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Abstract. In this paper, we introduce several numerical radius inequalities involving off-diagonal part of
2 × 2 positive semidefinite block matrices and their diagonal blocks. It is shown that if A,B,C ∈Mn(C) are

such that
[

A B∗

B C

]
≥ 0, then

w2r(B) ≤
1
2

√∥∥∥A4rα + A4r(1−α)
∥∥∥ ∥∥∥C4rα + C4r(1−α)

∥∥∥,
and

w2r(B) ≤
∥∥∥αA

r
α + (1 − α)C

r
1−α

∥∥∥ ,
for 0 < α < 1, r ≥ 1.Moreover, we establish some numerical radius inequalities for products and sums

of matrices.

1. Introduction

Let Mn(C) denote the algebra of n × n complex matrices. A matrix A ∈ Mn(C) is called Hermitian if
A∗ = A, where A∗ is the complex conjugate of A. A Hermitian matrix is said to be positive semidefinite if
⟨Ax, x⟩ ≥ 0 for all x ∈ Cn. In this paper, we adopt A ≥ 0 to mean A is positive semidefinite.

The numerical radius w(.) of a matrix A ∈Mn(C) is defined as

w(A) = max {|⟨Ax, x⟩| : x ∈ Cn, ∥x∥ = 1} .

One of the significant inequalities for the numerical radius is the power inequality;

w(Ak) ≤ wk(A) (1)

for A ∈Mn(C), k = 1, 2, ...[14].
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The numerical radius is one of the interesting norms that are defined onMn(C) which is weakly unitarily
invariant since for any unitary matrix U, w(UAU∗) = w(A) and it is equivalent to the usual operator norm
∥.∥. In fact, for any A ∈Mn(C),

1
2
∥A∥ ≤ w(A) ≤ ∥A∥ . (2)

Kittaneh ([17], [18]) had established many improvements of inequality (2) by employing ingenious
techniques;

w(A) ≤
1
2

(∥A∥ +
∥∥∥A2

∥∥∥ 1
2 ), (3)

1
4

∥∥∥|A∗|2 + |A|2∥∥∥ ≤ w2(A) ≤
1
2

∥∥∥|A∗|2 + |A|2∥∥∥ . (4)

Several numerical radius inequalities generalizing and improving inequality (2) have been given in
[1],[19], [20], and recently in [3], [4] and [5].

Authors in [10] generelized the second part of inequality (4) as follows: If A, B ∈Mn(C), then

wr(A) ≤
1
2

∥∥∥|A∗|2αr + |A|2(1−α)r
∥∥∥ (5)

and

wr(A + B) ≤ 2r−2
∥∥∥|A∗|2(1−α)r + |B∗|2(1−α)r + |A|2αr + |B|2αr

∥∥∥ (6)

for 0 < α < 1 and r ≥ 1.
For other results involving the numerical radius inequalities, see [8], [9] and [11].
One of the topics that has attracted the attention of researchers in recent years is finding matrix inequal-

ities related to positive semidefinite block matrices of the form T =
[

A B∗

B C

]
, where A,B,C ∈Mn(C).

Hiroshima [13] proved that if the off-diagonal part B is Hermitian, then∥∥∥∥∥∥
[

A B
B C

] ∥∥∥∥∥∥ ≤ ∥A + C∥ . (7)

On the other hand, an estimation of the numerical radius of the off-diagonal block of T was given by
Burqan and Al-Saafin [6] as follows

w(B) ≤
1
2
∥A + C∥ . (8)

After that, Burqan and Abu-Rahma [7] generalized inequality (8) as follows

wr(B) ≤
1
2
∥Ar + Cr

∥ , for r ≥ 1. (9)

An interesting generalization of inequality (9) proved by Yang [22] sserts that if
[

A B∗

B C

]
≥ 0, and f is

an increasing geometrically convex function, then

f (w(B)) ≤
1
2

∥∥∥ f (A) + f (C)
∥∥∥ . (10)

In this paper, we are interested in finding new upper bounds for the numerical radius of the off-diagonal
block of positive semidefinite matrix based on the spectral norm of the diagonal blocks.Another generaliza-
tion of inequality (9) which yields new numerical radius inequalities is introduced. More numerical radius
inequalities including products and sums of matrices will be considered.
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2. Lemmas

The following lemmas are essential to obtain and prove our results. The first lemma is a Cauchy-
Schwarz inequality involving block positive semidefinite matrices [21]. The second lemma is an application
of Jensen’s inequality, can be found in [12]. The third lemma known as Buzano’s inequality can be found
in [20]. The fourth lemma follows from the spectral theorem for positive matrices and Jensen’s inequality
(see, e.g., [16]). The fifth lemma called Heinz inequality can be found in [15] and the last lemmas can be
found in [16].

