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Abstract. This paper aims to define fuzzy pretopogenous structure based on way below relation (or
an L-fuzzifying pretopogenous structure (LFPT structure, for short)) and study some of its properties.
Also, the concepts of L-fuzzifying pre-neighborhood, L-fuzzifying pre-interior, and L-fuzzifying pre-closure
operators are established and we used these concepts to build an L-fuzzifying topology. Furthermore, a
natural link is established between L-fuzzifying pretopogenous and L-fuzzifying topology. Finally, the
maps between L-fuzzifying pretopogenous structures and initial fuzzifying structures are investigated.

1. Introduction and preliminary concepts

Today topology and the many related theories, have and will have a fundamental play in applied
sciences. Every representation of real entities in a mathematical language necessarily implies a topological
study of its goodness; it is a problem of linguistic translation continuity. Some mathematicians developed
the notion of order relation between subsets of a set. The authors [7] introduced the term of topogenous order
< on a set X, a binary relation on 2X. Zadeh produced the innovative concept of fuzzy set in his acclaimed
[31]. Since that milestone, mathematicians have struggled to extend fundamental mathematical structures
such as groups, rings, vector spaces, topologies, uniformities, and proximities to a fuzzy framework. As
well, Badard [3] defined fuzzy pretopological spaces and studied their representation. In [17], the authors,
in their attempt to find a unified theory of fuzzy topologies, fuzzy proximities, and fuzzy uniformities,
introduced the fuzzy syntopogenous structures. The concept of a fuzzy syntopogenous structure on a
set X is based on the basic term of order on the family of all fuzzy sets in X. It was shown that the
fuzzy topologies, the fuzzy proximities, and the fuzzy uniformities are special cases of these structures.
In [18], the authors continued with the investigation of fuzzy syntopogenous structures. The concept of
fuzzifying syntopogenous structures was developed in [19, 23]. The L-fuzzy topologies were investigated
and described with algebraic and analytic methods (for example [8, 13, 20, 21, 26, 27, 29, 30, 32, 33]). The
authors [9, 10, 25] established the notions of L-fuzzy topogenous orders and investigated some of their
properties. However, Ju-Mok and Kim [16] explained the relation between L-fuzzy topogenous orders
and topological structures. The new notion of fuzzy topogenous has been introduced by using (L,≤,⊙, ∗),
where (L,≤,⊙, ∗) is a strictly two-sided commutative quantale lattice with a strong negation ” ∗ ” in [24].
The author [22] introduced and studied the concept of smooth pretopogenous structures and gave some
particular construction of them. The way below relation was defined in [11], and in this article some of its
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properties were studied too. Also, Bancerek [4, 5] introduced the way below relation and stated several
propositions in topics such as continuous lattices, directed powers, and topological spaces. However,
as far as we are aware of there exists no analysis of the relationships between the fuzzy structure of a
pretopogenous order and relations such as the way below relation. So far they have remained as two
divergent fields of research. Here we shall conduct a substantial analysis of their mutual relationships.
This achievement produces a basically theoretical article which is nonetheless necessary to provide a strong
foundation of this novel aspect of topological fuzzy set theory. Both disciplines should be promoted with
this pioneering analysis, which may also foster the inspection of other relationships among different types
of topological structures.

The rest of this paper is organized as follows. This section contains some necessary concepts and
properties. In Section 2, the notion of L-fuzzifying pretopogenous order is established and some of its
properties are studied. Furthermore, the concepts of L-fuzzifying pre-neighborhood, L-fuzzifying pre-
interior and L-fuzzifying pre-closure operators are investigated. In Section 3, we build an L-fuzzifying
topology using an L-fuzzifying pre-interior operator, L-fuzzifying pre-closure operator, and L-fuzzifying
pretopogenous order. Also, we create an L-fuzzifying pretopogenous order using L-fuzzifying topology.
In Section 4, the concept of L-fuzzifying pretopogenous continuous functions is given and some results
are discussed. In Section 5, maps between L-fuzzifying pretopogenous structures and initial fuzzifying
structures are studied. In Section 6, the links between L-fuzzifying preproximity, L-preuniformity and
L-fuzzifying pretopogenous on X are investigated. The goal of the last section is to conclude this paper
with a succinct but precise recapitulation of our main findings, and to give some lines for future research.

In this paper we adopt the standard terminology from lattice theory (which can be consulted in mono-
graphs like [6, 11, 12]). We assume that (L,≤,∧,∨,′ ) is a completely distributive complete lattice whose
smallest element is ⊥ and whose largest element is ⊤. All other requirements or restrictions on L will be
made explicit when required.

In this context, a first fundamental concept is given in our next definition.

Definition 1.1. ([4, 5, 11]) Let L be a complete lattice. We say that x is way below y, in symbols x ≪ y, if
and only if for any directed subsetD ⊆ L the relation y ≤ supD always implies the existence of d ∈ Dwith
x ≤ d.

Some immediate facts ensue from this notion:

Proposition 1.2. ([4, 5, 11]) In a complete lattice L one has the following statements for all u, x, y, z ∈ L:

(1) x≪ y implies x ≤ y;
(2) u ≤ x≪ y ≤ z implies u≪ z;
(3) x≪ z and y≪ z together imply x ∨ y≪ z;
(4) 0≪ x.

A second fundamental notion is given in the next definition.

Definition 1.3. ([8]) Let X be a nonempty set, L be a complete lattice and τ : 2X −→ L be a function that
satisfies the following conditions:

(1) τ(X) = τ(ϕ) = ⊤;
(2) τ(A∩B) ≥ τ(A) ∧ τ(B), for allA,B ⊆ 2X;

(3) for each {Ai : i ∈ Γ} ⊆ 2X, τ
(⋃

i∈Γ
Ai

)
≥ inf

i∈Γ
τ(Ai).

Then τ is called an L-fuzzifying topology onX and the pair (X, τ) is called an L-fuzzifying topological space.
Henceforth, (X, τ) will denote an L-fuzzifying topological space, withX being the universe of discourse.

Definition 1.4. ([33]) Let (X, τ1) and (Y, τ2) be two L-fuzzifying topological spaces. A function f : (X, τ1) −→
(Y, τ2) is called L-fuzzifying continuous if for all B ∈ 2Y, τ2(B) ≤ τ1( f−1(B)).
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Associated with Definition 1.3 a concept exists whose definition is stated below in Definition 1.5, under
the assumption that the lattice is completely distributive.

