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Abstract. In the paper we describe the derivations of two IN-graded infinite-dimensional Lie algebras
n; and n, which are the positive parts of the affine Kac-Moody algebras A(l1> and Af), respectively. Then
we construct all pro-solvable Lie algebras whose potential nilpotent ideals are n; and n, and compute
low-dimensional (co)homology groups of the pro-solvable Lie algebras constructed.

1. Introduction

It is well-known that the classification problem of algebras can be split into two main tasks: classification
of semisimple and solvable algebras. The most of the cases semisimple part is reduced to the classification of
simple algebras. This theory is well-studied for Lie algebras. The problem of classification of simple finite-
dimensional Lie algebras over the field of complex numbers was solved by the end of the 19th century by
W. Killing and E. Cartan. There is a method originated by V.V. Morozov and C.M. Mubarakzjanov (see [19],
[20]) on construction of finite-dimensional solvable Lie algebras by their nilradicals. A generalization of
this method to infinite-dimensional case is of interest. It turned out what was noticed by V.V. Morozov and
C.M. Mubarakzjanov that there is interrelations between a few invariants of Lie algebras: the dimension
and the number of generators of the nilradical, the co-dimension of the nilradical, the number of nil-
independent derivations, the existence of inner and outer derivations, the dimensions of the first and
second (co)homology spaces. One of such kind relations states that the co-dimension of the nilradical of a
Lie algebra is at most the number of its nill-independent derivations. The fact has been used to construct
the solvable Lie algebras in [21-24]. By using these relationships the classification of solvable extensions
has been given for the following classes of nilpotent Lie algebras in low-dimensions with Abelian [25, 26],
Heisenberg [27], Borel [36], IN-graded [7], filiform and quasifiliform nilradicals [34, 35] (also see [37] and
references therein). A few other nilradicals cases are given in [28-30]. In finite-dimensional case, the
concept of filiform Lie algebra was introduced by Vergne in [38]. It turned out that the case of filiform and
quasi-filiform nilradicals the relationships mentioned above much simplify the situation. Moreover, there
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are cases when the co-dimension of the nilradical is equal to the number of its generators. In these cases
the structure of solvable Lie algebras is quite rigid. It was observed that such Lie algebra is unique up to
isomorphism (see [13]), its center is trivial and all derivations are inner. In addition, often such Lie algebras
have trivial second Chevalley cohomology groups (see [4, 14]).

Unfortunately for infinite-dimensional cases non of the above either classification of semisimple or
solvable is completed. There is E. Cartan’s classification of simple infinite-dimensional Lie algebras of
vector fields on a finite-dimensional space. Then B. Weisfeiler [39] gave an algebraic proof of Cartan’s
classification theorem reducing the problem to the classification of simple Z-graded Lie algebras of finite
“depth”.

There are, however, four classes of infinite-dimensional Lie algebras that underwent a more or less
intensive study due to their various applications, mostly in Physics. These are, first of all, the above-
mentioned Lie algebras of vector fields, the second class consists of Lie algebras of smooth mappings of a
given manifold into a finite-dimensional Lie algebra, the third class is the classical Lie algebras of operators
in a Hilbert or Banach space and finally, the fourth class of infinite-dimensional Lie algebras is the class of
the so-called Kac-Moody algebras.

In the classification theory of infinite-dimensional Lie algebras, several deep results were obtained with
Galois cohomology methods exhibiting exciting connections between forms of multi-loop algebras and the
Galois theory of forms of algebras over rings. This branch of structure theory is complemented by the
connection between the classification of generalized Kac-Moody algebras and automorphic forms.

Note that there are some examples of the so-called pro-solvable Lie algebras whose maximal pro-
nilpotent ideal is IN-graded Lie algebra of maximal class (infinite-dimensional filiform Lie algebra) the
method described above for finite-dimensional solvable Lie algebras by means of its nilradical is applicable.
It should be noted that in all of these mentioned examples, the codimension of the maximal pro-nilpotent
ideal of a pro-solvable algebra coincides with the number of generators of the pro-nilpotent ideal.

The infinite-dimensional analogue of filiform Lie algebras has been introduced by A.Fialowski a long
time ago in [9]. Nevertheless, the systematic study of infinite-dimensional cases has not been given.
The attempts made were occasional depending mainly on some applications in Physics and Geometry. For
instance, in [12], two classes of infinite-dimensional Lie algebras called potentially nilpotent and potentially
solvable were introduced in connection with the study of their deformations.

All algebras considered in the paper are supposed to be over the field of complex numbers C unless
otherwise specified.

Definition 1.1. A Lie algebra (L, [-,]) is called a positively graded (IN-graded) if it is represented as a direct sum

L= é Li
i=1

of its homogonious subspaces L; such that [L;, L;] C Liy; for all i, j € IN.

Example 1.2. Let L = L(m) be the free Lie algebra with the generators ai, . .., a,,. Consider the following linear span
of the k-words Ly = Span{[a;,, [ai,,[. .., [ai_,,ai]. .. 111}. Then it is easy to see that Ly, where k = 1,2, ... are desired
homogeneous subspaces of L = L(m) to be positively graded.

Example 1.3. Let L = Spanley, €3, €3, €4, ... } with the commutation rules
[e1,ei] = eix1, i =2, [ej,ex] =0, wherei, k # 1.

If as homogeneous subspaces we take Ly = Spanfex}, k = 1,2,... then L is positively graded.

Note that the quotient algebra L/I of an infinite-dimensional positively graded Lie algebra L = (P L; by the
i=1

ideal I = €p L; is nilpotent.
i=k+1
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The concept of Lie algebra’s width was introduced by Zel'manov and Shalev in [31, 32]. A positively
graded Lie algebra L = € L; is said to be of width d if there is a positive number d such that dimL; < d,

=1
for all i € N. The problem of classifying graded Lie algebras of finite width was outlined by Zelmanov and
Shalev as an important and difficult problem (In [32] it was called “a formidable challenge” ).
The classification of positive graded finite-dimensional Lie algebras has been given in [17]). The author
also could manage to classify infinite-dimensional case with the width 3.

Definition 1.4. A grading L = @ L; is called natural if [L1,L;] C Lit1 forall i € IN.
i=1

Example 1.5. Let us consider the algebra L = Spanley, e, €3, s, ...} from Example 1.3.
L1 = Spanfe, e;}, L, = Spanfes}, L3 = Span{es}, L4 = Spanfes}, ...
is the natural grading of L.
For a Lie algebra L we define the lower central and the derived series as follows
L'=L, ¥ =[5 L), k>1, MW=L (B =B k], s>1,

respectively.

Definition 1.6. A Lie algebra L is said to be residually nilpotent (respectively, residually solvable) if ﬁ L'=0
i=1

(respectively, () LI = 0).
i=1

The following definition can be found in [12].
Definition 1.7. An infinite dimensional Lie algebra L is said to be potentially nilpotent (respectively, solvable), if

M L' = 0 (respectively, ( LI = 0) and dim(L/L'*') < oo (respectively, dim(LU/LI*1) < co) for any i > 1.
i=1 i=1

Here are two examples of potentially nilpotent Lie algebras (see [17]).

