $H$ by $v_{3}$-shrinking on $e_{2}$ and $H_{1}$ be the component of $\hat{H}$ containing $v_{2}$, and $\tilde{H}$ be the hypergraph obtained from $H$ by $v_{1}$-shrinking on $e_{1}$ and $H_{2}$ be the component of $\tilde{H}$ containing $v_{2}$. Obviously, $H_{1}$ is a proper sub-hypergraph of $H_{2}$. Then
(1) $\left(H_{1} ; v_{1}\right)<\left(H_{2} ; v_{3}\right),\left(H_{1} ; v_{1}, v_{2}\right)<\left(H_{2} ; v_{3}, v_{2}\right)$ and $\left(H_{1} ; v_{1}, u_{1 i}\right) \leq\left(H_{2} ; v_{3}, u_{2 i}\right)$ for $i \in[t-2]$.
(2) For any positive integer $k$,

$$
\begin{aligned}
& M_{k}\left(H ; v_{1}\right)=M_{k}\left(H_{1} ; v_{1}\right)+M_{k}\left(H ; v_{1},\left[v_{3}\right]\right), \\
& M_{k}\left(H ; v_{3}\right)=M_{k}\left(H_{2} ; v_{3}\right)+M_{k}\left(H ; v_{3},\left[v_{1}\right]\right) .
\end{aligned}
$$

For any $W \in W_{k}\left(H ; v_{1},\left[v_{3}\right]\right)$, let $W=W_{1} W_{2}$, where $W_{1}$ is the shortest $\left(v_{1}, v_{3}\right)$-section, which consists of $\left(v_{1}, v_{2}\right)$-section (or ( $v_{1}, u_{2 i}$ ) -section, $i \in[t-2]$ ) of length $l_{1}-1$ in $H_{1}$ and $\left(v_{2}, e_{2}, v_{3}\right)$ (or $\left(u_{2 i}, e_{2}, v_{3}\right)$ )-section of length 1 , and $W_{2}$ is the remaining $\left(v_{3}, v_{1}\right)$-section of length $l_{2}$ in $H$. Then we have

$$
\begin{aligned}
M_{k}\left(H ; v_{1},\left[v_{3}\right]\right)= & \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 2} M_{l_{1}-1}\left(H_{1} ; v_{1}, v_{2}\right) M_{l_{2}}\left(H ; v_{3}, v_{1}\right)+ \\
& \sum_{i=1}^{t-2} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 2} M_{l_{1}-1}\left(H_{1} ; v_{1}, u_{2 i}\right) M_{l_{2}}\left(H ; v_{3}, v_{1}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
M_{k}\left(H ; v_{3},\left[v_{1}\right]\right)= & \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 2} M_{l_{1}-1}\left(H_{2} ; v_{3}, v_{2}\right) M_{l_{2}}\left(H ; v_{1}, v_{3}\right)+ \\
& \sum_{i=1}^{t-2} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 2} M_{l_{1}-1}\left(H_{2} ; v_{3}, u_{1 i}\right) M_{l_{2}}\left(H ; v_{1}, v_{3}\right) .
\end{aligned}
$$

Then $M_{k}\left(H ; v_{1},\left[v_{3}\right]\right)<M_{k}\left(H ; v_{3},\left[v_{1}\right]\right)$. Hence $\left(H ; v_{1}\right)<\left(H ; v_{3}\right)$.
(ii) For $h \in[m]$ and $j \in\left[n_{h}\right]$, let $e_{h j}=\left\{v_{h}, v_{h j}^{1}, \ldots, v_{h j}^{t-1}\right\}$ be the pendent edges attaching at $v_{h}$, and

$$
V_{v_{h}}=\bigcup_{j \in\left[n_{h}\right]}\left(e_{h j} \backslash\left\{v_{h}\right\}\right) .
$$