Definition 1.5. ([2]) A function U : 2X×X −→ L is called an L-fuzzifying preuniform structure on X if it
satisfies the following axioms:

PU1: For any u ∈ 2X×X, ifU(u) , ⊥, then ∆ ⊆ u.
PU2: IfU(u)≪ r and u ⊆ v, thenU(v)≪ r, where r ∈ L\ {⊥}.
The pair (X,U) is called an L-fuzzifying preuniform space.

2. L-fuzzifying pretopogenous order

Along this section, L represents a completely distributive lattice with order reversing involution denoted
by ′.

Now, we give the basic definition of the L-fuzzifying pretopogenous space using the way below relation.

Definition 2.1. Let A,B,A1,B1,A2,B2 ∈ 2X and {Ai : i ∈ Γ}, {Bi : i ∈ Γ} ⊆ 2X. Then the function η :
2X × 2X −→ L is said to be an L-fuzzifying pretopogenous order on X (LFPT order on X, for short) if it
satisfies the following axioms:

PT1 : η(X,X) = η(ϕ,ϕ) = ⊤;
PT2 : If η(A,B)≪ ⊤, thenA ⊆ B, where η is the negation of η;

The pair (X, η) is said to be an L-fuzzifying pretopogenous space on X (LFPT space on X, for short).
We will use the following additional properties:

PT3 : IfA ⊆ A1,B1 ⊆ B implies η(A1,B1) ≤ η(A,B), then η is said to be of type I;
PT4 : If η(A1 ∪A2,B) = η(A1,B) ∧ η(A2,B) and
PT5 : η(A,B1 ∩ B2) = η(A,B1) ∧ η(A,B2), then η is said to be of type D;

PT6 : If η
(⋃

i∈Γ
Ai,B

)
= inf

i∈Γ
η(Ai,B), then η is said to be perfect;

PT7 : If in addition to PT6, η
(
A,

⋂
i∈Γ
Bi

)
= inf

i∈Γ
η(A,Bi), then η is said to be biperfect.

The next technical result will help us give some important facts about Definition 2.1.

Proposition 2.2. Let η be an LFPT order on X. Then the mapping ηs : 2X × 2X −→ L defined by ηs(A,B) =
η(X − B,X −A), satisfies the following:

(1) ηs is an LFPT order on X;
(2) If η is of type I, then so is ηs;
(3) If η is of type D, then so is ηs;
(4) If η is biperfect, then so is ηs;
(5) (ηs)s = η.

Proof. (1) (PT1) ηs(X,X) = η(X −X,X −X) = η(ϕ,ϕ) = ⊤. Similarly, ηs(ϕ,ϕ) = ⊤.
(PT2) Suppose that ηs(A,B) ≪ ⊤. Then η(X − B,X −A) ≪ ⊤. So, X − B ⊆ X −A. Hence A ⊆ B.

Therefore, ηs is an LFPT order on X.
(2) Suppose that η is of type I,A ⊆ A1 andB1 ⊆ B. Then we haveX − B ⊆ X − B1 andX −A1 ⊆ X −A.

So, ηs(A1,B1) = η(X − B1,X −A1) ≤ η(X − B,X −A) = ηs(A,B). Therefore ηs is of type I.
(3) Suppose η is of type D. Then we have:
(PT4) ηs(A1 ∪A2,B) = η(X − B,X − (A1 ∪A2))

= η(X − B, (X −A1) ∩ (X −A2))
= η(X − B,X −A1) ∧ η(X − B,X −A2)
= ηs(A1,B) ∧ ηs(A2,B) and
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(PT5) ηs(A,B1 ∩ B2) = η(X − (B1 ∩ B2),X −A)
= η((X − B1) ∪ (X − B2),X −A)
= η(X − B1,X −A) ∧ η(X − B2,X −A)
= ηs(A,B1) ∧ ηs(A,B2).

Therefore ηs is of type D.
(4) Suppose η is biperfect. Then we have:

(PT6) ηs

(⋃
i∈Γ
Ai,B

)
= η

(
X − B,X −

⋃
i∈Γ
Ai

)
= η

(
X − B,

⋂
i∈Γ

(X −Ai)
)

= inf
i∈Γ
η(X − B,X −Ai)

= inf
i∈Γ
ηs(Ai,B) and

(PT7) ηs

(
A,

⋂
i∈Γ
Bi

)
= η

(
X −

⋂
i∈Γ
Bi,X −A

)
= η

(⋃
i∈Γ

(X − Bi),X −A
)

= inf
i∈Γ
η(X − Bi,X −A)

= inf
i∈Γ
ηs(A,Bi).

Therefore ηs is biperfect.
(5) (ηs)s(A,B) = ηs(X − B,X −A) = η(A,B).

Our next goal is to show that symmetrical is helpful to simplify the verification of certain properties of
LFPT order.

Definition 2.3. Let η be an LFPT order on X. If η = ηs, then η is said to be symmetrical.

Another natural property that holds true concerns the composition of LFPT orders.

Theorem 2.4. Let η1, η2 : 2X × 2X −→ L be two LFPT orders on X. Define the composition of η1 and η2 on X by
η(A,B) = sup

C∈2X
(η1(A,C) ∧ η2(C,B)) , η = η1 ◦ η2. Then η has the following properties:

(1) η is an LFPT order on X;
(2) If both η1 and η2 are of type I, then so is η;
(3) If both η1 and η2 are of type D, then so is η;
(4) If both η1 and η2 are perfect (resp. biperfect), then η is perfect (resp. biperfect);
(5) ηs = ηs

2 ◦ η
s
1.

Proof. (1) (PT1) η(X,X) = η1 ◦ η2(X,X) = sup
C∈2X

(η1(X,C) ∧ η2(C,X)) = ⊤. Similarly, η(ϕ,ϕ) = ⊤.

(PT2) Suppose that η(A,B) ≪ ⊤. Then, we have sup
C∈2X

(η1(A,C) ∧ η2(C,B)) ≪ ⊤. Hence inf
C∈2X

(η1(A,C) ∨

η2(C,B))≪ ⊤. So, there exist C1 such that η1(A,C1)∨η2(C1,B)≪ ⊤. Since η1(A,C1) ≤ η1(A,C1)∨η2(C1,B),
then η1(A,C1) ≪ ⊤ which impliesA ⊆ C1. Similarly, C1 ⊆ B. Therefore,A ⊆ B and η is an LFPT order on
(X).