Lemma 2.1. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then

∣∣∣〈Bx, y
〉∣∣∣2 ≤ ⟨Ax, x⟩

〈
Cy, y

〉
, f or x, y ∈ Cn.

Lemma 2.2. Let a, b ≥ 0 and 0 ≤ α ≤ 1. Then

aαb1−α
≤ αa + (1 − α)b ≤ (αar + (1 − α)br)

1
r , f or r ≥ 1.

Lemma 2.3. Let x, y, z ∈ Cn with ∥z∥ = 1. Then∣∣∣⟨x, z⟩ 〈z, y
〉∣∣∣ ≤ 1

2

(
∥x∥

∥∥∥y
∥∥∥ + ∣∣∣〈x, y

〉∣∣∣) .
Lemma 2.4. Let A ∈Mn(C) be positive semidefinite and x ∈ Cn with ∥x∥ = 1. Then

⟨Ax, x⟩r ≤ ⟨Arx, x⟩ , for r ≥ 1,
⟨Arx, x⟩ ≤ ⟨Ax, x⟩r , for 0 ≤ r ≤ 1.

Lemma 2.5. Let A ∈Mn(C), x, y ∈ Cn and 0 ≤ α ≤ 1. Then∣∣∣〈Ax, y
〉∣∣∣2 ≤ 〈

|A|2α x, x
〉 〈
|A∗|2(1−α) y, y

〉
.

Lemma 2.6. Let A ∈Mn(C) and 0 < β < 1. Then[
|A∗|2β A∗

A |A|2(1−β)

]
≥ 0.

3. Main Results

In the beginning of this section, we introduce a new upper bound for the numerical radius of the
off-diagonal part of positive semidefinite block matrices based on the spectral norm of the diagonal blocks.

Theorem 3.1. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 and let 0 < α < 1.Then

w2r(B) ≤
1
2

√∥∥∥A4rα + A4r(1−α)
∥∥∥ ∥∥∥C4rα + C4r(1−α)

∥∥∥ for r ≥ 1. (11)

Proof. According to Lemma 2.1, for any unit vector x ∈ Cn we have

|⟨Bx, x⟩|2 ≤ (⟨Ax, x⟩ ⟨x,Ax⟩)
1
2 (⟨Cx, x⟩ ⟨x,Cx⟩)

1
2 .
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Since A,C are positive semidefinite Lemma 2.3, yields that

|⟨Bx, x⟩|2 ≤

(
∥Ax∥2 + ⟨Ax,Ax⟩

2

) 1
2
(
∥Cx∥2 + ⟨Cx,Cx⟩

2

) 1
2

=
〈
A2x, x

〉 1
2
〈
C2x, x

〉 1
2 .

Thus, for any r ≥ 1, we have

|⟨Bx, x⟩|2r
≤

〈
A2x, x

〉 r
2
〈
C2x, x

〉 r
2

Applying Lemma 2.5 to get

〈
A2x, x

〉 r
2
≤

(〈
A4αx, x

〉 r
2
〈
A4(1−α)x, x

〉 r
2
) 1

2

By the arithmetic geometric mean inequality, we get

〈
A2x, x

〉 r
2
≤


〈
A4αx, x

〉r
+

〈
A4(1−α)x, x

〉r

2


1
2

.

Lemma 2.4 implies that

〈
A2x, x

〉 r
2
≤


〈
A4rα + A4r(1−α)x, x

〉
2


1
2

.

Similarly

〈
C2x, x

〉 r
2
≤


〈
C4rα + C4r(1−α)x, x

〉
2


1
2

.

Theefore,

|⟨Bx, x⟩|2r
≤


〈
A4rα + A4r(1−α)x, x

〉
2


1
2

〈
C4rα + C4r(1−α)x, x

〉
2


1
2

=
1
2

√(〈
A4rα + A4r(1−α)x, x

〉) (〈
C4rα + C4r(1−α)x, x

〉)
.

and so

w2r(B) = max
{
|⟨Bx, x⟩|2r : x ∈ Cn, ∥x∥ = 1

}
≤ max

{
1
2

√(〈
A4rα + A4r(1−α)x, x

〉) (〈
C4rα + C4r(1−α)x, x

〉)
: x ∈ Cn, ∥x∥ = 1

}
≤

1
2

√∥∥∥A4rα + A4r(1−α)
∥∥∥ ∥∥∥C4rα + C4r(1−α)

∥∥∥.
This completes the proof.