For a $W \in W_{k}\left(H ; w, v_{1}\right)$ and $w \in\left\{v_{m}, u_{m 1}, u_{m 2}, \ldots, u_{m, t-2}\right\}$, let $W=W_{1} W_{2}$, where $W_{1}$ is the longest $\left(w, v_{2}\right)$ section of $W$, and $W_{2}$ is the the remaining $\left(v_{2}, v_{1}\right)$-section of $W$ which the internal vertices (if exist) are only possible to belong to $V_{v_{1}} \cup\left\{u_{11}, u_{12}, \ldots, u_{1, t-2}\right\}$. Let $W_{2}^{\prime}$ be obtained from $W_{2}$ by replacing $v_{1}$ by $v_{3}, u_{1 k}$ by $u_{2 k}$ for $k \in[t-2]$, and $v_{1 j}^{s}$ by $v_{3 j}^{s}$ for $j \in\left[n_{1}\right]$ and $s \in[t-1]$. Then $W^{\prime}=W_{1} W_{2}^{\prime} \in W_{k}\left(H ; w, v_{3}\right)$. Thus $\left(H ; w, v_{1}\right) \leq\left(H ; w, v_{3}\right)$.

By Lemma 2.3 and Lemma 1.2, we have the following result.
Lemma 2.4. For a $U \in \mathcal{U}(m, n)$ with unique cycle $C_{m, t}$ (which is described as in (1)), there exist $n_{i}\left(n_{i} \geq 0\right)$ pendent edges attaching at $v_{i}$ for $i \in[m]$. Let $H$ be the hypergraph obtained from $U$ by $v_{1}$-shrinking on $e_{m}$ and $e_{0}=e_{m} \backslash\left\{v_{1}\right\}$. If $m \geq 4$ and $n_{3}=\max _{i \in[m]} n_{i}$, then $E E(U)<E E\left(H-e_{0}+\left(e_{0} \cup\left\{v_{3}\right\}\right)\right)$.

Remark 1. $H-e_{0}+\left(e_{0} \cup\left\{v_{3}\right\}\right)$ is a $t$-uniform unicyclic hypergraphs of order $n$ and the length of its unique cycle is $m-2$.

Let $C_{3}\left(n_{1}, n_{2}, n_{3}\right)$ be a $t$-uniform unicyclic hypergraphs obtained from $C_{3, t}$ by attaching $n_{i}$ pendent edges at $v_{i}$ for $i \in$ [3]. Without loss of generality, let $n_{1} \geq n_{2} \geq n_{3}$ in the following.
Lemma 2.5. If $n_{1} \geq 1$ and $n_{2} \geq 0$, then $\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3}\right)<\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1}\right)$.
Proof. Let $\tilde{H}$ (resp. $\check{H}$ ) be the hypergraph obtained from $C_{3}\left(n_{1}, n_{2}, 0\right)$ by $v_{1}$-shrinking on $e_{3}$ and $v_{2}$-shrinking on $e_{1}$ (resp. $v_{3}$-shrinking on $e_{3}$ and $v_{2}$-shrinking on $e_{2}$ ) at the same time, and $H_{1}$ (resp. $H_{2}$ ) be the component of $\tilde{H}$ (resp. $\check{H}$ ) containing $v_{2}$. Obviously, $H_{1}$ is a proper sub-hypergraph of $H_{2}$. Then
(1) $\left(H_{1} ; v_{3}\right)<\left(H_{2} ; v_{1}\right)$;
(2) $\left(H_{1} ; w, v_{3}\right)<\left(H_{2} ; w, v_{1}\right)$ for $w \in\left\{u_{31}, u_{32}, \ldots, u_{3, t-2}\right\}$;
(3) For any positive integer $k$,

$$
\begin{aligned}
& M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3}\right)=M_{k}\left(H_{1} ; v_{3}\right)+M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3},\left[v_{1}\right]\right), \\
& M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1}\right)=M_{k}\left(H_{2} ; v_{1}\right)+M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1},\left[v_{3}\right]\right) .
\end{aligned}
$$

