
Filomat 37:19 (2023), 6365–6372
https://doi.org/10.2298/FIL2319365L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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A decoupled algorithm for fluid-fluid interaction at small viscosity
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Abstract. In this paper, a decoupled finite element algorithm is proposed for solving the fluid-fluid
interaction at small viscosity. The basic idea of the presented algorithm is to first solve an artificial viscosity
elliptic problem with explicit treatment for nonlinear interface conditions, and then solve an artificial
viscosity Stokes problem to correct the previous solution. The unconditional stability is established and the
efficiency is illustrated by some numerical tests.

1. Introduction

The paper aims to design the decoupled finite element algorithm for the nonlinear fluid-fluid interaction
model in the case of small viscosities. The model is given as follows [6, 15]. Find the fluid velocities
ui : (0,T]×Ωi → Rd and pressures pi : (0,T]×Ωi → R satisfying

ui,t − νi∆ui = fi − ui · ∇ui − ∇pi, in Ωi,

−νini · ∇ui · τ = κ|ui − u j|(ui − u j) · τ, ui · ni = 0, on I, for i, j = 1, 2 and i , j,

∇ · ui = 0, ui(0, x) = ui,0(x), in Ωi,

ui = 0, on Γi := ∂Ωi\I,

(1)

where Ω ⊂ Rd (d = 2, 3) is a bounded domain and consists of two sub-domains Ω1 and Ω2 coupled across
their shared interface I. For i = 1, 2, νi > 0 present the kinematic viscosities, fi are the body forces, and κ > 0
is the friction coefficient. Besides, | · | represents the Euclidean norm, the vectors ni are the unit normals on
∂Ωi, and τ is any vector on I such that τ · ni = 0.

Due to the practical importance of the coupled model (1), many research works have been devoted
recently to considering various decoupled numerical methods. Recently, Connors et al. [6] have presented
a decoupled time stepping method called the geometric averaging method, which is unconditionally stable
and two-step (or three-level) scheme. Based on the unconditional stability of the geometric averaging
method, several stable schemes have undergone some evolution and been well further developed [2, 5, 9–11,
13, 14, 16]. In particular, based on the geometric averaging method, the variational multiscale stabilization
is applied to solve the fluid-fluid interaction problem at high Reynolds numbers [3]. Moreover, Aggul
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and Kaya [4] have combined the defect-deferred correction method with the subgrid artificial viscosity.
A penalty projection method is employed for the fluid-fluid interaction problem, where the grad-div
stabilization term is added to impose the mass conservation [1]. Further, an unconditionally energy stable
finite element scheme is designed for the nonlinear fluid-fluid interaction model [12].

In this paper, by combining the idea of scalar auxiliary variable approach by Shen and Xu [17] with
the viscosity splitting technique [19], we propose a decoupled finite element algorithm for the fluid-fluid
interaction at small viscosity. In this algorithm, we first solve an artificial viscosity elliptic problem with
explicit treatment for nonlinear interface conditions, and then solve an artificial viscosity Stokes problem to
correct the previous solution. This algorithm is a decoupled, explicit and unconditionally stable one-step
scheme. It can deal with the considered problem as the small viscosity well.

2. Preliminaries

We introduce the usual L2(Ωi) norm and its inner product by ‖ · ‖0 and (·, ·)Ωi
, respectively. For the

mathematical setting of the fluid-fluid interaction model (1), we introduce the following function spaces:

Xi = {vi ∈ H1(Ωi)
2; vi|Γi

= 0; vi · ni = 0 on I}, Mi = {qi ∈ L2(Ωi); (qi, 1) = 0 }.

For fi an element in the dual space of Xi, its norm is defined by ‖fi‖−1 = sup
vi∈Xi

|(fi ,vi)|
‖∇vi‖0 . In particular, all of the

above notations are adaptable to the sub-domain Ω j.