In particular, considering r = 1 and α = 1
2 in the previus theorem, we get the following known result.
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Corollary 3.2. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0.Then

w2(B) ≤ ∥A∥ ∥C∥ . (12)

Another bound for the numerical radius of the off-diagonal block of positive semidefinite block matrices
is the following one:

Theorem 3.3. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 and let 0 < α < 1.Then

w2(B) ≤
1
2

√(1
2

∥∥∥A4α + A4(1−α)
∥∥∥ + ∥∥∥A2

∥∥∥) (1
2

∥∥∥C4α + C4(1−α)
∥∥∥ + ∥∥∥C2

∥∥∥). (13)

Proof. According to Lemma 2.1, for any unit vector x ∈ Cn we have

|⟨Bx, x⟩|2 ≤ ⟨Ax, x⟩ ⟨Cx, x⟩ .

Since A,C are positive semidefinite, Lemma 2.5 yields that

|⟨Bx, x⟩|2 ≤

(〈
A2αx, x

〉 〈
A2(1−α)x, x

〉) 1
2
(〈

C2αx, x
〉 〈

C2(1−α)x, x
〉) 1

2

=
(〈

A2αx, x
〉 〈

x,A2(1−α)x
〉) 1

2
(〈

C2αx, x
〉 〈

x,C2(1−α)x
〉) 1

2 .

Applying Lemma 2.3, we have

|⟨Bx, x⟩|2 ≤
1
2

√(∥∥∥A2αx
∥∥∥ ∥∥∥A2(1−α)x

∥∥∥ + 〈
A2αx,A2(1−α)x

〉) (∥∥∥C2αx
∥∥∥ ∥∥∥C2(1−α)x

∥∥∥ + 〈
C2αx,C2(1−α)x

〉)
=

1
2

√(〈
A4αx, x

〉 1
2
〈
A4(1−α)x, x

〉 1
2 +

〈
A2αx,A2(1−α)x

〉) (〈
C4αx, x

〉 1
2
〈
C4(1−α)x, x

〉 1
2 +

〈
C2αx,C2(1−α)x

〉)
.

By the arithmetic geometric mean inequality, we get

|⟨Bx, x⟩|2 ≤

√( 1
4

〈(
A4α + A4(1−α)

)
x, x

〉
+

1
2

〈
A2αx,A2(1−α)x

〉) (1
4

〈(
C4α + C4(1−α)

)
x, x

〉
+

1
2

〈
C2αx,C2(1−α)x

〉)
.

Which is equivalent to

|⟨Bx, x⟩|2 ≤

√( 1
4

〈(
A4α + A4(1−α)

)
x, x

〉
+

1
2

〈
A2x, x

〉) (1
4

〈(
C4α + C4(1−α)

)
x, x

〉
+

1
2

〈
C2x, x

〉)
.

Therefore,

w2(B) = max
{
|⟨Bx, x⟩|2 : x ∈ Cn, ∥x∥ = 1

}
≤ max

 1
2

√( 1
2

〈(
A4α + A4(1−α)

)
x, x

〉
+

〈
A2x, x

〉) (1
2

〈(
C4α + C4(1−α)

)
x, x

〉
+

〈
C2x, x

〉)
: x ∈ Cn, ∥x∥ = 1


≤

1
2

√( 1
2

∥∥∥A4α + A4(1−α)
∥∥∥ + ∥∥∥A2

∥∥∥) (1
2

∥∥∥C4α + C4(1−α)
∥∥∥ + ∥∥∥C2

∥∥∥).

It should be mentioned here that for r = 1,inequality (11) becomes

w2(B) ≤
1
2

√∥∥∥A4α + A4(1−α)
∥∥∥ ∥∥∥C4α + C4(1−α)

∥∥∥
and since

∥∥∥P2
∥∥∥ ≤ 1

2

∥∥∥P4α + P4(1−α)
∥∥∥ for any positive semidefinite matrix P ∈Mn(C), inequality (13) is stronger

than inequality (11) for r = 1.
In whats follow, we introduce a generalization of inequality (9), which yields interesting new numerical

radius inequalities.
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Theorem 3.4. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 and let 0 < α < 1.Then

w2r(B) ≤
∥∥∥αA

r
α + (1 − α)C

r
1−α

∥∥∥ for r ≥ 1. (14)

Proof. Since
[

A B∗

B C

]
≥ 0, for every unit vector x ∈ Cn Lemma 2.1 implies

|⟨Bx, x⟩|2 ≤ ⟨Ax, x⟩ ⟨Cx, x⟩

=
〈(

A
1
α

)α
x, x

〉 〈(
C

1
1−α

)1−α
x, x

〉
Since 0 < α < 1, Lemma 2.4 yields that

|⟨Bx, x⟩|2 ≤
〈
A

1
α x, x

〉α 〈
C

1
1−α x, x

〉1−α

Therefore, by using Lemma 2.2,we have

|⟨Bx, x⟩|2 ≤
(
α
〈
A

1
α x, x

〉r
+ (1 − α)

〈
C

1
1−α x, x

〉r) 1
r

Again, applying Lemma 2.4 for r ≥ 1 to get

|⟨Bx, x⟩|2 ≤
(
α
〈
A

r
α x, x

〉
+ (1 − α)

〈
C

r
1−α x, x

〉) 1
r .