By (1), we know that $M_{k}\left(H_{1} ; v_{3}\right) \leq M_{k}\left(H_{2} ; v_{1}\right)$, and there exists at least one $k_{0}$ satisfying

$$
M_{k_{0}}\left(H_{1} ; v_{3}\right) \leq M_{k_{0}}\left(H_{2} ; v_{1}\right)
$$

Now we only need to prove $M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3},\left[v_{1}\right]\right) \leq M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1},\left[v_{3}\right]\right)$.
In fact, for any $W \in W_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3},\left[v_{1}\right]\right)$, let $W=W_{1} W_{2}$, where $W_{1}$ is the shortest $\left(v_{3}, v_{1}\right)$-section, which consists of $\left(v_{3}, v_{3}\right)$-section (or $\left(v_{3}, u_{3 i}\right)$-section, $i \in[t-2]$ ) of length $l_{1}-1$ in $H_{1}$ and $\left(v_{3}, e_{3}, v_{1}\right)$ (or $\left(u_{3 i}, e_{3}, v_{1}\right)$ )-section of length 1 , and $W_{2}$ is the remaining $\left(v_{1}, v_{3}\right)$-section of length $l_{2}$ in $C_{3}\left(n_{1}, n_{2}, 0\right)$. Then we have

$$
\begin{aligned}
M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3},\left[v_{1}\right]\right)= & \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(H_{1} ; v_{3}\right) M_{l_{2}}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1}, v_{3}\right)+ \\
& \sum_{i=1}^{t-2} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(H_{1} ; v_{3}, u_{3 i}\right) M_{l_{2}}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1}, v_{3}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1},\left[v_{3}\right]\right)= & \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(H_{2} ; v_{1}\right) M_{l_{2}}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3}, v_{1}\right)+ \\
& \sum_{i=1}^{t-2} \sum_{l_{1}+l_{2}=k, l_{1}, l_{2} \geq 1} M_{l_{1}-1}\left(H_{2} ; v_{1}, u_{3 i}\right) M_{l_{2}}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3}, v_{1}\right)
\end{aligned}
$$

Then by (1) and (2), we have $M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3},\left[v_{1}\right]\right) \leq M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1},\left[v_{3}\right]\right)$. This completes the proof.
Lemma 2.6. If $n_{1} \geq n_{2} \geq n_{3} \geq 1$, then $E E\left(C_{3}\left(n_{1}, n_{2}, n_{3}\right)\right)<E E\left(C_{3}\left(n_{1}+n_{3}, n_{2}, 0\right)\right)$.
Proof. Let $E_{1}=\left\{e_{31}, \ldots, e_{3, n_{3}}\right\}$ be set of the pendent edges attaching at $v_{3}$ and

$$
E_{0}=\left\{e_{31} \backslash\left\{v_{3}\right\}, \ldots, e_{3, n_{3}} \backslash\left\{v_{3}\right\}\right\} .
$$

Denote $H=C_{3}\left(n_{1}, n_{2}, n_{3}\right)-E_{1}+E_{0}$, now we have the following results.
(1) The component of $H$ containing $v_{3}$ is $C_{3}\left(n_{1}, n_{2}, 0\right)$. By Lemma 2.5, we know that

$$
\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{3}\right)<\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; v_{1}\right) ;
$$

(2) For any vertex $w \in V\left(E_{0}\right), M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; w, v_{3}\right)=M_{k}\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; w, v_{1}\right)=0$, then

$$
\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; w, v_{3}\right) \leq\left(C_{3}\left(n_{1}, n_{2}, 0\right) ; w, v_{1}\right)
$$

Further by Lemma 1.2, we obtain $E E\left(C_{3}\left(n_{1}, n_{2}, n_{3}\right)\right)<E E\left(C_{3}\left(n_{1}+n_{3}, n_{2}, 0\right)\right)$.
Remark 2. For $H \in \mathcal{U}(3, n)$, repeated by lemmas 2.5 and 2.6, we have $E E(H) \leq E E\left(C_{3}\left(n_{1}+n_{2}+n_{3}, 0\right)\right)$ with equality if and only if $H \cong C_{3}\left(n_{1}+n_{2}+n_{3}, 0\right)$, where $n=(t-1)\left(n_{1}+n_{2}+n_{3}+3\right)$.