Example 1.8.
o Lie algebra m, = Spanfey, 3, €3, . .. } with the commutation rules

[elrei] = €it1, i> 2/
my = .
2 le2, el =ejia, 123

is a potentially nilpotent Lie algebra.
o The positive part W* of the Witt algebra is given by the commutation rules
lei,ej] = (i — jeirj, i,j€N.
The algebra W™ also is a potentially nilpotent Lie algebra.

Another two algebras below give examples of potentially solvable but not necessarily potentially nilpo-
tent algebras (see [5]).

Example 1.9.



K.K. Abdurasulov et al. / Filomat 37:19 (2023), 6395-6415 6398
e Let L = Spanx, y,e1, ez, €3,. ..} with the following rules of compositions

e,ell =ey1, 122,
x,e1] = ey,
x,e]l=0G—-1)e;, i>2,
yel=e, i>2.

[

]
L= [
[

o Consider non-negative part w+ of the Witt algebra W given by the following rules
lei el = (i — jeirj, 1,j=0.
The algebra W+ is potentially solvable but is not potentially nilpotent.

Note that finite-dimensional solvable (respectively, nilpotent) Lie algebras are also (potentially solvable)
potentially nilpotent.

Definition 1.10. [17] A Lie algebra L is said to be pro-nilpotent (respectively, pro-solvable) if

N L' =0and dimL/L’ < oo (respectively, () L1 = 0 and dim L/L < o0 ) for any i > 1.
i=1 i=1

In [1], it was shown that the concepts of potentially nilpotency (respectively, potentially solvability) and
pro-nilpotency (respectively, pro-solvability) are equivalent.
Let L be a pro-nilpotent Lie algebra. Then for the ideals L¥, where k > 1 one has

L=L'21?22---2LF21M ..., and [L/,L/]]c L*, i,j e N.

+00

Consider the associated graded Lie algebra grL. = @D(L'/L™*!) with respect to the above filtration. The Lie
i=1

bracket on grL is given by

[x + L,y + LMY =[x, y] + L'*Y, forx e L, y e L.
It is evident that grL is a IN-graded Lie algebra.

Definition 1.11. A pro-nilpotent Lie algebra L is said to be a naturally graded if it is isomorphic to grL. The

grading L = €P L; of a naturally graded Lie algebra L is called natural if there exists a graded isomorphism
i=1

@:grL— L, @((grL);) =L;, i€IN.
Let us define natural grading of the algebra L. Write
Ly:=L"/L? L;:=L'/L*!, wherei=2,3,...

In this case, L ~ L1 ® L, ® L3 & ... One can readily verify the validity of the inclusions [L;, L;] C L;;; and
the grading is natural.

Let L be a pro-nilpotent Lie algebra. Suppose that there is a basis {ej,ez,¢€3,...} of L, k; = dim L; and
L' = Spanfey,, ex,,,, ek },i=1,2,3,... Define

i1/ Ckisor e

C(L) = (k2 —kl,k3 — kz,k4 —k3,...), wherqu =1.

Since L is residually nilpotent, it follows that ki1 —k; > 1 for any i > 1.
Here are two important examples of the naturally graded Lie algebras from [17].
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The first of them is a Lie algebra n; with the following non-zero brackets on a basis {ej, e, €3, ...}
1, if i-j=1(mod3),

np: [E,’, 6]'] = Cij€itj, Z,] e NN, Cij = 0, lf i— ] =0 (mod 3), (1)
-1, if i-j=-1(mod3).
One can see that
i+1

(ny); := n;/n? = Spanfe;, e2}, (ny); :=n}/n}"" = Span{ei}, i =2,3,....

Hence,
c(ny) =(2,1,1,...).

The second algebra is
ny : g il = dgifgrr, q,1€N,

given by the following table of multiplications on a basis

{fsi+1, foi+2, fsis3, fsiras fsi+5, fsive, fsis7, foirs), Whereie Z*

as follows

fsi  feir1 fsjr2 fsjes fejra  fsjrs  fsjve  fsjr7
fii 0o 1 -2 -1 o 1 2 -1

foinn -1 0 1 1 -3 =2 0 1

foiva 2 -1 0 0 0 1 -1 0

fois 1 -1 0 0 3 -1 1 =2 )
feiea 0 3 0 -3 0 3 0 -3

foivs —1 2 -1 1 -3 0 0 1

foive —2 0 1 -1 0 0 0

foisz 1 -1 0 2 3 -1 -1 0
It is clear that

n% = Spanifs, f, f5,...}, ng =Span{fs, f5, fo, .- -}, --- né = Span{fit1, fixz,- -},

Hence,
(n2); = Span{fi, f»}, (nz); = Span{fi;1}, i=2,3,...

c(ny) = (2,1,1,...)

The algebras n; and n; are naturally graded pro-nilpotent Lie algebras with homogeneous components
(n1); and (nz);, where j = 1,2,3,..., respectively. These two algebras are known as positive parts of the

affine Kac-Moody algebras A(ll) and Ag)’ respectively. They also are famous with their special role in the
theory of combinatoric identities (see [10, 15, 16]). The algebras n; and n, are two representatives (among a
few others) of the isomorphism classes of natural graded algebras over fields of characteristic zero given by
A. Fialowski and D.Millionshchikov (see [9, 17]). The pro-solvable extensions of 17 and 1, were considered
in [18] with applications to the theory of characteristic Lie algebras. Note that similar problems to the ones
of this paper but for another two representative my and m; have been treated earlier in [2]. Thus the present
paper along with the results mentioned above in some sense completes the classification problem of the
naturally graded algebras with weight 3.



K.K. Abdurasulov et al. / Filomat 37:19 (2023), 6395-6415 6400

Definition 1.12. A linear map d: L — L of (L,[-,"]) is said to be a derivation if for all x,y € L, the following
differentiation rule

d([x, y]) = [d(x), y] + [x,d(y)],
holds true.

The set of all derivations of L is denoted by Der(L). For x € L, as usual, ad, denotes the map ady, : L — L
defined by ad.(y) = [x, y], Yy € L. Obviously, ad, is a derivation called inner derivations. The set of all inner
derivations of L is denoted by Inner(L). No inner derivations in Der(L) are called outer derivations. Der(L) is
a Lie algebra with respect to the composition and Inner(L) is an ideal in Der(L).

Definition 1.13. A Lie algebra L is called complete if Center(L) = 0 and all the derivations of L are inner.
Definition 1.14. A linear map p : L — L is called residually nilpotent, if N>, (Im p') = 0 holds true.

Below we introduce the analogue of the notion of nil-independency which had played a crucial role in
the description of finite-dimensional solvable Lie algebras in [20].