(2) Assume η1 and η2 are of type I, A ⊆ A1 and B1 ⊆ B. Then η1(A1,C) ≤ η1(A,C) and η2(C,B1) ≤
η2(C,B). Hence η1(A1,C) ∧ η2(C,B1) ≤ η1(A,C) ∧ η2(C,B). So, sup

C∈2X
(η1(A1,C) ∧ η2(C,B1)) ≤ sup

C∈2X
(η1(A,C) ∧

η2(C,B)). Therefore, η(A1,B1) ≤ η(A,B) and η is of type I.
(3) Suppose η1 and η2 are of type D. Then we have:
(PT4) η(A1 ∪A2,B) = sup

C∈2X
(η1(A1 ∪A2,C) ∧ η2(C,B))
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= sup
C∈2X

((η1(A1,C) ∧ η1(A2,C)) ∧ η2(C,B))

= sup
C∈2X

((η1(A1,C) ∧ η2(C,B)) ∧ (η1(A2,C) ∧ η2(C,B)))

= sup
C∈2X

(η1(A1,C) ∧ η2(C,B)) ∧ sup
C∈2X

(η1(A2,C) ∧ η2(C,B))

= η(A1,B) ∧ η(A2,B);
(PT5) η(A,B1 ∩ B2) = sup

C∈2X
(η1(A,C) ∧ η2(C,B1 ∩ B2))

= sup
C∈2X

(η1(A,C) ∧ (η2(C,B1) ∧ η2(C,B2)))

= sup
C∈2X

((η1(A,C) ∧ η2(C,B1)) ∧ (η1(A,C) ∧ η2(C,B2)))

= sup
C∈2X

(η1(A,C) ∧ η2(C,B1)) ∧ sup
C∈2X

(η1(A,C) ∧ η2(C,B2))

= η(A,B1) ∧ η(A,B2).
Hence η is of type D.

(4) Suppose η1 and η2 are perfect. Then

(PT6) η
(⋃

i∈Γ
Ai,B

)
= sup
C∈2X

(
η1

(⋃
i∈Γ
Ai,C

)
∧ η2(C,B)

)
= sup
C∈2X

(
inf
i∈Γ
η1(Ai,C) ∧ η2(C,B)

)
= inf

i∈Γ
sup
C∈2X

(η1(Ai,C) ∧ η2(C,B))

= inf
i∈Γ
η(Ai,B).

Therefore, η is perfect.
Again, suppose that η1 and η2 are biperfect. Then:

(PT7) η
(
A,

⋂
i∈Γ
Bi

)
= sup
C∈2X

(
η1(A,C) ∧ η2

(
C,

⋂
i∈Γ
Bi

))
= sup
C∈2X

(η1(A,C) ∧ inf
i∈Γ
η2(C,Bi))

= inf
i∈Γ

sup
C∈2X

(η1(A,C) ∧ η2(C,Bi))

= inf
i∈Γ
η(A,Bi).

Hence η is biperfect.
(5) ηs(A,B) = η(X − B,X −A)
= sup
C∈2X

(η1(X − B,C) ∧ η2(C,X −A))

= sup
C∈2X

(ηs
1(X − C,B) ∧ ηs

2(A,X − C)), put X − C = D

= sup
D∈2X

(ηs
2(A,D) ∧ ηs

1(D,B)) = ηs
2 ◦ η

s
1(A,B).

Our next theorem identifies some properties of the set of all pre-neighborhoods inherited of an LFPT
order.

Theorem 2.5. Let η be an LFPT order on X. Then the mapping Nη : 2X × (L\ {⊤}) −→ 2X defined by Nη(A, r) ={
B ∈ 2X : η(A,B)≪ r′

}
, where r′ is the complement of r, satisfies the following statements:

(1) If B ∈ Nη(A, r), thenA ⊆ B;
(2) If η is symmetric, then B ∈ Nη(A, r) if and only ifAc

∈ Nη(Bc, r), whereAc = X −A;
(3) If η is of type I andA ⊆ B, thenNη(B, r) ⊆ Nη(A, r);
(4) If η is of type D andA,B ∈ Nη(C, r), thenA∩B ∈ Nη(C, r).
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Proof. (1) Since B ∈ Nη(A, r), then η(A,B)≪ r′ ≤ ⊤. Hence η(A,B)≪ ⊤. Therefore,A ⊆ B.
(2) SupposeB ∈ Nη(A, r). Hence η(A,B)≪ r′. Since η is symmetrical, then η(X − B,X −A) = η(A,B)≪

r′. So,Ac
∈ Nη(Bc, r). Similarly, ifAc

∈ Nη(Bc, r), then B ∈ Nη(A, r).
(3) Suppose C ∈ Nη(B, r). Then η(B,C) ≪ r′. Since A ⊆ B and C ⊆ C, then η(B,C) ≤ η(A,C). Hence

η(A,C) ≤ η(B,C). Thus η(A,C)≪ r′. Therefore C ∈ Nη(A, r).
(4) SupposeA,B ∈ Nη(C, r). Then η(C,A) ≪ r′ and η(C,B) ≪ r′. So, (η(C,A) ∨ η(C,B)) ≪ r′. Since η is

of type D, then η(C,A ∩ B) = η(C,A) ∧ η(C,B). Therefore, η(C,A ∩ B) = (η(C,A) ∨ η(C,B)) ≪ r′ and so
A∩B ∈ Nη(C, r).

Note: Nη(A, r) is called the set of pre-neighborhoods ofA.
The following theorem aims to give some properties of an L-fuzzifying pre-interior operator inherited

from an LFPT order.

Theorem 2.6. Let η be an LFPT order on X and define the mapping Iη : 2X × (L\ {⊤}) −→ 2X by Iη(A, r) =⋃{
B ∈ 2X : η(B,A)≪ r′

}
. Then the mapping Iη is called an L-fuzzifying pre-interior operator and it satisfies the

following statements:

(1) Iη(X, r) = X;
(2) Iη(A, r) ⊆ A;
(3) If η is of type I andA ⊆ B, then Iη(A, r) ⊆ Iη(B, r);
(4) If η is of type D, then Iη(A∩B, r) = Iη(A, r) ∩ Iη(B, r);
(5) If r ≤ s, then Iη(A, r) ⊇ Iη(A, s).