Let $C_{2}\left(n_{1}, n_{2}\right)$ be a $t$-uniform unicyclic hypergraphs obtained from $C_{2, t}$ by attaching $n_{i}$ pendent edges at $v_{i}$ for $i \in[2]$.

Lemma 2.7. If $n_{1} \geq n_{2} \geq 1$, then $E E\left(C_{2}\left(n_{1}, n_{2}\right)\right)<E E\left(C_{2}\left(n_{1}+n_{2}, 0\right)\right)$.
Proof. Let $E_{1}=\left\{e_{21}, \ldots, e_{2, n_{2}}\right\}$ be set of the pendent edges attaching at $v_{2}$ and

$$
E_{0}=\left\{e_{21} \backslash\left\{v_{2}\right\}, \ldots, e_{2, n_{2}} \backslash\left\{v_{2}\right\}\right\} .
$$

Denote $H=C_{2}\left(n_{1}, n_{2}\right)-E_{1}+E_{0}$, now we have the following results.
(1) The component of $H$ containing $v_{2}$ is $C_{2}\left(n_{1}, 0\right)$ and $\left(C_{2}\left(n_{1}, 0\right) ; v_{2}\right)<\left(C_{2}\left(n_{1}, 0\right) ; v_{1}\right)$;
(2) For any vertex $w \in V\left(E_{0}\right), M_{k}\left(C_{2}\left(n_{1}, 0\right) ; w, v_{2}\right)=M_{k}\left(C_{2}\left(n_{1}, 0\right) ; w, v_{1}\right)=0$, then

$$
\left(C_{2}\left(n_{1}, 0\right) ; w, v_{2}\right) \leq\left(C_{2}\left(n_{1}, 0\right) ; w, v_{1}\right)
$$

Further by Lemma 1.2, we obtain $E E\left(C_{2}\left(n_{1}, n_{2}\right)\right)<E E\left(C_{2}\left(n_{1}+n_{2}, 0\right)\right)$.


Figure 1: The hypergraphs $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ and $C_{2}\left(\frac{n}{t-1}-2,0\right)$.
Let $G\left[C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right]$ (resp. $\left.G\left[C_{2}\left(\frac{n}{t-1}-2,0\right)\right]\right)$ be the graph obtained from $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ (resp. $\left.C_{2}\left(\frac{n}{t-1}-2,0\right)\right)$ by replacing each edge of $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ (resp. $C_{2}\left(\frac{n}{t-1}-2,0\right)$ ) by a complete graph $K_{t}$, as shown in Figure 2. Then $G\left[C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right]$ (resp. $G\left[C_{2}\left(\frac{n}{t-1}-2,0\right)\right]$ ) has the same adjacent matrix as $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ (resp. $C_{2}\left(\frac{n}{t-1}-2,0\right)$ ). Hence $G\left[C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right]$ (resp. $\left.G\left[C_{2}\left(\frac{n}{t-1}-2,0\right)\right]\right)$ has the same characteristic polynomial as $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ (resp. $\left.C_{2}\left(\frac{n}{t-1}-2,0\right)\right)$. Then

$$
\begin{align*}
E E\left(G\left[C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right]\right) & =E E\left(C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right),  \tag{2}\\
E E\left(G\left[C_{2}\left(\frac{n}{t-1}-2,0\right)\right]\right) & =E E\left(C_{2}\left(\frac{n}{t-1}-2,0\right)\right) . \tag{3}
\end{align*}
$$



Figure 2: The graphs $G\left[C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right]$ and $G\left[C_{2}\left(\frac{n}{t-1}-2,0\right)\right]$.