Next, we introduce a scalar auxiliary variable Q(t) = 1,which satisfies

dQ

dt
=

2
∑

i=1

∫

I

κ|ui − u j|(ui − u j) · uids +Q

2
∑

i=1

∫

I

κ|ui − u j|(u j − ui) · uids. (2)

Note that the sum of the interaction terms in (2) is zero due to

∫

I

|ui − u j|(ui − u j) · ui + |ui − u j|(u j − ui) · uids = 0.

Since Q(t) = 1 for the continues case, the interface condition in (1) can be rewritten as

−νini · ∇ui · τ = Qκ|ui − u j|(ui − u j) · τ on I, for i, j = 1, 2, and i , j. (3)

In fact, the scalar auxiliary variable is a scalar function of t which keeps the original continues system.
Moreover, the introduction of the scalar auxiliary variable allows us to decouple the nonlinear interaction
terms by using a fully explicit scheme, which will be showed in next section. Meanwhile, compared to
the implicit/explicit approach, which has the constraint on spatial and temporal steps [18], the presented
algorithm is unconditionally stable which will be proved.

Based on the above definitions of the function spaces and scalar auxiliary variable, the corresponding
variational formulation of the combination of (1) with (3) is given as follows: find ui : (0,T] → Xi and
pi : (0,T]→ Mi for all (vi, qi) ∈ Xi ×Mi, i, j = 1, 2, i , j such that

(ui,t, vi) + νi(∇ui,∇vi) − (∇ · vi, pi) + (∇ · ui, qi) + b(ui,ui, vi) +Q

∫

I

κ|ui − u j|(ui − u j)vids = (fi, vi).

where b(·, ·, ·) are defined on Xi × Xi × Xi by [7, 8]

b(ui, vi,wi) = ((ui · ∇)vi,wi) +
1
2 ((∇ · ui)vi,wi) =

1
2 ((ui · ∇)vi,wi) − 1

2 ((ui · ∇)wi, vi), ∀ui, vi,wi ∈ Xi.
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3. A decoupled finite element algorithm

From now on, given N > 0, let {tn}Nn=0 be a uniform partition of [0,T] with time step ∆t = T
N , and tn = n∆t.

For i = 1, 2, let πh
i

be a triangulation of Ωi and πh = πh
1
∪ πh

2
. The mesh size h is the largest diameter of the

element in πh. Accordingly, assume the finite element spaces Xh
i
⊂ Xi for velocity fields and Mh

i
⊂ Mi for

pressures satisfying discrete Ladyzenskaja-Babus̆ka-Brezzi condition. The MINI finite elements are known
to satisfy this condition. Furthermore, (un

i,h
, pn

i,h
) denote the fully discrete approximation to the solution

(ui, pi) of (1) at t = tn. Besides, we set fn
i
= fi(tn).

Then, based on a mixed finite element approximation for spatial discretization, the first order backward
Euler scheme for temporal discretization, and explicit treatment for the interface conditions, a fully discrete
and decoupled finite element algorithm is proposed, which involves the viscosity splitting technique aiming
to deal with the small viscosity.

Step 1: Given un
i,h
∈ Xh

i
, un

j,h
∈ Xh

j
and Qn ∈ R, for 0 ≤ n ≤ N − 1, find ûn+1

i,h
∈ Xh

i
and Qn+1 ∈ R satisfying

that for all vi,h ∈ Xh
i
, i, j = 1, 2, i , j,















ûn+1
i,h
− un

i,h

∆t
, vi,h















+ νi(∇ûn+1
i,h ,∇vi,h) + ri(∇ûn+1

i,h − ∇un
i,h,∇vi,h) + b(un

i,h, û
n+1
i,h , vi,h)

