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Abstract. In this paper, we study an integral representation of some class E2,+ of even entire functions of
exponential type σ ≤ 1. We also obtain an analog of the Paley-Wiener theorem related to the class E2,+. In
addition, we find necessary and sufficient conditions for the completeness of a system

{
sk
√

xsk J−3/2(xsk) : k ∈

N
}

in the space L2((0; 1); x2dx), where J−3/2 be the Bessel function of the first kind of index −3/2, (sk)k∈N be
a sequence of distinct nonzero complex numbers and L2((0; 1); x2dx) be the weighted Lebesgue space of all

measurable functions f : (0; 1) → C satisfying
∫ 1

0
x2
| f (x)|2 dx < +∞. Those results are formulated in terms

of sequences of zeros of functions from the class E2,+. We also obtain some other sufficient conditions for
the completeness of the considered system of Bessel functions. Our results complement similar results on
completeness of the systems of Bessel functions of index ν < −1, ν < Z.

1. Introduction

Let L2(X) be the space of all measurable functions f : X→ C on a measurable set X ⊆ R endowed with
a norm

∥ f ∥2L2(X) :=
∫

X
| f (x)|2 dx,

let γ ∈ R and let L2((0; 1); xγdx) be the weighted Lebesgue space of all measurable functions f : (0; 1) → C,
satisfying∫ 1

0
xγ| f (x)|2 dx < +∞.

Let (see, for example, [2, p. 4], [17, p. 345], [27, p. 40])

Jν(z) =
∞∑

k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
, z = x + iy = reiφ,
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be the Bessel function of the first kind of index ν ∈ R, where Γ is the classical Gamma function (see, for
details, [15, pp. 1505-1506]). By Hurwitz’s theorem (see [2, p. 59], [27, p. 483]), for ν > 1 the function J−ν has an
infinity of real zeros and also 2[ν] pairwise conjugate complex zeros, among them two pure imaginary zeros
when [ν] is an odd integer. In particular, the function J−3/2 has an infinite set {sk : k ∈ Z\ {0}} of zeros, among
them s1 and s−1 = s1 = −s1 are two pure imaginary zeros, the positive zeros sk, k ∈N\{1}, and negative zeros
s−k := −sk, k ∈N \ {1}. Moreover (see [17, p. 350], [27, p. 55]),

√
zJ−3/2(z) = −

√
2/πz−1(cos z + z sin z) and the

function s
√

xsJ−3/2(xs) belongs to the space L2((0; 1); x2dx) for every s ∈ C. A system of elements
{
ek : k ∈N

}
in a separable Hilbert spaceH is called complete (see [10, p. 131], [11, p. 4258]) if span

{
ek : k ∈N

}
= H .

We remark that, in survey-cum-expository review article [14], Hari M. Srivastava presented a brief
introductory overview and survey of some of the recent developments on the theory and applications of
the Bessel functions and other higher transcendental functions. It is in [14] in which the interested reader
can find some developments involving a hybrid version of several known extensions and generalizations
of the Mittag-Leffler type functions, as well as the Hurwitz-Lerch type zeta functions, together with its
associated fractional integrals and fractional derivatives (see, for details, [15]). In addition, Srivastava’s
investigations are motivated essentially by a number of extensive developments on the familiar Laplace and
Hankel transforms as well as on the extensions and generalizations of each of these integral transforms.
In particular, in the article [16], Hari M. Srivastava presented several (presumably new) properties and
characteristics as well as inter-relationships among each of such general families of integral transforms
as Srivastava’s generalized Whittaker transform, Hardy’s generalized Hankel transform and Srivastava’s
ϵ-generalized Hankel transform. These results can indeed be appropriately specialized to deduce a large
number of known or new relationships between various simpler integral transforms.

Basis properties (completeness, minimality, basicity) of the systems of Bessel functions has been studied
in many papers (see, for instance, [1–9, 12, 13, 17–27]). In this case, various approximation properties of
the systems of Bessel functions Jν for ν < −1, ν < Z, were investigated in [5, 8, 9, 12, 13, 18, 19, 25, 26].
In particular, in [25] (see also [26]) it was proven that the system

{
sk
√

xsk J−3/2(xsk) : k ∈ N
}

is complete

in the space L2((0; 1); x2dx) and the system
{
sk
√

xsk J−3/2(xsk) : k ∈ N \ {1}
}

is complete, minimal and is
not a basis in this space, where (sk)k∈Z\{0}, s−k := −sk, is a sequence of zeros of the function J−3/2. In
addition, in [12] it was shown that the system

{
s2

k
√

xsk J−5/2(xsk) : k ∈ N \ {1; 2
}}

is complete and minimal in
L2((0; 1); x4dx), where (sk)k∈N is a sequence of zeros of J−5/2. Besides, in [13] has been established that the
system