Definition 1.15. Derivations dq,da, ..., d, of a Lie algebra L over a field IF are said to be residually nil-independent,
ifamap f = a1dy + apdy + ... + aud, is not potentially nilpotent for any scalars ay, az, ..., a, € F. In other words,

N Imfi =0 impliesay = a; =-+- = a, = 0.
i=1
Recall that
HY(L,L) = Der(L)/Inner(L) and H?(L,L) = Z*L,L)/B*(L,L)
where the set Z?(L, L) consists of those elements ¢ € Hom(A2L, L) such that

2(x,y,2) = [x,9(y, 2)] = [9(x, y), 2] + [p(x, 2), y] + ¢(x, [y, 2]) — @([x, y], 2) + ([x, 2], y) = 0, (©)
while B%(L, L) consists of elements ¢ € Hom(A?L, L) such that
Y(x,y) = d([x, y]) — [d(x), y] = [x,d(y)] for some linear map 4 € Hom(L, L). 4)

In terms of cohomology groups the notion of completeness of a Lie algebra L means that it is centerless
and H'(L,L) = 0.

The organization of the paper is as follows. The next section contains the description of derivations
of two IN-graded infinite-dimensional Lie algebras n; and n, what are positive parts of affine Kac-Moody
algebras Agl) and A(Zz), respectively. This followed by the construction of all pro-solvable Lie algebras whose
pro-nilpotent nilpotent ideals are n; and n,. The final sections contains the results on the completeness of
these classes of Lie algebras and the vanishing of their second cohomology groups.

Note that the similar problems as in this paper for Leibniz superalgebras have been treated recently in

[6].
2. Results

2.1. Derivations of pro-nilpotent Lie algebras ny and ny

In this section we describe the derivations of n; and n, that we need to use further in the constructions
of all pro-solvable Lie algebras whose potential nilpotent ideals are n; and n,.

Proposition 2.1. The derivations of the algerba ny are given as follows:

t

d(esiz) = kZ (((F = 1)B3k=1 + iazk—2)€3k43i-5 + X3kL3k13i-3),
=
t

d(esi-1) = kzl(iﬁyc—l + (i — 1)azk—2)esk+3i—4 + Par€srs3i-3),

t
dlesi) = Y (i(Bsk—1 + A3k—2)e3k+3i-3 — P3kC3k+3i-2 — A3k3k43i-1), i € N.



K.K. Abdurasulov et al. / Filomat 37:19 (2023), 6395-6415 6401
Proof. Since the algebra n; has two generators {e1, ¢;}, any derivation d on n; is completely determined by

d(eq) and d(ey).
Let

P q
d(€1) = Z e, and d(eZ) = Zﬁ]e]
j=1

i=1
Without loss of generality one can assume that
3t 3t
d(e)) = Z ae;, d(ep) = Zﬁjej, max{p,q} <3t, teN.
i=1 j=1

Applying the derivation rule we have

t t
dles) = d(leyel]) = kZ (Bak-1 + azk—2)esk — kZ Bakesks1 — kZ Q3ke3k+2,
=1 =1 =1
t t t
dley) = —d([es,e1]) = kZ (Bak—1 + 2a3k-2)e3k41 + kZ 3k-1€3k+2 — kE (3k3k43
=1 =1 =1
t
and d([eg, e1]) = =2 ). azk—1€3%43 = 0 implies az_; =0, 1 <k < t.
k=1
Then,
d(es) = d([es, e2]) = [d(e3), e2] + [e3,d(e2)]

t t

t t
= Y. (Bak-1 + @3k—2)e3k2 + X, Pakesi+s — X P3k—2€3k+1 + L. P3k-1€3k42
k=1 k=1 =1 k=1

: t
= kZ (2B3k-1 + azk—2)ezks2 + kZ Bakesks3 — kE B3k-2€3k+1,
-1 -1 -1

t
and d([es, e2]) = Z Bak—263k+3 = 0, gives farp =0, 1 <k <t

d(es) = d([€5,€1]) = [d(es), e1] + [6’5, (e1)]
t
= [ kZ (2B3k—1 + azk—2)esksn + kZ Bskesk+s, e1] + [es,kZ (ar3k—2e3k—2 + azesi)]
1 =} -1
= k21(253k 1+ asg_0)esrs3 — kzl Bakesksa + kE (3k—2€3k43 — A3kE3K+5)
1
= Z (2(B3k—1 + A3k—2)€3k+3 — Pak€3k+s — A3kE3K5)
Consequently,
t . .
d(esin) = kZ (((F = 1)B3k1 + iazk—2)€3k43i-5 + A3kL3k+3i-3),
=}
t
d(esi-1) = kE (iB3k—1 + (i — 1)ask-2)esks3i-a + P3k€3k+3i-3), 5)
=}
t
dles) = kzl(i(ﬁyc—l + A3k-2)3k+3i-3 — P3KE3k+3i-2 — A3kE3k+3i-1)
fori=23,4,..
[

The proof of the following proposition is carried out similarly to that of Proposition 2.1.
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Proposition 2.2. The derivations of the algebra n, are given as follows

t
d(fsir1) = kZ (((4i + T)agier + 2ifgrs2) foivske1 + ka3 foirshed + Agkrd foi+sk+a
-0
+08k+5 fairgkrs — 2Psk+7 fairskr6 + Ask+8 for+s),
t
A(fsir2) = X ((4iagesr + (20 + 1)Bsks2) foivsier + Psk+3foirshss + Pokr7 faissks7 + Pokes foi+sk+8),
k=0
t
A(fsir3) = L (((4 + Dargier + (20 + 1)Bgrs2) foirskes + Poks3foirshrd — Q85 foi+8ke7
k=0
—Bsk+7 fsi+sk+s — Psk+8fsi+8k+9 — 200k+8 f8i+8k+10),
t
A(fira) = X (41 + 2)agisr + (20 + 1)Bsir2) foivsirs — 3Psiss foi+8kes5 — 308k+4 fairshs7

k=0
+3PBsk+7 foirsk+o — Sgk+8 fairgir11),

t
d(fsirs) = kZO(((4i + 3)agrs1 + (20 + 1)Bsis2) fairskrs — 2Psk+3 fairsh+6 — Agks3 foirsk+7

+0gkr4 foir8k+8 + Xgke5 f3ir8k+9 + A8Kk+8 foi+8k+12),

t
A(fsive) = L (4 +d)agier + (20 + 1)Bgrs2) foirshrs + Xske3 foisskes — Agkrd f3ir8k+9
k=0

+0gk+8 foirsk+13),

t
d(fsis7) = kZO(((4i + 3)agis1 + (20 + 2)Bsis2) foirskr7 + Psk+3foirsies + 208k+4 foi+sk+10

—08k+5 fairsk+11 — Pok+7 foi+k+12 T Psk+8 foirsk+13),

t
A(fsis) = XL (4 +d)agier + (20 + 2)Bsis2) firshkrs — Por+3foirshso — 208k43 f3ir8k+10
k=0

—0gkr4 foirsk+11 T Psk+7 foi+8k+13 — 2B8k+8 foi+8k+14 — Xgk+8 fai+sk+15),

where i € N U {0}.

From the propositions above we can immediately obtain the following corollary on the number of nil-
independent derivations of n; and ny.

Corollary 2.3. The maximal number of residually nil-independent derivations of ny and n is 2.

Lemma 2.4. The derivations ad, and ady of pro-solvable Lie algebras with maximal pro-nilpotent ideals n; and ny
with the subspaces Q1 and Q, complementary to ny and ny, respectively, are non-residually nilpotent for any x € Q4
and y € Q.

Proof. We prove the statement for ad,, where x € Q; and for ad,, where y € Q, being similar referring to
Proposition 2.2.