Proof. (1) Since η(X,X) = ⊤, then η(X,X) = ⊥ ≪ r′. Hence Iη(X, r) = X.
(2) As η(B,A)≪ r′, then η(B,A)≪ ⊤. So, B ⊆ A. Therefore, Iη(A, r) ⊆ A.
(3) Since C ⊆ C, A ⊆ B and η is of type I, then we obtain that η(C,A) ≤ η(C,B). Hence η(C,B) ≤

η(C,A). Also, since η(C,A) ≪ r′ implies η(C,B) ≪ r′, then Iη(A, r) =
⋃{
C ∈ 2X : η(C,A)≪ r′

}
⊆⋃{

C ∈ 2X : η(C,B)≪ r′
}
= Iη(B, r).

(4) Iη(A∩B, r) =
⋃{
C ∈ 2X : η(C,A) ∧ η(C,B)≪ r′

}
=

⋃{
C ∈ 2X : η(C,A) ∨ η(C,B)≪ r′

}
=

⋃{
C ∈ 2X : η(C,A)≪ r′ ∧ η(C,B)≪ r′

}
=

(⋃ {
C ∈ 2X : η(C,A)≪ r′

})⋂(⋃ {
C ∈ 2X : η(C,B)≪ r′

})
= Iη(A, r) ∩ Iη(B, r).

(5) Since Iη(A, s) =
⋃{
C ∈ 2X : η(C,A)≪ s′

}
and s′ ≤ r′, η(C,A)≪ r′. So, Iη(A, r) ⊇ Iη(A, s).

The following theorem aims to give some properties of an L-fuzzifying pre-closure operator inherited
from an LFPT order.

Theorem 2.7. Let η be an LFPT order on X and define the mapping Cη : 2X × (L\ {⊤}) −→ 2X by Cη(A, r) =⋂{
F ∈ 2X : η(A,F )≪ r′

}
. Then the mapping Cη is called an L-fuzzifying pre-closure operator and it satisfies the

following:

(1) A ⊆ Cη(A, r);
(2) Cη(ϕ, r) = ϕ;
(3) If η is of type I andA ⊆ B, then Cη(A, r) ⊆ Cη(B, r);
(4) If η is of type D, then Cη(A∪B, r) = Cη(A, r) ∩ Cη(B, r);
(5) If η is of type I and D, then Cη(A∪B, r) = Cη(A, r) ∪ Cη(B, r);
(6) If r ≤ s, then Cη(A, r) ⊆ Cη(A, s).
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Proof. (1) Cη(A, r) =
⋂{
F ∈ 2X : η(A,F )≪ r′

}
⊇

⋂{
F ∈ 2X : η(A,F )≪ ⊤

}
⊇

⋂{
F ∈ 2X : A ⊆ F

}
= A.

(2) Since η(ϕ,ϕ) = ⊤, then η(ϕ,ϕ) = ⊥ ≪ r′. Therefore, Cη(ϕ, r) = ϕ.
(3) SupposeA ⊆ B and η is of type I. Then η(A,F ) ≤ η(B,F ). Also, if η(B,F ) ≪ r′, then η(A,F ) ≪ r′.

So, Cη(A, r) ⊆ Cη(B, r).
(4) Cη(A∪B, r) =

⋂{
F ∈ 2X : η(A∪B,F )≪ r′

}
=

⋂{
F ∈ 2X : η(A,F ) ∨ η(B,F )≪ r′

}
=

⋂{
F ∈ 2X : η(A,F )≪ r′ ∧ η(B,F )≪ r′

}
=

(⋂ {
F ∈ 2X : η(A,F )≪ r′

})⋂(⋂ {
F ∈ 2X : η(B,F )≪ r′

})
= Cη(A, r)

⋂
Cη(B, r).

(5) Follows from (3) and (4) above.
(6) Since η(A,F )≪ s′ and s′ ≤ r′, then η(A,F )≪ r′. Hence Cη(A, r) ⊆ Cη(A, s).

3. LFPT orders and L-fuzzifying topologies

This section is devoted to building an L-fuzzifying topology using an L-fuzzifying pre-interior operator,
L-fuzzifying preclosure operator, and L-fuzzifying pretopogenous order. Also, we create an L-fuzzifying
pretopogenous order using L-fuzzifying topology.

Theorem 3.1. Let η be an LFPT order X of type I and D. Then the map τη : 2X −→ L defined by τη(A) =
sup

{
r ∈ (L\ {⊤}) : Iη(A, r) = A

}
is an L-fuzzifying topology on X.

Proof. (1) Since Iη(X, r) = X and Iη(ϕ, r) = ϕ for all r ∈ (L\ {⊤}), then τη(X) = τη(ϕ) = ⊤.
(2) τη(A) ∧ τη(B) =

(
sup

{
r1 ∈ L\ {⊤}

∣∣∣Iη(A, r1) = A
} )∧ (

sup
{
r2 ∈ L\ {⊤}

∣∣∣Iη(B, r2) = B
} )

= sup
{
r1 ∧ r2 ∈ L\ {⊤}

∣∣∣Iη(A, r1) = A and Iη(B, r2) = B
}

≤ sup
{
r1 ∧ r2 ∈ L\ {⊤}

∣∣∣Iη(A, r1) ∩ Iη(B, r2) = A∩B
}

≤ sup
{
r ∈ L\ {⊤}

∣∣∣Iη(A∩B, r) ⊇ A∩B
}
, where r = r1 ∧ r2

= sup
{
r ∈ L\ {⊤} |

{
Iη(A∩B, r) = A∩B

}}
= τη(A∩B).

(3) inf
i∈Γ
τη(Ai) = inf

i∈Γ
sup

{
ri ∈ L\ {⊤}

∣∣∣Iη(Ai, ri) = Ai

}
= sup

{
inf
i∈Γ

ri ∈ L\ {⊤}
∣∣∣Iη(Ai, ri) = Ai

}
≤ sup

{
inf
i∈Γ

ri ∈ L\ {⊤}
∣∣∣∣∣⋃
i∈Γ
Iη(Ai, ri) =

⋃
i∈Γ
Ai

}
≤ sup

{
inf
i∈Γ

ri ∈ L\ {⊤}
∣∣∣∣∣Iη(⋃

i∈Γ
Ai, inf

i∈Γ
ri) ⊇

⋃
i∈Γ
Ai

}
= sup

{
r ∈ L\ {⊤}

∣∣∣∣∣∣Iη
(⋃

i∈Γ
Ai, r

)
=

⋃
i∈Γ
Ai

}
= τη

(⋃
i∈Γ
Ai

)
, where r = inf

i∈Γ
ri

Thus τη is an L-fuzzifying topology on X.