{
sν−1/2

k
√

xsk J−ν(xsk) : k ∈N\{1; 2; . . . ; l}
}

is complete in L2((0; 1); x2ν−1dx) if ν = l+1/2, l ∈N and (sk)k∈N

is a sequence of zeros of J−ν. However, the problem on completeness of this system in L2((0; 1); x2ν−1dx) when
ν = l + 1/2, l ∈ N and (sk)k∈N is an arbitrary sequence of distinct nonzero complex numbers remains open.
In this direction, in [18] the authors obtained a criterion for the completeness and minimality of a system{
xsk
√

xsk J−3/2(xsk) : k ∈N
}

in L2(0; 1) with an arbitrary sequence of nonzero complex numbers (sk)k∈N. Also,

in [19] it was proven that the system
{
x−2(sk

√
xsk J−3/2(xsk) − s1

√
xs1 J−3/2(xs1)) : k ∈ N \ {1}

}
is complete and

minimal in L2((0; 1); x2dx) where (sk)k∈N is a sequence of distinct nonzero complex numbers such that s2
k , s2

m
for k , m. In addition, using methods of [5–7, 11, 18–21], in [8] were established necessary and sufficient
completeness conditions of a system

{
s2

k
√

xsk J−5/2(xsk) : k ∈ N
}

in the space L2((0; 1); x4dx) with an arbitrary
sequence of distinct nonzero complex numbers (sk)k∈N in terms of entire functions.

The aim of this paper is to obtain an analog of the Paley-Wiener theorem for some class E2,+ of even
entire functions of exponential type σ ≤ 1 (see Theorem 3.1). In addition, we will find new necessary and
sufficient conditions for the completeness of a system

{
θk : k ∈ N

}
with θk(x) := sk

√
xsk J−3/2(xsk) in the

space L2((0; 1); x2dx) in terms of entire functions from E2,+ with the set of zeros coinciding with the sequence
of distinct nonzero complex numbers (sk)k∈N (see Theorems 3.6–3.11). Also, in Theorems 3.12 and 3.13,
we obtain some other sufficient conditions of the completeness of the system

{
θk : k ∈ N

}
. Our results

complement the results of papers [3, 5, 8, 9, 12, 13, 18, 19, 25, 26].
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2. Preliminaries

An entire function G is said to be of exponential type σ ∈ [0;+∞) ([10, p. 4], [11, p. 4262]) if for any ε > 0
there exists a constant c(ε) such that |G(z)| ≤ c(ε) exp((σ + ε)|z|) for all z ∈ C.

Denote by PW2
σ the set of all entire functions of exponential type σ ∈ (0;+∞) whose narrowing on

R belongs to the space L2(R), and by PW2
σ,+ denote the class of even entire functions from PW2

σ. By the
Paley-Wiener theorem (see [10, p. 69], [11, p. 4263]), the class PW2

σ coincides with the class of functions G
admitting the representation

G(z) =
∫ σ

−σ
eitz1(t) dt, 1 ∈ L2(−σ; σ),

and the class PW2
σ,+ consists of the functions G representable in the form

G(z) =
∫ σ

0
cos(tz)1(t) dt, 1 ∈ L2(0; σ).

Moreover, ∥1∥L2(0;σ) =
√

2/π∥G∥L2(0;+∞) and

1(t) =
2
π

∫ +∞

0
G(z) cos(tz) dz.

Let log+ x = max (0; log x) for x > 0. Here and so on by C1, C2, . . . we denote arbitrary positive constants.
To prove our main results we need the following auxiliary lemmas.

Lemma 2.1. (see [18, p. 13], [25, p. 39]) Let an entire function Q be defined by the formula

Q(z) = −

√
2
π

∫ 1

0
(cos(tz) + tz sin(tz))q(t) dt, q ∈ L2(0; 1). (1)

Then for all z = x + iy = reiφ
∈ C, we have

|Q(z)| ≤ C1
e| Im z|

√
1 + | Im z|

(1 + |z|),

and Q is an even entire function of exponential type σ ≤ 1.

Lemma 2.2. (see [11, p. 4263]) Let Q be an entire function of exponential type σ ≤ 1 for which∫ +∞

−∞

log+ |Q(t)|
1 + t2 dt < +∞,

and let (sk)k∈N be a sequence of nonzero roots of the function Q(z). Then∑
k∈N

∣∣∣∣∣Im 1
sk

∣∣∣∣∣ < +∞.
3. Main results

Our main results are the following statements.
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Theorem 3.1. An entire function Q has the representation

Q(z) =
∫ 1

0
z
√

tzJ−3/2(tz)t2h(t) dt (2)

with some function h ∈ L2((0; 1); t2dt) if and only if it is an even entire function of exponential type σ ≤ 1 such that

Q(0) = −

√
2
π

∫ 1

0
th(t) dt, (3)

and the function z−1Q′(z) belongs to the space PW2
1,+. If these conditions are fulfilled, then

h(t) = −

√
2
π

1
t3

∫ +∞

0

Q′(z)
z

cos(tz) dz.