Let us assume the contrary that ady, where x € Q; is residually nilpotent, i.e., (| Im ad’; = 0. Consider
k=1
V = n; 6P Cx as vector spaces. From Proposition 2.1 we conclude that ad, = d for some d € Der(n;). The

condition () Im ad’; = 0 implies that a; = $, = 0. Hance, we have
k=1
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t
[x,esi2] = —azesi — X (((F = 1)Bak—1 + i3k—2)€3k43i=5 + A3kC3k43i-3),
k=2
t
[x,e3i-1] = —Psesi— kZ (iB3k-1 + (i — 1)azk-2)esk+3i-4 + P3ke3k+3i-3),
o
t
[x,e3] = Psesir1 +azesipr — kZ (1(B3k—1 + ¥3k-2)€3k43i-3 — P3KE3k+3i-2 — A3k€3k43i-1),
o

where i € IN.
One can easily verify that ((V)' = 0. This implies that V is residually nilpotent which is a contradic-
i=1
tion. [

As a consequence of the lemma above we obtain the following corollary on the dimensions of the
subspaces Q1 and Q».

Corollary 2.5. The dimensions of Q1 and Q, are not greater than the maximal number of residually nil-independent
derivations of ny and ny, respectively.

2.2. Maximal pro-solvable extensions of pro-nilpotent ideals ny and n;
Here and onward we deal with maximal pro-solvable extensions n; @ Q; and n, ® Q> of pro-nilpotent

ideals n; and np, respectively, where n; = Spanfej, ez, ...}, Q1 = Span{x,y} and n, = Span{fi, f»,...},
Q> =Span{x, y},ie, n;®Q;and dimQ; =2,i=1,2.

Theorem 2.6.

o An arbitrary maximal pro-solvable Lie algebra with maximal pro-nilpotent ideal ni admits a basis {x, y, e1, €3, ...}
such that its table of multiplication is given as follows

[ei ej] = cjeirjasin (1.1),
t
lesico, x] = idesio + X (i — 1)axesissis,
k=2
t
lesii,x] = (i—1Desi1 + Y ikespssioa,
k=2
t
€3, X = ez + ), Ike3k43i—
My (@) = [esi, x] 3 k§2 K€3k+3i-3, ©)
t
[esio, y] = —esiio+ Y. kesrasios,
k=2
t
[esii,y]l = e — kZ Qk3k43i-4/
-
21 k12 k
[x, vl = Y (kaga + Y Y- Daajes,
k=1 iz j=2

wherei € N, a = (ap, a3, ..., ax) € CH*! for some t € N;

o The isomorphism classes of My (at) are represented by algebras with o = (a, a3, ..., azt), where the first two
non-zero components of o are equal to 1.
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Proof. By using Proposition 2.1 for i € IN we get

[esizo,x] = iesip + azes; + kz;(((i — 1)Bak—1 + it3k—2)€3k+3i-5 + A3k€3k+3i-3),

[esict, x] = (i—1)esi—1 + Paesi + Iéz((iﬁak—l + (i — 1)asc—2)esk+3i—a + P3resr+3i-3),

[esi, x] = ez — Pae3ir1 — A3€3i42 + kz;(i(ﬁ?)k—l + (Qt3k-2)3k+3i-3 — P3kC3k+3i-2 — A3kE3k+3i-1),
lesio, y] = (i—TDesia + ajesi + éz(((z’ = DBy 0%, ,)esks3i-5 + A5 €5k43i-3),

lesic1, y]l = desio1 + Blesi + kéz((iﬁgk_l + (i = Dag,_,)esk+3i-a + By e3x43i-3),

lesi, yl = iesi — Biesiv1 — gesiva + kéz(i(ﬁék_l + 0 5)esk43i-3 — P ak3i-2 — A5€3k+3i-1),
[x, vl = k}iil V3k-2€3k-2 + kZ; V3k-1€3k-1 + kX; V3kesk + 01X + Oz

Let us consider the following base change

t t t t
X =x- 2 3k—263(-3 + 2(—,53k€3k—2 +taxex-1), Y =y+ Z Br_1€3k-3 + Z(—ﬁék%k—z + g es-1).
k=2 k=1 k=2 k=1

This yields
t
lesio, x] = idesio+(i—1) ) Usk—e3k+3is,
k=2
t
lesici, x] = (i—1)esicy +1 ), Usk-2€3k+3i-4,
k=2
t
lesi, x] = idesi+1i ), Usk—2e3k+3i-3,
k=2
t
lesio, y]l = (i—1)esica +1 Y, Vak-1€3k+3i-5,
N
lesic,yl = desicg +(i—1) X var-1€3043i-4,
k=2
t
lesi,y] = desi+1 Y Var1€3k43i-3,
S k=2 S s
[x, y] = ) V3k—2€3k—2 + X, V3k-1€3-1 + X, V3kesk + 01X + 02y,
k=1 k=1 k=1
where pzk—2 = k-1 + Qzk-2, Vak-1 = Pyq T XY,
Observe that
t
le, [, y]l = [ler, x], y] —[ler, y], x] = [er, y] = [ X vai-1€3i-2, X]
&
t t . t Z
= ), V3i_1€3i2 — ), V3i—1(l€3i—z + X (- 1)#3k—2€3k+3i—5)
im i= k=2
t t t
= Y1 =ivsiciesio = X, X (i = 1)v3io1 U3k-2€3k43i-5,

i=2 i=2 k=2
t
[ex, [x, ¥yl = [le2, x], yl —[le2, ¥l x] = ;2,1131‘—2[631‘—1#] - [e2, x]
t t t
= Z psi—o(iesi-1 + (i —1) ; V3k—1€3k+3i—4) — ;2 U3zi-2€3i-1

1= =

t t
= Y uzio(i—1)(esic1 + kZ V3k—1€3k+3i-4)-
=2 =2
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On the other hand, we have

[e1, [x, vl [el,kzl V3k-2€3k-2 + kZl V3k-1€3k-1 + kE Vakesk + 61x + O2y/]
= = =1

s s t
= = )Y V3183 + L V3kese1 + 0101 + 02 X, Vai1€3i-2,
pm k=1 io

[e2, [x, vl [e2, kzl V3k—2€3—2 + kzl V3k-1€3k-1 + kE V3kesk + 01X + O2Y]
- = -1

S S

S
= ) V3k-163k — X, V3k€sk+2 + 01 ). Uzi—2€3i—1 + 02€).
k=1 k=1 i

Comparing the coefficients at the appropriate basis elements we conclude that

Y3k—2 = Va1 =01=02=0,

V3ic1 = Mz, 1<k <s, where2 <i<t,
k k=j+2

Y3k = kvygz+ Y Y (i—1)v3i1vsjo, wherel <k <2t-1,
j=2 i=2

Y3k = 0, where2t <k <s.

Taking into account all the above and applying the basis change v’ = y—x we get the table of multiplications
(6).