+Qn+1

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)vi,hds = (fn+1
i , vi,h),

(4)

and

Qn+1 −Qn

∆t
=

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)ûn+1
i,h ds +Qn+1

2
∑

i=1

∫

κ|un
i,h − un

j,h|(u
n
j,h − un

i,h)un
i,hds. (5)

where the parameters ri ≥ 0 and Q0 = 1.
Step 2: Based on ûn+1

i,h
from (4)-(5), find (un+1

i,h
, pn+1

i,h
) ∈ Xh

i
×Mh

i
satisfying that for all vi,h ∈ Xh

i
, qi,h ∈Mh

i
,















un+1
i,h
− ûn+1

i,h

∆t
, vi,h















+ νi(∇un+1
i,h − ∇ûn+1

i,h ,∇vi,h) + ri(∇un+1
i,h − ∇ûn+1

i,h ,∇vi,h)

− (∇ · vi,h, p
n+1
i,h ) + (∇ · un+1

i,h , qi,h) = 0.

(6)

Remark 3.1. The above numerical approach uses a fully explicit scheme to decouple the nonlinear interface terms and
is unconditionally stable, which will be showed in Theorem 3.3. Additionally, compared with the geometric averaging
algorithm (two-step scheme in time) [6], the proposed algorithm is a one-step scheme in time.

How to solve (4) and (5)?
Firstly, set

ûn+1
i,h = ũn+1

i,h +Qn+1ūn+1
i,h , i = 1, 2. (7)

Then, substituting (7) into (4), we have















ũn+1
i,h
− un

i,h

∆t
, vi,h















+ νi(∇ũn+1
i,h ,∇vi,h) + b(un

i,h, ũ
n+1
i,h , vi,h) + ri(∇ũn+1

i,h − ∇un
i,h,∇vi,h) = (fn+1

i , vi,h), (8)

and














ūn+1
i,h

∆t
, vi,h















+ νi(∇ūn+1
i,h ,∇vi,h) + b(un

i,h, ū
n+1
i,h , vi,h) + ri

(

∇ūn+1
i,h ,∇vi,h

)

+

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)vi,hds = 0. (9)
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Secondly, substituting (7) into (5), we get

(

1

∆t
− An+1

)

Qn+1 =
Qn

∆t
+

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)ũn+1
i,h ds, (10)

where

An+1 =

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)ūn+1
i,h ds +

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
j,h − un

i,h)un
i,hds. (11)

Then, according to ũn+1
i,h

and ūn+1
i,h

obtained from (8) and (9), we get the value of Qn+1 by solving (10).

Finally, we obtain ûn+1
i,h

from (7).

Remark 3.2. The solvability of (10) is proven by −An+1 > 0. Setting vi,h = ūn+1
i,h

in (9) and summing the ensuing

equation from i = 1, 2 (i , j) get

1

∆t

2
∑

i=1

‖ūn+1
i,h ‖

2
0 +

2
∑

i=1

(

νi‖∇ūn+1
i,h ‖

2
0 + ri‖∇ūn+1

i,h ‖
2
0

)

+

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
i,h − un

j,h)ūn+1
i,h ds = 0. (12)

Adding (11) and (12), we arrive at

1

∆t

2
∑

i=1

‖ūn+1
i,h ‖

2
0 +

2
∑

i=1

(

νi‖∇ūn+1
i,h ‖

2
0 + ri‖∇ūn+1

i,h ‖
2
0

)

+ An+1 =

2
∑

i=1

∫

I

κ|un
i,h − un

j,h|(u
n
j,h − un

i,h)un
i,hds.

We assert −An+1 > 0.

In the following part of this section, we analyze the stability of (4)-(6).

Theorem 3.3. Assume initial values u0
i

and body forces fi (i = 1, 2) of the algorithm (4)-(6) satisfying

‖u0
1,h‖

2
0 + ‖u0

2,h‖
2
0 + r1∆t‖∇u0

1,h‖
2
0 + r2∆t‖∇u0

2,h‖
2
0 + |Q0|2 + ∆t

N−1
∑

n=0

ν−1
1 ‖f

n+1
1 ‖

2
−1 + ∆t

N−1
∑

n=0

ν−1
2 ‖fn+1

2 ‖2−1 ≤ C,

then there holds
2

∑

i=1

‖uN
i,h‖

2
0 +

N−1
∑

n=0

2
∑

i=1

(

‖un+1
i,h − ûn+1

i,h ‖
2
0 + ‖ûn+1

i,h − un
i,h‖

2
0

)