Lemma 2.8. $E E\left(C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right)<E E\left(C_{2}\left(\frac{n}{t-1}-2,0\right)\right)$.


Figure 3: The graph $A$.

Proof. Let $A_{1}$ be the hypergraph obtained from $C_{3}\left(\frac{n}{t-1}-3,0,0\right)$ (as shown in Figure 1 ) by $v_{3}$-shrinking on $e_{3}$, and $A$ (as shown in Figure 3) be the graph obtained from $A_{1}$ by replacing each edge $e$ of $A_{1}$ by a complete graph $K_{|e|}$.

Let $V_{1}=\left\{v_{3}, u_{21}, u_{22}, \ldots, u_{2, t-2}\right\}$. Since $v_{2}$ is a cut-vertex of $A$, then for any $W \in W_{k}\left(A ; v_{3}\right)$, it can be decomposed into two closed sections: ( $v_{3}, v_{3}$ )-walk $W_{1}$ whose internal vertices (if exist) are only possible to belong to $V_{1} \cup\left\{v_{2}\right\} ;\left(v_{2}, v_{2}\right)$-walk $W_{2}$ whose internal vertices (if exist) are only possible to belong to $V(A)-V_{1}$. Note that if the length of $W_{2}$ is at least 1 , then $v_{2}$ must be an internal vertex of $W_{1}$.

Let $W_{1}^{\prime}$ be a walk which is obtained from $W_{1}$ by replacing $v_{3}$ by $u_{11}, u_{21}$ by $v_{1}$ and $u_{2 i}$ by $u_{1 i}$ for $i \in\{2,3, \ldots, t-2\}$. Obviously, $W^{\prime}=W_{1}^{\prime} W_{2} \in W_{k}\left(A ; u_{11}\right)$. It is easy to see that $M_{4}\left(A ; v_{3}\right)<M_{4}\left(A ; u_{11}\right)$. Thus $\left(A ; v_{3}\right)<\left(A ; u_{11}\right)$.

Let $V_{2}=\left\{v_{1}, u_{31}, u_{32}, \ldots, u_{3, t-2}\right\}$. For any $W \in W_{k}\left(A ; w, v_{3}\right)$ and $w \in V_{2}$, let $W=W_{1} W_{2}$, where $W_{1}$ is the longest $\left(w, v_{2}\right)$-section of $W$ which the internal vertices (if exist) are only possible to belong to $V(A)-V_{1}$, and $W_{2}$ is the the remaining $\left(v_{2}, v_{3}\right)$-section of $W$ which the internal vertices (if exist) are only possible to belong to $V_{1} \cup\left\{v_{2}\right\}$. $W_{2}^{\prime}$ is obtained from $W_{2}$ by replacing $v_{3}$ by $u_{11}, u_{21}$ by $v_{1}$ and $u_{2 i}$ by $u_{1 i}$ for $i \in\{2,3, \ldots, t-2\}$. Obviously, $W^{\prime}=W_{1} W_{2}^{\prime} \in W_{k}\left(A ; w, u_{11}\right)$. Thus $\left(A ; w, v_{3}\right)<\left(A ; w, u_{11}\right)$.

Let $E_{v_{3}}=\left\{w v_{3}: w \in\left\{v_{1}, u_{31}, \ldots, u_{3, t-2}\right\}\right\}$ and $E_{u_{11}}=\left\{w u_{11}: w \in\left\{v_{1}, u_{31}, \ldots, u_{3, t-2}\right\}\right\}$. By Lemma 1.2, we have $E E\left(A+E_{v_{3}}\right)<E E\left(A+E_{u_{11}}\right)$.