The second part of the theorem is proven as follows. Consider the base change f : {x,y,e1,6, ..} —
X',y e, €, ...} on the vector space M (a):

ey = AfAley, k>1
€y = AFAS ey, k>1
; k=1 4k
€31 1‘311 Ajesi-1, k>1
S
X’ = Z Bkek + B1,1x + 32,2]/
k=1
3s
v = Y Cer + Crax + Copy, s>t
k=1

Applying the table of multiplications we get

Bia = 1+ By,

Bsk-3 = Bapar, where2 <k<t,

BSk—l = O, where 1 <k < S,

Bsi = 0, wheret <k<s

By = 0

B3yto» = 0, wherel <k<s,

Biiaxy = a]'(AII_lAIE_l + B3r_3, where2 <k <t
Cx = 0, where1 <k < 3s,

Cia = 0

C1,2 = 1.

These imply By 1 =1, Bs—3 = 0, where 2 < k < t and it yields

, g _ _
ak—w, 2<k<t, f(x)=x and f(y) =y.
Therefore, we can choose A; and A; such a way that al’( =1 for the first two non-zero «y.

O
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o Any maximal pro-solvable Lie algebra with the maximal pro-nilpotent ideal n, admits a basis {x,y, fi, f», ...}
with respect to that the table of multiplications is given as follows

My(B) :=

t
[fsis1, ¥yl = 2ifgisr + kZ 2iBr faisgk+1,
|

%wﬂ=(%ﬂmm+é@+wmwm,

[ ir ] = di,‘ i+ ] (12)r . t .

A e Vol = @i+ Dfusa+ £21+ Dpifueain
Usira, 2] = ~2fsisz, [fsiva, yI = (i +1)fsiva + Zt:(zi + 1)Br firsk+a,
[fsir3, X] = —fais3, k=1

[ faivs, x] = fsits, [fsivs, yl = (20 +1)fgiss + kzl(zi + 1)Br fsirsk+s,
[ i+6/ ] =2 i+6/ T

[;ZH; jCC] = —J;Zif% [f8i+6' yl= @i+ 1)f8i+6 + kél(zi + 1)ﬁkf8i+8k+6/

t
[fsis7, yl = (20 +2)fgis7 + El(zi + 2)Br fsirsk+7s

www=(%umw+éw+mmﬁm,

wherei € NU{0}, B = (Bi,...,Bt) € C for some t € N.

o The isomorphism classes of Wi, (B) are represented by algebras with f = (B1, . . ., Bt), where the first two non-zero
components of B are equal to 1.

Proof. We use Proposition 2.2 to get the following products

[f8i+1/x]

[f8i+2/ x]

[f8i+3/x]

[f8i+4/ x]

[f8i+5/x]

[f81'+6/x]

[f81'+7/ x]

t t
(4 + 1) fgin1 + kZ (40 + 1)y gir1 + 20P1gke2) foivsier + kZ (0v1,8c+3 foiskes
) 0

001 gkra foivskra + 01 k45 foirskes — 2B18k+7 foissirs 011,s;<+8 foirsk+s),

4ifgin + é(4i0‘1,8k+1 + (2i + 1)B1,8k+2) foissis2

+ é}(ﬂl,gma fsivgiss + P1,8es7 foirgis7 + P1,gk+s foirskss)-

(4 D + £ (0 Dagson + @+ D) i

+ lé}(ﬂl,sma Soivgirs — O18k+5 f3irsks7 — P1,8k+7 foisskrs — P1,8k+8fsi+8k+0 — 2001 8k+8 fsiv8k+10)-
(4 2) i + 5+ Dt + 20+ D)t

+ é:o (—3P1,8k+3 foi+8k+5 — 301,8k+4 fai+sks7 + 3P1,8k+7 foissk9 — 31 k48 foissk+11)-

t t
(41 + 3)fgies + kZ (47 + 3)aygir1 + (20 + 1)B1grr2) foivskes + kZ (—2B1,8k+3 fi+8k+6
=1 =0

—001,8k+3 foirgk+7 + 01 8k+4 fai+8k+8 + 1845 fBirskr9 + 1 8k+8 foirgk+12)-

t
(41 + 4) fgive + kE ((4i + 4y g1 + (20 + 1)B18ks2) foissiro
)

t
+X (1,843 f8i+8k+8 — (1,8k+4 f8i+8k+9 + (1,8k+8 f8i+8k+13)-

t t
(41 + 3) fgisr + kE (47 + 3)arr gk + (21 + 2)B1,8k42) foivsk7 + kE (B1,8k+3 foi+8ks8
=1 =0

+2a1,8k+4f81+8k+10 - a1,8k+5f8i+8k+11 - ,31,8k+7f8i+8k+12 + 51,8k+8f8i+8k+13)-
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t t
[foirs,x] = (4i+4)fgis+ kZ ((4i + 4)a gk1 + (21 + 2)B1,gx+2) foisshes + kZ (—P,8k+3 fsi+sk+9
=1 =0

=200 8k+3 foir8k+10 — O1,8k+4 fai+8ka11 + P1,8k+7 foir8k+13 — 2P1,8k+8 fois8ke14 — Q1 ,8k+8 foi8k+15)-

t t
[foir,y]l = 2ifsin + kZ ((4i + Daggeer + 212 sk42) foissier + kZ (2843 foirsh+s
-1 —y

+0 84 foirshra + Q28545 fairskss — 2P2,8k+7 foirskro T A2,8k+8 foirsk+8)s

t
[fsiz,yl = QRi+1)fsin+ kZ (i gr + (21 + 1)Bojke2) faivskra
-1
t
+ kZ (Bosk+3 foirsi+s + Pogis7 foirsks7 + Pogk+s foirskss)-
-0
t
[fsia,y] = Qi+1)fsis+ kZ (41 + Daggrsn + (20 + 1)Bogre2) foivskra
-1

t
+ X (Bosk+3 foi+8ked — X2,845 f8ivske7 — Posk+7 foi+8k+8 — P2,8k+8 foirskro — 200 8k+8 foi+8k+10)-
-0

t
[foira, y] = Qi+ Dfsina + kZ (4 + 2)az 841 + (20 + 1)Bosks2) foisshra
=1
t
+ kZ (_3ﬁ2,8k+3f8i+8k+5 - 3052,8k+4f8i+8k+7 + 3,32,8k+7f8i+8k+9 - 3012,8k+8f81’+8k+11)-
=0

t t
[feis,y] = (i+1)fsis + kZ (41 + B)azgrsn + (20 + 1)Bogke2) faivskrs + kZ (—2B2,8k+3 foi+sk+6
=1 =0

=) 843 foi8ke7 + 002 8k+a f3i+8k+8 + 2,845 foirskeo T A2 8k+8 foirgk+12)-

t
[fsire, ¥l = (2i+1)fsie + k;l((‘li + 4y gre1 + (20 + 1)Bosis2) foirsk+o

t
+X (2,843 f8i+8k+8 — A2, 8k+4 f8i+8k+9 + A2,8k+8 f8i+8k+13)-

t t
[fsirr, yl = 2i+2)fsi7 + kZ ((4i + B)azsre + (21 + 2)Bo sk42) foivskr7 + kZ (B2,8k+3 foi+sk+s
) 20

+200) 8kra foirgk+10 = Q2,8k+5 foi+8ke11 — Po,8k+7 foi+sks12 + P2,8k+8 foirsk+13)-

t t
[fsire,y] = (20+2)fsis + kZ (41 + 4z i + (20 + 2)Bok42) faivskrs + kZ (=P 8k+3 foi+8k49
=1 =0

=200 8k+3 foirsk+10 — 02, 8k+4 fai+8ka11 + Po,sk+7 foirsk+13 — 2P2,8k+8 fois8ke14 — X2 8k+8 foir8k+15)-

[x, vl

t
Y (st forat + Ogke fokro + Asias fokes + Agkra fokra + Qsias fores
k=0

+08ks6 fokro + Aske7 fors7 + Agrss fokrg) + 01X + 02y,

whereie NU {0}, t€IN.