Theorem 3.2. Let η is an LFPT order on X of type I and D. Define a map τη : 2X −→ L by



O. R. Sayed, O. G. Hammad / Filomat 37:19 (2023), 6427–6441 6434

τη(A) = sup
{
r ∈ (L\ {⊤}) : Cη(Ac, r) = Ac

}
.

Then τη is an L-fuzzifying topology on X.

Proof. (1) Obvious.
(2) τη(A) ∧ τη(B) =

(
sup

{
r1 ∈ L\ {⊤}

∣∣∣Cη(Ac, r1) = Ac
} )∧ (

sup
{
r2 ∈ L\ {⊤}

∣∣∣Cη(Bc, r2) = Bc
} )

= sup
{
r1 ∧ r2 ∈ L\ {⊤}

∣∣∣Cη(Ac, r1) = Ac and Cη(Bc, r2) = Bc
}

≤ sup
{
r1 ∧ r2 ∈ L\ {⊤}

∣∣∣Cη(Ac, r1) ∪ Cη(Bc, r2) = Ac
∪ B

c
}

≤ sup
{
r ∈ L\ {⊤}

∣∣∣Cη(Ac, r) ∪ Cη(Bc, r) ⊆ Ac
∪ B

c
}
, where r = r1 ∧ r2.

≤ sup
{
r ∈ L\ {⊤}

∣∣∣Cη(Ac
∪ B

c, r) ⊆ Ac
∪ B

c
}

= sup
{
r ∈ L\ {⊤}

∣∣∣Cη(Ac
∪ B

c, r) = Ac
∪ B

c
}

= sup
{
r ∈ L\ {⊤}

∣∣∣Cη((A∩B)c, r) = (A∩B)c
}
= τη(A∩B).

(3)= Suppose there exists a family
{
Ai ∈ 2X |i ∈ Γ} .

inf
i∈Γ
τη(Ai) = inf

i∈Γ
sup

{
ri ∈ L\ {⊤}

∣∣∣Cη(Ac
i , ri) = Ac

i

}
= sup

{
inf
i∈Γ

ri ∈ L\ {⊤}
∣∣∣Cη(Ac

i , ri) = Ac
i

}
≤ sup

{
inf
i∈Γ

ri ∈ L\ {⊤}
∣∣∣∣∣⋂
i∈Γ
Cη(Ac

i , ri) =
⋂
i∈Γ
A

c
i

}
≤ sup

{
inf
i∈Γ

ri ∈ L\ {⊤}

∣∣∣∣∣∣Cη
(⋂

i∈Γ
A

c
i , inf

i∈Γ
ri

)
⊆

⋂
i∈Γ
A

c
i

}
= sup

{
r ∈ L\ {⊤}

∣∣∣∣∣∣Cη
((⋃

i∈Γ
Ai

)c

, r
)
=

(⋃
i∈Γ
Ai

)c}}
= τη

(⋃
i∈Γ
Ai

)
, where r = inf

i∈Γ
ri

Thus τη is an L-fuzzifying topology on X.

Theorem 3.3. Letη be an LFPT order of type D onX. Then the map τη : 2X −→ L defined by τη(A) = inf
x∈A

(η({x} ,A))

is an L-fuzzifying topology on X.

Proof. (1) Since η(X,X) = η(ϕ,ϕ) = ⊤, then τη(X) = τη(ϕ) = ⊤.
(2) Since η is of type D, then

τη(A∩B) = inf
x∈A∩B

η({x} ,A∩B)

= inf
x∈A∩B

(η({x} ,A) ∧ η({x} ,B))

≥

(
inf
x∈A
η ({x} ,A)

)
∧ (inf

x∈B
η({x} ,B))

= τη(A) ∧ τη(B).

(3) τη

(⋃
i∈Γ
Ai

)
= inf

x∈
⋃
i∈Γ
Ai

η

(
{x} ,

⋃
i∈Γ
Ai

)
= inf

i∈Γ
inf
x∈A
η

(
{x} ,

⋃
i∈Γ
Ai

)
≥ inf

i∈Γ
inf
x∈A
η({x} ,Ai)
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= inf
i∈Γ
τη(Ai).

Hence τ is an L-fuzzifying topology.

Theorem 3.4. Let (X, τ) be an L-fuzzifying topological space. Define the function ητ : 2X × 2X −→ L as follows:

ητ(A,B) =


sup

D∈Φ(A,Bc)
τ(D), Φ(A,Bc) , ϕ;

⊥, Φ(A,Bc) = ϕ,

where Φ : 2X × 2X −→ 2(2X) is defined as Φ(A,Bc) =
{
D ∈ 2X : A ⊆ D ⊆ B ∈ 2X

}
,∀A,B ∈ 2X. Then ητ is an

LFPT order on X.

Proof. (PT1) Since Φ(X, ϕ) =
{
D ∈ 2X : X ⊆ D ⊆ X

}
= {X} , ϕ and τ(X) = ⊤, then ητ(X,X) = ⊤. Similarly,

ητ(ϕ,ϕ) = ⊤.
(PT2) Suppose ητ(A,B) ≪ ⊤. Then ητ(A,B) > ⊥. So, there exist D ∈ 2X such that D ∈ Φ(A,Bc) and

τ(D) ≥ ⊥. ThusA ⊆ D ⊆ B. Therefore ητ is an L-fuzzifying pretopogenous order.
(PT3) Suppose thatA ⊆ A1 and B1 ⊆ B. ThenA ⊆ A1 and Bc

⊆ B
c
1. If ητ(A1,B1) = ⊥, then Φ(A1,Bc

1) =
ϕ. Hence Φ(A,Bc) = ϕ and so ητ(A,B) = ⊥. Therefore ητ(A1,B1) ≤ ητ(A,B). If ητ(A1,B1) , ⊥, then there
existD ∈ 2X such thatA1 ⊆ D ⊆ B1. So,A ⊆ A1 ⊆ D ⊆ B1 ⊆ B. Thus Φ(A1,Bc

1) ⊆ Φ(A,Bc). Therefore,
ητ(A1,B1) = sup

D∈Φ(A1,Bc
1)
τ(D) ≤ sup

D∈Φ(A,Bc)
τ(D) = ητ(A,B) and ητ is of type I.