Thus,

|⟨Bx, x⟩|2r
≤

〈(
αA

r
α + (1 − α)C

r
1−α

)
x, x

〉
.

and so

w2r(B) = max
{
|⟨Bx, x⟩|2r : x ∈ Cn, ∥x∥ = 1

}
≤ max

{〈(
αA

r
α + (1 − α)C

r
1−α

)
x, x

〉
: x ∈ Cn, ∥x∥ = 1

}
=

∥∥∥αA
r
α + (1 − α)C

r
1−α

∥∥∥ ,
as required.

Using the fact that if
[

A B∗

B C

]
≥ 0, then

[
X∗AX X∗B∗Y∗

YBX YCY∗

]
≥ 0 for any X,Y ∈ Mn(C), we have the

following corollary.

Corollary 3.5. Let A,B,C,X,Y ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 and let 0 < α < 1. Then

w2r(YBX) ≤
∥∥∥α (X∗AX)

r
α + (1 − α) (YCY∗)

r
1−α

∥∥∥ for r ≥ 1. (15)

4. Inequalities for Sums and Products of Matrices

Interesting inequalities for numerical radius of products and sums of matrices are introduced. The
following result generalize inequality (6).

Theorem 4.1. Let A,B ∈Mn(C), 0 < α < 1 and 0 < β < 1. Then

w2r(A + B) ≤
∥∥∥∥∥α (
|A∗|2β + |B∗|2β

) r
α
+ (1 − α)

(
|A|2(1−β) + |B|2(1−β)

) r
1−α

∥∥∥∥∥ , for r ≥ 1. (16)
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Proof. Since the sum of positive semidefinite matrices is also positive semidefinite and by applying Lemma
2.6, we have[

|A∗|2β + |B∗|2β A∗ + B∗

A + B |A|2(1−β) + |B|2(1−β)

]
≥ 0.

Theorem 3.4 implies that

w2r(A + B) ≤
∥∥∥∥∥α (
|A∗|2β + |B∗|2β

) r
α
+ (1 − α)

(
|A|2(1−β) + |B|2(1−β)

) r
1−α

∥∥∥∥∥ .
This completes the proof.

For β = 1
2 in inequality (16), we get the following power numerical radius inequality for sum matrices.

w2r(A + B) ≤
∥∥∥α(|A∗| + |B∗|)

r
α + (1 − α)(|A| + |B|)

r
1−α

∥∥∥ , for r ≥ 1. (17)

Now, an estimate for the numerical radius of commutators is produced based on the following result.

Theorem 4.2. Let A,B,C,D,X,Y ∈Mn(C), 0 < α < 1. Then

w2r(Y(AC∗ + BD∗)X) ≤
∥∥∥α(X∗(AA∗ + BB∗)X)

r
α + (1 − α)(Y(CC∗ +DD∗)Y∗)

r
1−α

∥∥∥ , for r ≥ 1 (18)

Proof. We know that[
AA∗ + BB∗ AC∗ + BD∗

CA∗ +DB∗ CC∗ +DD∗

]
=

[
A B
C D

] [
A B
C D

]∗
≥ 0,

for any A,B,C,D ∈Mn(C). So by Corollary 3.5, we have

w2r(Y(AC∗ + BD∗)X) ≤
∥∥∥α(X∗(AA∗ + BB∗)X)

r
α + (1 − α)(Y(CC∗ +DD∗)Y∗)

r
1−α

∥∥∥ ,
for any X,Y ∈Mn(C).