Taking the base change
t t
XYoo= x4+ k§1 1 8k+1 fk + kgo(ﬁ1,8k+3 Foke1 — Q1 ge3 foke2 — 1,8k foked + 30 8ke5 fokrd
t t —B1sk+7fok+5 T B1,8k+s fok+e — 18648 fok+7),
y = y+ kgl a0 8k+1 for + kgo(ﬁz,szcw foke1 = Q28043 fake2 — Q2 gked fokes + 502 8645 fokrd

—Po,gk+7 fok+s + Po,sk+s fokre — A2,8k+8 fok+7)-
we get skt = Qjgks3 = Qjskrs = Xjsk5 = Pisks7 = Xjskrs = Pjsk+s =0, where 1 < j < 2.

Under this base change some basis vectors appear with the coefficients 2a; g1 + 1 8k+2 and 2a ger1 + B2,8k+2-
We denote them as follows

B8k = 201, 8k+1 + P1,8k+2, Bosk 1= 202 8k+1 + Po,8k+2-

Consider the identity
LA Lyl = [T, Lyl = (A y) 2] = [, y1 =0
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The left hand side of the identity can also be computed as follows

t
[f1, X (asks1 fore1 + Qe farer + Agies fokes + Qgird fokea + Agkss fokes
k=0
+0gkr6 fok+6 + Agir7 k7 + Agkss fareg) + 01X + 02y]

[fl/ [x/ ]/H

t
= Y (aske2fakes + Oskrs fakra — 3gkra fokes — 2008k45 fokr6 + sk fakes
k=0

—gk+8 fak9) + O1f1.

Therefore, we get
Qg+ = Qgk+3 = Agked = Agks5 = Agkr7 = gk = 01 = 0.

Let us now compute [ f, [x, y]] applying the identity [f>, [x, y]] = [[f2, x], y] — [[f2, y], x] as follows
[f2/ [x/ ]/]] [[fZIx]/ ]/] - [[f2/ y]/x]
t t
[Zl Bigifsis2, 1 = [f2 + Zlﬁz,gz‘fsnz,x]

t t
‘21 ﬁl,Si((Zi + 1) fgiso + kZ (21 + 1)Bask f8i+8k+2)
i= =1
t t t
- 21 B1,8ifair2 — 21 ﬁ2,8i<4i faiso + kZ (21 + 1)Bsk f8i+8k+2)
i iz =]

é 2i(B1,8i — 2P2,8i) fsio + Ztll (ké(Zi + 1)(B1,8iB2,8c — P1,8kP2,8i) f8i+8k+2)~

i=

The same time for [f5, [x, y]] we have

[f2, [x, ¥]]

t
[fz,kZ (gks1 fare1 + Qgkss fares) + O2Y]
-0

t t
Y (=gt fokes — Asire fokrs) + 02(fo + X Pagirafais2)-
k=0 iz

Comparing the coefficients we obtain

Bigk = 2Posk,  Qgks1 = Agirs = 02 = 0.

Now applying the basis change x’ = x — 2y to get the required table of multiplication for 9t (f).
As for the second part we consider a base change in 9i,(g) as follows:

1 = Aih
’
5 = Afp
_ p4k=3 A2k-2 _ Adk—4 421
ék—7 - Al A2 f8k—7; fék,6 = A1 Az fSk—6/
_ A4k=3 42k-1 _ A4k—2 A2k-1
ék—s - A1 Az ks, fék_4 = A1 A2 Sok-4,
y _ Adk=142k-1 / _ A4k g2k-1
8k-3 Al A2 f8k73/ fgk_z - A1 Az f8k72/
y _ Adk—1 A2 ) _ a4k A2k
8k-1 Al AZ fSk_l’ fgk - Al Az fSkr
8s
x’ = ). Bifk + Biix + Bopy
k=1
8s
y = Y Gfi+Crix+Cooy, s>t
k=1

Apply the table of multiplications to get the following constrains for the entries of the base change’s matrix

Ci1=0, Cg6=Cgrs =Cgrs=Cgr3=Cg-1 =Cgr =0, 1 <k <5,
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Cop=1, Cgr=Cgr=0,1<k<s,
Bi=0,1<i<8s,Bi1=1, Bip =0,

, B
Bi=—pg 1<k<t.
A1A2+

Now we choose appropriate values of A; and A, and scale the first two non-zero ; to 1. [J

2.3. On low-dimensional (co)homology groups of My (cr) and Nz ()

In this section we compute low-dimensional cohomology groups of M;(a) and N, (B). We claim that
the cohomology groups H'(L, L) and H?(L, L), where L = M;(a) or Ma(B), are trivial and the algebras are
complete.

Consider the finite dimensional Lie algebras (M (a)) = iUEl(a)/n’{ and WL(B) = EUEz(ﬁ)/n’;. Since,
(M (a))z—1 and (M1 (a))3i— are given as (Miy(a))s; with some zero coefficients, we will be dealing with

(M1 (@))at-
Let
. t—i+1 .
[esio, x] = desio+ ). (i —1)axesissios,
k=2
) t—i+1 )
lesic,x] = (i—1Desici + Y idkesisi-g,
k=2
) t—i+1 .
lesi,x] = desi+ ). iakesiisi-z,
k=2
My (@))ar = t—i+1
lesico, yl = —esica+ Y, axCarszios
k=2
t—i+1
lesic,yl = esio— kZ k€3 43i-4)
=2
t k=j+2 k
[x, vl = Y(karn+ Y Y(i-Daajesy, 1<i<t.
k=1 i j=2

Accordingly, in the case of Miy(B) we refer to (NVi2(B))s:-
Proposition 2.8.
o The algebra (M ()3 is isomorphic to (M1(0))z = (iUEl(O))/n?t.
e The algebra (W (P))st+s is isomorphic to (Ma(0))sr = M (0))/n'.

Proof. First of all by setting x’ = x + y we get

t—i+1

l[esio,x] = (i—1esia+ kZ i0Vke3k43i-5,
o
lesii, x] = iesiq,
. t—i+1 .
lesi, x] = desi+ Y iaesrssios,
k=2
M1 ()3 = t—i+1
(8 (@))st [esio, y]l = —esio+ Y Qesiesios
k=2
t—i+1
lesii,y]l = e — kZ Qk83)43i-4,
=
t k—=j+2 k
7 = k+1 - it7)E3k, =t =1L
[x, v] Y (kaga + Y Y. (i—Daaje 1<i<t
=1 i j=2
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Consider the base change

t=yi
e, =e, e =vilei+ ) Aresxri), 1€1{1,3,4,...,3t},

where
[ -1, if i=1(mod3),
vi= 1, if otherwise,
i
Al =-ay, Ai=—(ap1+ Z kAr_1i_42).
k=2
We obtain ‘
[esiz,x] = (i—1esia,
lesici,x] = iesi,
My ()3 = { lesi x] = e,
[esi, y] = —esia,
lesici,y]l = esic, 1<i<t.

with the multiplication table n;. The second part of the proposition is proven similarly. [
Lemma 2.9. All the derivations of (M1 («x))a and (Mz(B))s: are inner.