(PT4) Since A ⊆ A ∪ B and C ⊆ C, then ητ(A ∪ B,C) ≤ ητ(A,C). Similarly, ητ(A ∪ B,C) ≤ ητ(B,C).
Hence ητ(A∪B,C) ≤ ητ(A,C) ∧ ητ(B,C). Also,
ητ(A,C) ∧ ητ(B,C) = sup

D∈Φ(A,Cc)
τ(D) ∧ sup

H∈Φ(B,Cc)
τ(H)

= sup
D∈Φ(A,Cc)

sup
H∈Φ(B,Cc)

(τ(D) ∧ τ(H))

≤ sup
D∈Φ(A,Cc)

sup
H∈Φ(B,Cc)

(τ(D∪H))

≤ sup
D∪H∈Φ(A∪B,Cc)

τ(D∪H)

= sup
F ∈Φ(A∪B,Cc)

(τ(F ))

= ητ(A∪B,C).
(PT5) Since C ⊆ C and A ∩ B ⊆ A, then we have ητ(C,A ∩ B) ≤ ητ(C,A). Similarly, we obtain

ητ(C,A∩B) ≤ ητ(C,B). So, ητ(C,A∩B) ≤ ητ(C,A) ∧ ητ(C,B). Furthermore
ητ(C,A) ∧ ητ(C,B) = sup

D∈Φ(C,Ac)
τ(D) ∧ sup

H∈Φ(C,Bc)
τ(H)

= sup
D∈Φ(C,Ac)

sup
H∈Φ(C,Bc)

(τ(D) ∧ τ(H))

≤ sup
D∈Φ(C,Ac)

sup
H∈Φ(C,Bc)

τ(D∩H)

≤ sup
D∩H∈Φ(C,Ac∪Bc)

τ(D∩H)

= sup
M∈Φ(C,(A∩B)c)

τ(M)

= ητ(C,A∩B).
Therefore ητ is of type D.

4. LFPT continuity

To conclude the theoretical contribution of this paper, in this section we define and investigate the
concept of LFPT continuity. This notion is formalized as follows.
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Definition 4.1. Let (X, η1) and (Y, η2) be two LFPT spaces. A function f : (X, η1) −→ (Y, η2) is said to be an
LFPT continuous if η2(A,B) ≤ η1( f−1(A), f−1(B)), ∀A,B ∈ 2Y.

If f is surjective, then we say that f is an LFPT map if and only if f−1(η2) is coarser than η1, i.e.,
f−1(η2)(A,B) ≤ η1(A,B).

A technical characterization gives an alternative view of the concept above.

Theorem 4.2. Let (X, η1) and (Y, η2) be two LFPT spaces on X andY, respectively and f : (X, η1) −→ (Y, η2) be a
function. Then the following are equivalent:

(1) f is an LFPT continuous function;
(2) ηs

2(A,B) ≤ ηs
1( f−1(A), f−1(B)), ∀A,B ∈ 2Y;

(3) IfU is a pre-neighborhood of f (D), then f−1(U) is a pre-neighborhood ofD for everyU ∈ 2Y,D ∈ 2X and f
is surjective.

Proof. (1)⇒ (2): ηs
2(A,B) = η2(Y −B,Y −A)

≤ η1( f−1(Y −B), f−1(Y −A))
= η1(X − f−1(B),X − f−1(A))
= ηs

1( f−1(A), f−1(B)).
(2)⇒ (3): SupposeU is a pre-neighborhood of f (D).Thenη2( f (D),U)≪ r′which implies (η2)s(Y −U,Y−

f (D))≪ r′. Since (η1)s(X− f−1(U),X− f−1( f (D))) ≤ (η2)s(Y −U,Y− f (D)), then (η1)s(X− f−1(U),X −D)≪
r′. Hence η1(D, f−1(U))≪ r′. Therefore f−1(U) is a pre-neighborhood ofD.

(3)⇒ (1): Sinceη2( f (D),U)≪ r′, η1(D, f−1(U))≪ r′.Thusη1(D, f−1(U)) ≤ η2( f (D),U).Soη2( f (D),U) ≤
η1(D, f−1(U)). PutA = f (D) and B =U. Hence η2(A,B) ≤ η1( f−1(A), f−1(B)).

Another natural property that holds true concerns the composition of LFPT continuous functions.

Theorem 4.3. Let (X, η1), (Y, η2) and (Z, η3) be three LFPT spaces on X, Y andZ, respectively. If f : (X, η1) −→
(Y, η2) and 1 : (Y, η2) −→ (Z, η3) are LFPT continuous, then 1 ◦ f : (X, η1) −→ (Z, η3) is an LFPT continuous.

Proof. Since both f and 1 are LFPT continuous functions, then for allA,B ∈ 2Z we have
η3(A,B) ≤ η2(1−1(A), 1−1(B))

≤ η1( f−1(1−1(A)), f−1(1−1)(B))
= η1(( f−1

◦ 1−1)(A), ( f−1
◦ 1−1)(B))

= η1((1 ◦ f )−1(A), (1 ◦ f )−1(B)).
Hence 1 ◦ f is an LFPT continuous function.

An important characterization of LFPT continuous function is given as follows.

Theorem 4.4. Let (X, η1) and (Y, η2) be two LFPT spaces and f : (X, η1) −→ (Y, η2) be an LFPT continuous
function. Then the following statements hold:

(1) f
(
Cη1 (A, r)

)
⊆ Cη2 ( f (A), r), for eachA ∈ 2X;

(2) Cη1

(
f−1(B), r

)
⊆ f−1

(
Cη2 (B, r)

)
, for each B ∈ 2Y;

(3) f−1
(
Iη2 (C, r)

)
⊆ Iη1

(
f−1(C), r

)
, for each C ∈ 2Y;

(4) f : (X, τη1 ) −→ (Y, τη2 ) is an L-fuzzifying continuous function.

Proof. (1) Since f is an LFPT continuous function, then η2( f (A), f (B)) ≥ η1(A,B). So,
η2( f (A), f (B))≪ r′ implies η1(A,B)≪ r′. Therefore
f
(
Cη1 (A, r)

)
= f

(⋂ {
B ∈ 2X : η1(A,B)≪ r′

})
⊆

⋂{
f (B) ∈ 2Y : η2( f (A), f (B))≪ r′

}
= Cη2 ( f (A), r).
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(2) Since f
(
Cη1 ( f−1(B), r)

)
⊆ Cη2

(
f
(

f−1(B)
)
, r

)
⊆ Cη2 (B, r), then

Cη2

(
f−1(B), r

)
⊆ f−1

(
f
(
Cη1

(
f−1(B), r

)))
⊆ f−1

(
Cη2 (B, r)

)
.