+ |QN|2 +
N−1
∑

n=0

|Qn+1 −Qn|2

+

2
∑

i=1

ri∆t‖∇uN
i,h‖

2
0 + ∆t

N−1
∑

n=0

2
∑

i=1

νi‖∇un+1
i,h ‖

2
0 + ∆t

N−1
∑

n=0

2
∑

i=1

(

(ri + νi)‖∇un+1
i,h − ∇ûn+1

i,h ‖
2
0 + ri‖∇ûn+1

i,h − ∇un
i,h‖

2
0

)

+ 2(Qn+1)2∆t

N−1
∑

n=0

∫

I

κ|un
1,h − un

2,h|(u
n
1,h − un

2,h)2ds ≤ C,

where C is a positive constant independent with h and ∆t.

Proof. Taking vi,h = ûn+1
i,h

with i = 1, 2 in (4) and adding the ensuing equations, we have

1

2∆t

2
∑

i=1

(‖ûn+1
i,h ‖

2
0 − ‖un

i,h‖
2
0 + ‖ûn+1

i,h − un
i,h‖

2
0) +

1

2

2
∑

i=1

ri(‖∇ûn+1
i,h ‖

2
0 − ‖∇un

i,h‖
2
0 + ‖∇ûn+1

i,h − ∇un
i,h‖

2
0)

+

2
∑

i=1

νi‖∇ûn+1
i,h ‖

2
0 +Qn+1

∫

I

κ|un
1,h − un

2,h|(u
n
1,h − un

2,h)ûn+1
1,h ds +Qn+1

∫

I

κ|un
2,h − un

1,h|(u
n
2,h − un

1,h)ûn+1
2,h ds

=

2
∑

i=1

(fn+1
i , û

n+1
i,h ),

(13)
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where we have used the polarization identity 2a ·(a−b) = |a|2+ |a−b|2−|b|2 and the skew-symmetric property
of trilinear term. Besides, multiplying the scalar equation (5) by Qn+1 gains

|Qn+1|2 − |Qn|2 + |Qn+1 −Qn|2
2∆t

= Qn+1

(
∫

I

κ|un
1,h − un

2,h|(u
n
1,h − un

2,h)ûn+1
1,h ds +

∫

I

κ|un
2,h − un

1,h|(u
n
2,h − un

1,h)ûn+1
2,h ds

)

+ (Qn+1)2

(∫

I

κ|un
1,h − un

2,h|(u
n
2,h − un

1,h)un
1,hds +

∫

I

κ|un
2,h − un

1,h|(u
n
1,h − un

2,h)un
2,hds

)

.

(14)

Then, combining (13) and (14) and multiplying the ensuing equation by 2∆t lead to

2
∑

i=1

(‖ûn+1
i,h ‖

2
0 − ‖un

i,h‖
2
0 + ‖ûn+1

i,h − un
i,h‖

2
0) +

2
∑

i=1

ri∆t
(

‖∇ûn+1
i,h ‖

2
0 − ‖∇un

i,h‖
2
0 + ‖∇ûn+1

i,h − ∇un
i,h‖

2
0

)

+ 2∆t

2
∑

i=1

νi‖∇ûn+1
i,h ‖

2
0 + |Qn+1|2 − |Qn|2 + |Qn+1 −Qn|2 + 2(Qn+1)2∆t

∫

I

κ|un
1,h − un

2,h|(u
n
1,h − un

2,h)2ds

= 2∆t

2
∑

i=1

(fn+1
i , û

n+1
i,h ) ≤

2
∑

i=1

(νi∆t‖∇ûn+1
i,h ‖

2
0 + ν

−1
i ∆t‖fn+1

i ‖
2
−1).