The proof of the lemma can be found in [13]. We will be using the lemma to prove the following two
theorems.

Theorem 2.10. All the derivations of My (cx) are inner.

Proof. First, we note that M;(a) = n; & Q, where {x, y} is the basis of Q and {e;, e, x, y} are generators of
My (a). Since a derivation is completely defined by its value on generators it is sufficient to prove the
existence ¢ € M («) such that d(z) = ad.(z) for z € {e1, ez, x, y}.

For any k € IN the quotient algebra

(M1(@))zk = M (@))/m3* = /nf & Q =1y & Q withni =< gy, -+ >

is finite-dimensional solvable Lie algebra, which is maximal solvable extension of the nilpotent Lie algebra
n;. By a base change it is easy to see that any algebra of the family (91 («))sx is isomorphic to (M1(0))s, and
according to Lemma 2.9, the derivations of this algebra are inner.

Any d € Der(M (@) induces a derivation d € Der((M)i(a)) such that d(9) = d(v), 7 = v+ n3*. We claim
that d is well-defined. Indeed, let set

d(ny) = dn, (M) +do(ng), wheredy,, :n; —» g, do:nm — Q.
Taking into account that [Q, Q] € n; and n; to be an ideal of M(«) such that [n;, Q] = n; we derive

d(ny) = d([n1, Q]) = [d(n1), Q] + [n1,d(Q)] = [dn,(n1), Q] + [n1,d(Q)] € my.
Therefore,
do(m1) =0, d(m) Cny.

Now applying the derivation rule we get d(n3) C n¥* for any k € N, that gives the well-definedness of d.
Let

S S

d(e)) = Z ae;, d(ex) = Z bie;, d(x) = Z viei + y11x + vaoy, d(y) = Z Tiei + T11X + To2Y.
i=1

i=1 i=1 i=1
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Note that if 3k > max{s, t} then d(v) = d(5) = ad, for some ¢ = cj + ¥ and any o = v + 1. Let

3k
~ 2 ‘ 3k
Cr = Pri€i + Arx + ry + .

i=1

Then the equalities

imply

de) =[er,al, dlex) = o2&, d(y) = [, &l.

s k t
Y aie; — Axer + Y. (=prsi-1€si + prsiesicr) + prler — X aiesiz) € 13,
=1 - i

i= =2

s k t t

Y. biei — Y. (prsi—esi + Prsi€siez) — Ak L aiesicy — prlez — Y. ajesig) € ¥,

i-1 i-1 - i=

' s ' t ! t ! t

Y Tiei + Ti1X + TopY + Y (Prai2(—esia + X ajesjyzios) + paic1(esi-1 — X @jesjizi-a))
i=1 -1 =2 j=2

t
+ A Z 1- j)a]-e3]- S Tlik.
j=2

Comparing the coefficient at the basis elements we derive

{ Ak =ai+by, pr=Dby prsix=bs 1<i<k,
Pr2 = T2, Pr3i-1 =3, 2<i<k, prsi=—-maszip2 + b3z, 1 <i<k.

6411

)

Therefore, we conclude that ¢, = ¢i11 for any 3k > max{s, t}. Now setting c := ¢y and Wy = Span{x, y,e1, ..., e}

we get d(z)\w, = ad.(z)w, for any z € {e;, e, x, y} and k > max{s, t}. Now taking into account G Wi = My ()

k=1

we obtaind =ad.. O

Here is counterpart of the theorem above for M, (f). To prove that we make use the same arguments as
in Theorem 2.10.

Theorem 2.11. All the derivations of M () are inner.

Proof. Note M>(B) = np ® Q,, where {x, y} is the basis of Q, and {e1, e, x, y} are generators of Mi(B). Consider
the quotient algebra (M (B))sk = Mz ® Qa, where iy = ny/ny® for k € IN. It is isomorphic to (M2(0))s and all
the derivations are inner. Therefore, all the derivation of (M:())sx, k € IN also are inner.

We set

de) = Z aie;, d(e) = Z bie;, d(x)= Z viei + yi1x + yooy, d(y) = Z Tiej + T1,1X + To2Y.-

S S

i=1 i=1 =1 i=1

Let us take 8k > max(s, t}. Then we have d(v) = d(?) = ad;, for some & = ¢, + n¥¥ and any & = v + nf*.

We put

8k
Cxk = Z Pk,i€i + Apx + Uxy + Tlgk
i=1
k
Cr = Y (prsi+1foir1 + Prsivafoir2 + Prsivafsies + Prsicafsiva + Pksits f3is5
i=1
+0k8i+6foir6 + Phsier fie7 + Pisiesfoies) + AKX + ey + 155,
K
[x, &l = X (=prsisifoir1 + 2pksir2fsiv2 + Prsivsfsies — Pksi+sfairs
iz

—2pk siv6 f3i+6 + Phsier faie7) + .
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The equalities
der) = [er,l,  dle2) = ez, &kl

imply

S
Y. aie; — Z(Pk 842 f8i+3 + Pk sied foirs — SPksivaf5ie5 — 20k8i45 f5i+6 + Phsie7foies — Prsivs foir0) — Arfi € T,
iz

=1
and

s k
Y. biei — Y (—Prsis1 foie3 + Pisies foi47 — Phsivofoi+8 + 2Pk si48 foir10) + 2Akf2 — i fo € 1,
i=1 i=1
Comparing the coefficient of the basis elements we derive
Ak=a1, pe=2a1+by, prgiv1 = —bsir3,  Prsiv2 = Asi+3,

_ _ 1 _ 1
8i+3 — i+4/ 8i+4 — T 3U8i+5/ 8i+5 — T H5UBi+6/
Pk,8i agi+4,  Pk,8i 308i+5,  Pk8i 54a8i
Pksi+e = —bgirs,  Pksi+7 = Asi+8, Pkgsi+s = —Agivo, 0<i<k—1.

From (8) we conclude that cx = c+1 forany k > max(s, t}. Thus, setting ¢ := cx and Wi = Span({x, y, ey, . ..

we get d(2)w, = ad.(z)jw, for any z € {e1, e, x, y} and any k > max(s, t}.
Now taking into account | J Wi = Mi,(B) we obtain d = ad..
k=1
0

6412

(8)

,ex}

Now we prove that the second (co)homology groups of the algebras M;(0) and Mi(0) are trivial. Note
that the pro-solvable extensions 9i;(0) and M, (0) just constructed are Borel subalgebras of centerless affine

Lie algebras A(ll) and Agz), respectively
Theorem 2.12. The second cohomology group H?(M1(0), M1(0)) of M1 (0) vanishes.