Further by lemmas 2.2, 2.7 and (2), (3), we have $E E\left(C_{3}\left(\frac{n}{t-1}-3,0,0\right)\right)<E E\left(C_{2}\left(\frac{n}{t-1}-2,0\right)\right)$.
From lemmas 2.2, 2.7 and 2.8, Remark 2, we have our main result.
Theorem 2.9. Let $H$ be a $t$-uniform unicyclic hypergraph, $E E(H) \leq E E\left(C_{2}\left(\frac{n}{t-1}-2,0\right)\right)$ and the equality if and only if $H \cong C_{2}\left(\frac{n}{t-1}-2,0\right)$.

Acknowledgement: The authors would like to express their sincere gratitude to the editor and the referee for a very careful reading of the paper and for all their insightful comments and valuable suggestions, which led to a number of improvements in this paper.

## 3. Statements and Declarations

Author Contributions: The authors made equal contributions to this paper. Conflicts of Interest: The authors declare no conflict of interest.

## References

[1] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, Amsterdam, 1989.
[2] Z. Du, Z. Liu, On the Estrada and Laplacian Estrada indices of graphs, Linear Algebra Appl. 435 (2011) 2065-2076.
[3] Z. Du, B. Zhou, The Estrada index of unicyclic graphs, Linear Algebra Appl., 436(2012), 3149-3159.
[4] Z. Du, B. Zhou, On the Estrada index of graphs with given number of cut vertices, Electron. J. Linear Algebra, 22 (2011) 586-592.
[5] E. Estrada, A. Rodrgíuea-Veláquez, Subgraph centrality and clustering in complex hyper-networks, Physica A, 364 (2006) 581-594.
[6] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett., 319 (2000) 713-718.
[7] E. Estrada, Characterization of the amino acid contribution to the folding degree of proteins, Prot.-Struct. Funct. Bioinform., 54 (2004) 727-737.
[8] E. Estrada, J. A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E, 71 (2005) 056103.
[9] E. Estrada, J. A. Rodríguez-Velázquez, M.Randić, Atomic branching in molecules, Int. J. Quant. Chem., 106(2006) 823-832.
[10] I. Gutman, A. Graovac, Estrada index of cycles and paths, Chem. Phys. Lett., 436 (2007) 294-296.
[11] F. Li, L. Wei, J. Cao, F. Hu, H. Zhao, On the maximum Estrada index of 3-uniform linear hypertrees, Sci. World J., 2014 (2014) 637865.
[12] W. Wang, Y. Xue, On the $r$-uniform linear hypertrees with extremal Estrada indices, Appl. Math. Comput., 377(2020) 125144.
[13] Z. Zhu, Maximal Estrada index of unicyclic graphs with perfect matching, J. Appl. Math. Comput., 54(2017) 381-393.
[14] Z. Zhu, L. Tan, Z. Qiu, Tricyclic graph with maximal Estrada index, Discrete Appl. Math. 162 (2014) 364-372.
[15] H. Lu, Z. Zhu, The Extremal Structures of $r$-Uniform Unicyclic Hypergraphs on the Signless Laplacian Estrada Index, Mathematics 10(6)(2022) 941.
[16] H. Lu, N. Xue, Z. Zhu, On the signless Laplacian Estrada index of uniform hypergraphs, Int. J. Quant. Chem., 121(8)(2021) e26579.


[^0]:    2020 Mathematics Subject Classification. 05C50; 15A18.
    Keywords. $t$-uniform hypergraph; Adjacency matrix; Estrada index.
    Received: 01 August 2022; Accepted: 10 February 2023
    Communicated by Paola Bonacini
    Supported by National Natural Science Foundation of China (No. 11571155, 11961067, 12071194).

    * Corresponding author: Zhongxun Zhu

    Email addresses: fengyd18@1zu.edu.cn (Yongde Feng), zzxun73@mail.scuec.edu.cn (Zhongxun Zhu), 991167421@qq.com (Yuan Wang), 1242384300@qq.com (Meng Zhang)