(3) Since f is an LFPT continuous function, then
f−1

(
Iη2 (C, r)

)
= f−1

(⋃ {
D ∈ 2Y : η2(D,C)≪ r′

})
=

⋃{
f−1(D) ∈ 2X : η2(D,C)≪ r′

}
⊆

⋃{
f−1(D) ∈ 2X : η1( f−1(D), f−1(C))≪ r′

}
=

⋃{
E ∈ 2X : η1(E, f−1(C))≪ r′

}
= Iη1 ( f−1(C), r).

(4) SupposeB ∈ 2Y such thatIη2 (B, r) = B. From (3) we have f−1(B) = f−1(Iη2 (B, r)) ⊆ Iη1 ( f−1(B), r). But
Iη1 ( f−1(B), r) ⊆ f−1(B). Then Iη1 ( f−1(B), r) = f−1(B). Therefore, f is L-fuzzifying continuous function.

5. Maps between LFPT spaces

Extensions of standard mathematical notions abound, and the value of any resulting theory should be
judged by the strength of its link with initial structures. This section gives the maps between L-fuzzifying
pretopogenous structures and initial fuzzifying structures.

Definition 5.1. Let f be a function from a set X to a set Y and η be an LFPT order on Y. Define a function
η1 : 2X × 2X −→ L by

η1(A,B) = η( f (A), ( f (Bc))c), ∀A,B ∈ 2X.

We will call η1 is the inverse image of η by the mapping f and is denoted by f−1(η).

Proposition 5.2. Let f : X −→ Y be a surjective function and η be an LFPT order onY. Then the following hold:
(1) f−1(η) is an LFPT order on X;
(2) ( f−1(η))s = f−1(ηs) and if η is symmetrical, then so is f−1(η);
(3) If η is of type I, then so is f−1(η);
(4) If η is of type D, then so is f−1(η).

Proof. (1) Since f is surjective, then:
(PT1) f−1(η)(ϕ,ϕ) = η( f (ϕ), ( f (ϕ)c)c) = η(ϕ, ( f (X))c) = η(ϕ,Y− f (X)) = η(ϕ,ϕ) = ⊤.Similarly, f−1(η)(X,X) =

⊤.
(PT2) Suppose f−1(η)(A,B) ≪ ⊤. Then η( f (A), ( f (Bc))c) ≪ ⊤. Since η is an LFPT order on Y, then

f (A) ⊆ ( f (Bc))c which implies f (Bc) ⊆ ( f (A))c. Then f (Bc) ⊆ Y− f (A) ⊆ f (X −A). So, f (Bc) ⊆ f (Ac) which
impliesA ⊆ B.Hence f−1(η) is an LFPT order on X.

(2) ( f−1(η))s(A,B) = f−1(η)(Bc,Ac) = η( f (Bc), ( f (A))c) = ηs( f (A), ( f (Bc))c) = f−1(ηs)(A,B).
Also, f−1(η)(A,B) = η( f (A), ( f (Bc))c) = ηs( f (A), ( f (Bc))c) = f−1(ηs)(A,B) = ( f−1(η))s(A,B).
Hence f−1(η) is symmetrical.

(3) Suppose η is of type I,A ⊆ A1 and B1 ⊆ B. Then f (A) ⊆ f (A1) and ( f (Bc
1))c
⊆ ( f (Bc))c.

So, f−1(η)(A1,B1) = η( f (A1), ( f (Bc
1))c) ≤ η( f (A), ( f (Bc))c) = f−1(η)(A,B). Therefore, f−1(η) is of type I.

(4) Suppose η is of type D and f is a surjective function. Then:
(PT4) f−1(η)(A1 ∪A2,B) = η( f (A1 ∪A2), ( f (Bc))c)

= η( f (A1) ∪ f (A2), ( f (Bc))c)
= η( f (A1), ( f (Bc))c) ∧ η( f (A2), ( f (Bc))c)
= f−1(η)(A1,B) ∧ f−1(η)(A2,B).

(PT5) f−1(η)(A,B1 ∩ B2) = η( f (A), ( f (B1 ∩ B2)c)c)
= η( f (A), ( f (Bc

1 ∪ B
c
2))c)

= η( f (A), ( f (Bc
1) ∪ f (Bc

2))c)
= η( f (A), ( f (Bc

1))c
∩ ( f (Bc

2))c)
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= η( f (A), ( f (Bc
1))c) ∧ η( f (A), ( f (Bc

2))c)
= f−1(η)(A,B1) ∧ f−1(η)(A,B2).

Therefore, f−1(η) is of type D.

Definition 5.3. Let fi : X −→ (Yi, ηi), i ∈ I be surjective functions, where ηi is an LFPT orders on Yi.
Then the initial L-fuzzifying structure E on X is the coarsest one for which fi are LFPT maps. That is
E(A,B) = f−1

i (ηi)(A,B), for all i ∈ I.

Theorem 5.4. Let E be an initial L-fuzzifying structure on X. Then:

(1) If ηi are symmetrical, then so is E;
(2) If ηi are of type I, then so is E;
(3) If ηi are of type D, then so is E.

Proof. (1) Suppose ηi are symmetrical. Then we have
E(A,B) = f−1

i (ηi)(A,B)
= ηi( fi(A), ( fi(Bc

i ))
c)

= ηs
i ( fi(A), ( fi(Bc

i ))
c)

= f−1
i (ηs

i )(A,B)
= Es(A,B). Hence E is symmetrical.

(2) Suppose ηi are of type I,A ⊆ A1 and B1 ⊆ B. Then fi(A) ⊆ fi(A1) and ( fi(Bc
1))c
⊆ ( fi(Bc))c. So,

E(A1,B1) = f−1
i (ηi)(A1,B1)
= ηi( fi(A1), ( fi(Bc

1))c)
≤ ηi( fi(A), ( fi(Bc))c)
= f−1

i (ηi)(A,B)
= E(A,B).