Proof. Let @ € Z?(M1(0), M;(0)). We show that there exists a f € Hom(;(0), M1 (0)) such that ¢ = f([x, y]) —
[f(x), y] =[x, f(y)]. An element of ¢ of Z2(M1(0), M1 (0)) on the basis {x, y,e1, e, ...} is written in the form

pleie)) = p(i])( ,3’]‘ %32 + Oésl; legeo1 + 063k€3k) +A] Xt AZ nz
sk1}

ple,x) = Z (,33k Pezk- + B Tesk-1 + Briea) + By x + By,
s( 21

ple,y) = Z (ﬁSk Pesk-2 + B3y ‘esk-1 + Bysea) + By x + B3y,

P,y = Z (¥ 2eg_n + y* gy + p¥Fex) + Clx + Cy, i,j €N,
k=1

Choose f € Hom(M;(0), M1 (0)) as follows

s(2,3i-2) s(1,3i— '
flesia) = - kE (,32 2€3k-1 +ﬁ23, 203k) + 0 %esi g + Z P kﬁ‘;’ 0832
-1 k=T i
1
=B 0% = B231 2 Y
23i-1 1,3i-1
flesic1) = S(i)( B2 esea + 3. Lear) + @ e +S(i) kle
3i-1 - 231 3k-2 231 3k 3i-1 e ¢. l—k 131‘_ 3k—-1
= i
1
+B) 5 x+B231 1Y
230 13
fles) = S(Zl)(ﬁ3k 2e3p—0 — B legi_1) + adles; + S(Zl) 3k esc+ 1Bl x + 1B2
3i T a2 WPaai k2T Pai Gkl T LA Bl 13i 139
P
fx) = Y. %ez0 — y*Lege1) + Frax + Fipy,
k=1
p
fy) = kil Ly¥ey + Foix + Fopy, i,j€N,
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with the constraints

3i 4 3i-1 _ 33+j)-1 _ 3(i+/)-1
at+a a = “3;‘—1‘,3]" ,

3j 3i-2 _ 3(i+j)-2 _ . 3G+))-2
a’l +a a = 3i-2,3j *
3i-1 3j-2 _ 3(+j-1) - _ 301
a +ta a 3i-1,3j-2"

Let us consider x = ¢ — 1 € Z2(M(0), M1 (0)), where Y(x, y) = f([x, y]) = [f(x), y] - [x, f(y)] and show that x
is trivial. First of all by the definition for x one has

5(2,3i-2) )
xesio,y) = X ﬁz ,83k—2 + (iF21 — Fap)esi-a,
k=1
5(2,3i-1)
Xic,y) = L Bagitiesc + (= DF21 + Fag)esioa,
5(2,31)
X y) = L Bryes+iFaiesi+ By x+ By,
s(l 3i-2) )
X(esiza,x) = Z (BY5iLae3e-1 + BYsipe30) + (iF11 — Fip + 352 Jesia + By ,X + BT 5 oy,
5(1 31 1)
X(EBi—lrx) = Z (‘81 €3k 2t ,Bl J3i— €3k) + ((l - 1)F1 1+ Fl 2+ ,Bl J3i— 1)631 1+ Bl 3i— X+ Bi3i_1y/
s(l 31) . )
xesi,x) = X (B eaka + Bl ear-1) + (P + Bl )esi,
k=1 ’
_ 1 3@+)-1 _ 3(i+)-2 _ 3(+j-1)  _
X(x,y) = Clx+C. Ay s =0, 05 557 =0, a5 757, =0

Secondly, if we impose to i the cocycle identities Z = 0 (see (3)) we derive the following set of constraints.

2-cocyle identity Constraints
=0,$35=0 k#i, By, =B, =0,
Z(esi,x,y)=0,i>1 = k-2 _ pok o ' '
1,3i 1,3 =0, k=1,
2, =0,k#i,Bl, ,=B}, ,=0
. 231 1,3i— 1,3i— 4
Z(esi-2,x, ) =0,i>1 = -1 _ _
1,3i-2 1 31 =0, k=1,
el _0 k;tz Bl, =B, =0
. 2,3i-1 1,3i- 1,3i- ’
Z(€3i_1,x, ]/) = O/ i1 = 3;(—2 _ —
1,3i— 1 31 0 k= 16
a3k 2 _ a1l _ a2 _
Z(e e ]/)_0 ij>1 - 3113] 3113] A3113] A3113] 0,k21,
3i-1,€3j, =Y L= 4 3(7+]) l . 3 )
Ba vy 23] + Byt = Bosi = (= DB + B3
231 — a1
Z(E e ]/) 0 1]>1 N 3123] 31 23] A3123] A3123] 0, k=1,
3i-27 3j/ =u Lj=z1, 3(l+]) -2 . 1
B2 = 23] + B = oty = (=135 + B
Sk 2 Sk 1 — 0 k > 1
Z(e?)i—lle?) i—27 ]/) = O/ Z/] Z 1/ = 31 15] 2 31 ! 3] 2 2 1
! 231 (i— 1)ﬁ23+ﬁ22+/321,=>ﬁ23 Ban + By
Let
Foi = ~(3,+ 651, F22= 3,
then

X(esi-1,¥) =0,  x(esi2,y) =0, x(esi,y) =0

Here are the constraints obtained by applying a few more identities
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2-cocyle identity Constraints
Z(esio,035,0) =0, i,j > 1 Bl =0, kzi+j golt
(esi-1,3),x) =0, 4,j 21, = 3i-13j = O K2 1E ] Pragis -1 ﬁl 3t 131 1
_ .. 3k—2 . . H3(3i+))-2
Z(esi-2, €3, x) =0, 1,j 2 1, = a3 =0 kzit] 1813i+j) 2 ﬁl 3t 131 2/
ak =0, k#i+ = A2 -0
.. ¥3i-1,3j-2 ] Ay 13j-2 = “3i-1,3j-2 = W

Z(esi-1,€3j-2,x) =0, 1,7 =1, = 3(i+j-1) 3j-2 1

Briaj-1) = Piaja t 131 v

- -1 _ 3k 2 _
Z(esie35,y)=0,14,j=1, = Ay, =ay=0k21,
Z(esi1,e35-1,9) =0, 0,j21, = @345,=0 k=1,
L k _
Z(esi-2, €32, ) =0,1,j>1, = 0131 232 =0, k=1,
Z(esi, e3j,e3k-1) =0, 1,721, = “3, 3i = =0, k>1
As a result we obtain
131 1= (= )ﬁ13+ﬁ121 131 lﬁ13 512/ 13 = Z.‘313
Finally, by setting
_ _p3 _ 2
Fiq= _ﬁ1,3/ Fip = _.31,2
we get

Xx(esi-1,x) =0,  x(esi-2,x) =0, x(esi,x) =0

Therefore, y =0. O
Theorem 2.13. The second cohomology group H*(M,(0), M2(0)) of My (0) vanishes.
Proof. The proof of the theorem is similar to that of Theorem 2.12. [

Conjecture 2.14 (B.A.Omirov). The second cohomology groups of My () for a # 0 and Nip(B) for B # 0 also are
trivial.
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