(15)

Next, setting (vi,h, qi,h) = (un+1
i,h
, pn+1

i,h
) with i = 1, 2 in (6) and adding the ensuing equation, we arrive at

1

2∆t

2
∑

i=1

(‖un+1
i,h ‖

2
0 − ‖ûn+1

i,h ‖
2
0 + ‖un+1

i,h − ûn+1
i,h ‖

2
0) +

1

2

2
∑

i=1

(νi + ri)(‖∇un+1
i,h ‖

2
0 − ‖∇ûn+1

i,h ‖
2
0)

+
1

2

2
∑

i=1

(νi + ri)(‖∇un+1
i,h − ∇ûn+1

i,h ‖
2
0) = 0.

Finally, multiplying above equation by 2∆t, combining it with (15) and summing the ensuing inequality
with respect to n from 0 to N − 1, we get desired result.

4. Numerical experiments

4.1. Stability test.

SetΩ1 = [0, 1]× [0, 1] andΩ2 = [0, 1]× [−1, 0].Obviously, the interface I = (0, 1)× {0} in this experiment.
Then, choose the initial values u0

1
= (11,1(0, x, y), 11,2(0, x, y))⊤ and u0

2
= (12,1(0, x, y), 12,2(0, x, y))⊤ with

11,1 = x(1 − x)(1 − 2y), 11,2 = y(1 − y)(2x − 1), 12,1 = x(1 − x)(1 + 2y), 12,2 = y(1 + y)(2x− 1).

The boundary data ui|Γi
= 0 and the body forces f1 = f2 = 0. Take the mesh size h = 1/32 and the final time

T = 10.Next, denote the kinetic energy E(u) =
2
∑

i=1

∫

Ωi
|ui,h|2dΩi.

Figure 1 displays the time evolution of the kinetic energy E(u) and the auxiliary variable Q with some
different time steps ∆t = 0.5, 0.1, 0.05, 0.01. We observe that all energy curves computed by the current
algorithm show monotonic decay for all time steps and the value of the auxiliary variable Q tends to 1
when the time step ∆t decreases.
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t
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E
(u
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∆t=0.5
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∆t=0.01

1 1.1 1.2 1.3 1.4 1.5

×10-4

0

5

10

15

(a)

t
0 2 4 6 8 10

Q

0.99998

1

1.00002

1.00004

1.00006

1.00008

∆t=0.5
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∆t=0.05
∆t=0.01

(b)

Figure 1: The values of the kinetic energy (a) and scalar variable Q (b) for ν1 = 0.05, ν2 = 0.1, κ = 100 and r1 = r2 = 0.15.

4.2. Convergence rate test.

In this subsection, we present an analytical solution problem to test the convergence rate. Based on the
same computational domain as the previous subsection, the analytic solution of the problem (1) is presented
as follows [18]:

u1,1(t, x, y) = −x2 exp(−t)(x− 1)2(y − 1),

u1,2(t, x, y) = xy exp(−t)(6x+ y − 3xy + 2x2y − 4x2 − 2),

u2,1(t, x, y) = −x exp(−t)(x− 1)

(

y2x(x − 1)
(

ν1

ν2
+ 1

)

−
ν

1/2
1

y2 exp(t/2)

κ1/2
− x(x − 1) +

ν
1/2
1

exp(t/2)

κ1/2
+
ν1xy(x − 1)

ν2

)

,

u2,2(t, x, y) = −
y(2x− 1) exp(−t)

3ν2κ1/2

(

6ν2x2(κ)1/2 − 6ν2xκ1/2 − 3ν1/2
1
ν2 exp(t/2)− 2ν1x2y2κ1/2 − 2ν2x2y2κ1/2

+ 3ν1xyκ1/2 + 2ν1xy2κ1/2 − 3ν1x2yκ1/2 + 2ν2xy2κ1/2 + ν
1/2
1
ν2 y2 exp(t/2)

)

,

p1(t, x, y) = p2(t, x, y) = exp(−t) cos(πx) sin(πy).