In view of the inequality (18) by letting X = Y = I, C∗ = B and D∗ = ±A, we get the following numerical
radius inequality for commutators.

w2r(AB ± BA) ≤
∥∥∥α(AA∗ + BB∗)

r
α + (1 − α)(A∗A + B∗B)

r
1−α

∥∥∥ , for 0 < α < 1 and r ≥ 1. (19)

and letting X = Y = I, C = B and D = B = 0, we get

w2r(AB∗) ≤
∥∥∥α(AA∗)

r
α + (1 − α)(BB∗)

r
1−α

∥∥∥ , for 0 < α < 1 and r ≥ 1. (20)

5. Generalization of Hiroshima’s inequality

For a positive semidefinite block matrix T =
[

A B∗

B C

]
,where A,B,C ∈Mn(C), it is well-known that

∥T∥ =

∥∥∥∥∥∥
[

A B∗

B C

] ∥∥∥∥∥∥ ≤ ∥A∥ + ∥C∥. (21)

However, if B is Hermitian, Hiroshima ([13]) obtained a refinement, more precisely

∥T∥ =

∥∥∥∥∥∥
[

A B
B C

] ∥∥∥∥∥∥ ≤ ∥A + C∥. (22)

In this section we obtain an improvement of the inequality (22). In order to do this, we need the following
useful decomposition achieved by Bourin et al. in Corollaries 2.1 and 2.2 in [2].
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Lemma 5.1. Let A,B,C ∈ Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then, there exist unitary matrices U,V,W,Z ∈

M2n(C) such that[
A B∗

B C

]
= U

[
A+C

2 + Re(B∗) 0
0 0

]
U∗ + V

[
0 0
0 A+C

2 − Re(B∗)

]
V∗, (23)

and [
A B∗

B C

]
=W

[
A+C

2 + Im(B∗) 0
0 0

]
W∗ + Z

[
0 0
0 A+C

2 − Im(B∗)

]
Z∗. (24)

Here Re(X) and Im(X) denote the real and imaginary part of the matrix X ∈Mn(C), i.e.

Re(X) =
X+X∗

2
and Im(X) =

X−X∗

2i
. (25)

We now derive a generalization of Hiroshima’s inequality.

Theorem 5.2. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then,

∥∥∥∥∥∥
[

A B∗

B C

] ∥∥∥∥∥∥ ≤ min
{
α, β

}
, (26)

where
α =

∥∥∥∥∥A + C
2
+ Re(B∗)

∥∥∥∥∥ + ∥∥∥∥∥A + C
2
− Re(B∗)

∥∥∥∥∥ ,
and

β =

∥∥∥∥∥A + C
2
+ Im(B∗)

∥∥∥∥∥ + ∥∥∥∥∥A + C
2
− Im(B∗)

∥∥∥∥∥ .
Proof. By (23) and the fact that ∥ · ∥ is unitarily invariant we have∥∥∥∥∥∥

[
A B∗

B C

] ∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
[

A+C
2 + Re(B∗) 0

0 0

] ∥∥∥∥∥∥ +
∥∥∥∥∥∥
[

0 0
0 A+C

2 − Re(B∗)

] ∥∥∥∥∥∥ .
Since

∥∥∥∥∥∥
[

R 0
0 S

] ∥∥∥∥∥∥ = max{∥R∥, ∥S∥} for any R,S ∈Mn(C), we have

∥∥∥∥∥∥
[

A B∗

B C

] ∥∥∥∥∥∥ ≤
∥∥∥∥∥A + C

2
+ Re(B∗)

∥∥∥∥∥ + ∥∥∥∥∥A + C
2
− Re(B∗)

∥∥∥∥∥ .
The proof of the other inequality is similar using the imaginary part.

From the previously obtained statement, we obtain the following inequality.

Proposition 5.3. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then,

∥∥∥∥∥∥
[

0 B∗

B 0

] ∥∥∥∥∥∥ ≤ min
{
α, β

}
, (27)

where
α =

∥∥∥∥∥A + C
2
+ Re(B∗)

∥∥∥∥∥ + ∥∥∥∥∥A + C
2
− Re(B∗)

∥∥∥∥∥ ,



A. Burqan et al. / Filomat 37:19 (2023), 6355–6363 6363

and
β =

∥∥∥∥∥A + C
2
+ Im(B∗)

∥∥∥∥∥ + ∥∥∥∥∥A + C
2
− Im(B∗)

∥∥∥∥∥ .
In particular,

w(B) ≤ ∥B∥ ≤ min{α, β}. (28)

Finally, as consequence of Theorem 5.2 we obtain the Hiroshima’s Theorem.

Corollary 5.4. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 with B Hermitian. Then,

∥∥∥∥∥∥
[

A B
B C

] ∥∥∥∥∥∥ ≤ ∥A + C∥. (29)

Proof. As B is Hermitian, then Im(B) = 0. Thus, from Theorem 5.2, we have∥∥∥∥∥∥
[

A B
B C

] ∥∥∥∥∥∥ ≤ w(A + C) = ∥A + C∥. (30)
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