Then E is of type I.
(3) Suppose ηi are of type D and fi are surjective. Then:
(PT4) E(A1 ∪A2,B) = f−1

i (ηi)(A1 ∪A2,B)
= ηi( fi(A1 ∪A2), ( fi(Bc))c)
= ηi( fi(A1) ∪ fi(A2), ( f (Bc))c)
= ηi( fi(A1), ( fi(Bc))c) ∧ ηi( fi(A2), ( fi(Bc))c)
= f−1

i (ηi)(A1,B) ∧ f−1
i (ηi)(A2,B)

= E(A1,B) ∧ E(A2,B).

(PT5) E(A,B1 ∩ B2) = f−1
i (ηi)(A,B1 ∩ B2)
= ηi( fi(A), ( fi(B1 ∩ B2)c)c)
= ηi( fi(A), ( fi(Bc

1 ∪ B
c
2))c)

= ηi( fi(A), ( fi(Bc
1) ∪ fi(Bc

2))c)
= ηi( fi(A), ( fi(Bc

1))c
∩ ( fi(Bc

2))c)
= ηi( f i(A), ( fi(Bc

1))c) ∧ ηi( fi(A), ( fi(Bc
2))c)

= f−1
i (ηi)(A,B1) ∧ f−1

i (ηi)(A,B2)
= E(A,B1) ∧ E(A,B2).

Hence E is of type D.

6. The relationships among different structures

It is interesting to discuss the links between L-fuzzifying preproximity, L-preuniformity and L- fuzzifying
pretopogenous on X.
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Proposition 6.1. (1) Let δ be an L-fuzzifying preproximity on X in [1], then
ηδ(A,B) = δ(A,Bc) (where δ is negation of δ), defines an LFPT order on X. When δ is symmetrical, then so is ηδ.
When δ is of type I (resp. D), then so is ηδ.

(2) Let η be an LFPT on X, then δη(A,B) = η(A,Bc) defines an L-fuzzifying preproximity on X. When η is
symmetrical, then so is δη. When η is of type I (resp. D), then so is δη.

Proof. (1) Suppose δ be an L-fuzzifying preproximity on X.
(PT1) ηδ(X,X) = δ(X, ϕ) = ⊥ = ⊤, ηδ(ϕ,ϕ) = δ(ϕ,X) = ⊥ = ⊤.

(PT2) If ηδ(A,B) = δ(A,Bc)≪ ⊤, then δ(A,Bc)≪ ⊤. So,A ⊆ B. Hence ηδ is an LFPT order on X.
(PT3) IfA ⊆ B,A1 ⊆ B1, then δ(B,Ac

1) ≤ δ(A,Bc
1). So, ηδ(B,A1) ≤ ηδ(A,B1). Then ηδ is of type I.

(PT4) ηδ(A∪B,C) = δ(A∪B,Cc)
= δ(A,Cc) ∧ δ(B,Cc)

= ηδ(A,C) ∧ ηδ(B,C).

(PT5) ηδ(A,B ∩ C) = δ(A, (B ∩ C)c)
= δ(A,Bc

∪ C
c)

= δ(A,Bc) ∧ δ(A,Cc)

= ηδ(A,B) ∧ ηδ(A,C). Thus ηδ is of type D.

Suppose δ is symmetrical. Then δ(A,Bc) = δ(Bc,A). So, ηδ(A,B) = ηδ(Bc,Ac) = ηs
δ(A,B). Hence ηδ is

symmetrical.
(2) The proof is similar to (1).

Lemma 6.2. (1) δηδ = δ. (2) ηδη = η.

Proof. (1) δηδ (A,B) = ηδ(A,Bc) = δ(A,B).
(2) ηδη (A,B) = δη(A,Bc) = η(A,B).

Definition 6.3. Let (X,U) be an L-preuniform space in [2]. Define the function ηU : 2X×2X −→ L as follows:

ηU(A,B) = sup {U(U) |U[A] ⊆ B}

Theorem 6.4. Let (X,U) be an L-preuniform space in [2]. If ⊤3 ⊤, then (X, ηU) is an LFPT space.

Proof. It suffices to check (PT1) and (PT2) for ηU.
(PT1) Since for each U ∈ 2X×X, U[ϕ] = ϕ and from (PU1), U(U) , ⊤. So, ηU(ϕ,ϕ) = ⊤. Similarly,

ηU(X,X) = ⊤.
(PT2) Assume that ηU(A,B) ≪ ⊤ and ⊤ 3 ⊤, then ηU(A,B) , ⊤. So, ηU(A,B) < ⊤. Thus there exist

U ∈ 2X×X such that U(U) > ⊥. HenceA ⊆ U[A] ⊆ B. Therefore (X, ηU) is an LFPT space.
(PT3) Suppose thatA ⊆ A1 andB1 ⊆ B. Then we haveU[A] ⊆ U[A1]. So, we obtain sup {U(U) |U[A1] ⊆ B1} ≤

sup {U(U) |U[A] ⊆ B} . Hence ηU(A1,B2) ≤ ηU(A,B). Therefore ηU is of type I.

7. Conclusion

We primarily generalized the concept of pretopogenous structure in this paper by employing the way
below relation. It is also possible to obtain the relationship between L-fuzzifying pretopogenous and L-
fuzzifying topology. Furthermore, the relationships between various structures are introduced, including:
L-fuzzifying topology, L-fuzzifying preuniform, L-fuzzifying preproximity, and L-fuzzifying topogenous.
The representation given in Section 3 will enable us to give interpretations of compactness and connect-
edness which seems appropriate for applications. Furthermore, we believe that this approach would be
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interesting to extend to other structures such as proximity, topogenous, syntopogenous, homotopy, and so
on. All of these issues will be investigated further in future research projects. Another point of contention
is evolutionary biology, because key concepts in this field are intrinsically topological [28]. Classical pop-
ulation genetics and quantitative genetics models rely on a Euclidean vector space as a natural framework
for studying the evolution of phenotypic adaptation and the process of speciation. It would be interest-
ing to create a mathematical framework that includes graphs, recombination sets, and Euclidean vector
spaces as special cases. When phenotypes are organized based on genetic accessibility, the resulting space
lacks a metric and is formalized by an unknown structure. Future research will look into whether and
how L-fuzzifying pretopogenous spaces can help with this. We anticipate that the properties of this space
will result in patterns of phenotypic evolution such as punctuation, irreversibility, or modularity. Future
research could be inspired by [28] to investigate the applicability of L-fuzzifying pretopogenous spaces to
combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistry.
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