The chosen right-hand sides f1 = ( f1,1(t, x, y), f1,2(t, x, y)) and f2 = ( f2,1(t, x, y), f2,2(t, x, y)) are obliged to
satisfy that (u1, p1) and (u2, p2) are the solutions of the original problem, respectively. For the sake of
simplicity, we denote the errors err(uN

i
) = ‖ui(tN) − uN

i
‖0 and

Err(ui) =















∆t

N
∑

n=1

‖∇(ui(tn) − un
i )‖20















1
2

, Err(pi) =















∆t

N
∑

n=1

‖pi(tn) − pn
i ‖

2
0















1
2

.

Next, we set the value of parameters κ = 100, r1 = r2 = 0.1, ν1 = 5.0E − 2 and ν2 = 1.0E − 1. Four values
of the mesh size h = ∆t = 1/4, 1/16, 1/32 and 1/64 are picked to verify the convergence rate. Moreover, the
convergence rates of the current algorithm on the subdomains Ω1 and Ω2 are shown in Figure 2, which
shows that the proposed algorithm works well and keeps optimal convergence rate. To further verify the
spatial convergence rate for the L2-norm of the velocity, we select a final time T = 1.0E−2, fix∆t = T/10, and
then compute on successively refined uniform meshes. For temporal convergence, we choose the time step
∆t = h2 and vary the mesh sizes h = 1/4, 1/8, 1/16, 1/24 and 1/32. Errors and convergence rates are showed
in Figure 3. As expected, from this figure, we find that the current algorithm keeps the convergence rates.

4.3. Submarine mountain problem.

In this example, we test the proposed algorithm by a practical problem, called submarine mountain

problem [1, 16]. SetΩ1 = [0, 1]× [0, 0.1] andΩ2 = {(x, y) : 7
40

(

sin( 7
2 )− (2x− 1)sin(7x− 7

2 )
)

≤ y ≤ 0, 0 ≤ x ≤ 1}.
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Figure 2: Errors and convergence rates for the velocity field (a), pressure (b) with T = 1, ∆t = h.
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Figure 3: Errors and spatial convergence rates (a), and temporal convergence rates (b) of the velocity field.

The body forces f1 and f2 are chosen to ensure that

u1,1(t, x, y) = ν1 exp (−2t)x2(1 − x)2(1 + y) + exp (−t)x(1 − x)ν1/
√
κ,

u1,2(t, x, y) = ν1 exp (−2t)xy(2 + y)(1− x)(2x − 1) + exp (−t)y(2x − 1)ν1/
√
κ,

u2,1(t, x, y) = ν1 exp (−2t)x2(1 − x)2(1 + ν1/ν2y),

u2,2(t, x, y) = ν1 exp (−2t)xy(1 − x)(2x− 1)(2 + ν1/ν2y),

p1(t, x, y) = p2(t, x, y) = exp (−t) cos(πx) sin(πy),

is the solution of problem (1). Besides, the initial values and boundary terms on Γi are chosen by the above
exact solution. Note that if you compute the jump using the above solution, then you will realize that when
y = 0 there exists jump. In fact, we have u1,1(t, x, 0)−u2,1(t, x, 0) = exp (−t)x(1−x)ν1/

√
κ.Hence, the interface

interaction will appear.
Considering the viscosity of fluid in atmosphere is smaller than that in ocean, we choose ν1 = 5.0E − 3

and ν2 = 5.0E − 1. Besides, we fix ∆t = h = 1/64, κ = 100 and T = 1. Figure 4 presents numerical results of
the velocity by the proposed algorithm and the geometric averaging algorithm [6]. From this figure, we see
that, for the small viscosity problem, the numerical results of the current algorithm has better numerical
results than that of the geometric averaging algorithm.
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Figure 4: Plots of the velocity by the geometric averaging algorithm (a) and the proposed algorithm (b) with r1 = r2 = 5.0E − 1.
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