Proof. Necessity. Let Q has the representation (2) with some function h ∈ L2((0; 1); t2dt). Since

z
√

tzJ−3/2(tz) = −

√
2
π

cos(tz) + tz sin(tz)
t

,

we have

Q(z) = −

√
2
π

∫ 1

0
(cos(tz) + tz sin(tz))th(t) dt, Q(0) = −

√
2
π

∫ 1

0
th(t) dt.

Therefore, by Lemma 2.1, the function Q is an even entire function of exponential type σ ≤ 1, and

Q′(z) = −

√
2
π

∫ 1

0
t3z cos(tz)h(t) dt, Q′(0) = 0,

Q′(z)
z
= −

√
2
π

∫ 1

0
cos(tz)t2q(t) dt,

where q(t) := th(t). Since h ∈ L2((0; 1); t2dt), we have q ∈ L2(0; 1), and in accordance with the Paley-Wiener
theorem, the function z−1Q′(z) belongs to the space PW2

1,+. Sufficiency. If all the conditions of the theorem
hold, then from the formula for the inverse Fourier cosine-transformation it follows that the function

q(t) = −

√
2
π

1
t2

∫ +∞

0

Q′(z)
z

cos(tz) dz

belongs to the space L2(0; 1), and

Q′(z) = −

√
2
π

∫ 1

0
z cos(tz)t3h(t) dt.

Using Fubini’s theorem, we get

Q(z) −Q(0) = −

√
2
π

∫ 1

0
t3h(t) dt

∫ z

0
w cos(tw) dw = −

√
2
π

∫ 1

0
(cos(tz) + tz sin(tz) − 1)th(t) dt.

Further, using (3), we obtain

Q(z) = −

√
2
π

∫ 1

0
(cos(tz) + tz sin(tz))th(t) dt =

∫ 1

0
z
√

tzJ−3/2(tz)t2h(t) dt.

Thus, the theorem is proved.
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Let Ẽ2,+ be the class of entire functions Q that can be presented in the form (2) with some function
h ∈ L2((0; 1); t2dt), and let E2,+ be the class of even entire functions Q of exponential type σ ≤ 1 satisfying (3)
with h ∈ L2((0; 1); t2dt) and the function z−1Q′(z) belongs to the space PW2

1,+.

Corollary 3.2. Ẽ2,+ = E2,+.

Corollary 3.3. The class E2,+ coincides with a set of entire functions Q representing in the form (1).

Example 3.4. Evidently, cos z < E2,+.

Example 3.5. The function

Q(z) = −

√
2
π

cos z
z2 − π2/4

(
1 −

4(−π + 2)
π3 (z2

− π2/4)
)

belongs to E2,+ with

h(t) =
4
π3t3

(
−2 cos

(
π
2

t
)
− πt sin

(
π
2

t
)
+ 2

)
.

Theorem 3.6. Let (sk)k∈N be a sequence of nonzero complex numbers such that s2
k , s2

n for k , n. The system{
θk : k ∈ N

}
is incomplete in L2((0; 1); x2dx) if and only if a sequence (sk)k∈Z\{0}, where s−k := −sk, k ∈ N, is a

subsequence of zeros of some nonzero entire function Q ∈ E2,+.

Proof. According to the Hahn-Banach theorem (see [10, p. 131], [11, p. 4258]), the system
{
θk : k ∈ N

}
is

incomplete in L2((0; 1); x2dx) if and only if there exists a nonzero function h ∈ L2((0; 1); x2dx) such that∫ 1

0
sk
√

tsk J−3/2(tsk)t2h(t) dt = 0

for all k ∈ N. Hence, taking into account Theorem 3.1, we obtain the required proposition. Theorem 3.6 is
proved.

Theorem 3.7. Let (sk)k∈N be a sequence of distinct nonzero complex numbers such that | Im sk| ≥ δ|sk| for all k ∈ N
and some δ > 0. If a system

{
θk : k ∈N

}
is complete in L2((0; 1); x2dx), then

∞∑
k=1

1
|sk|
= +∞. (4)

Proof. Suppose, to the contrary, that the system
{
θk : k ∈ N

}
is not complete in the space L2((0; 1); x2dx).

Then, by Theorem 3.6, there exists a nonzero entire function Q ∈ E2,+ for which the sequence (sk)k∈Z\{0} is a
subsequence of zeros. By virtue of Corollary 3.3, the function Q is of the kind (1). Due to Lemma 2.1, we
have |Q(x)| ≤ C1(1 + |x|) for all x ∈ R. This implies∫ +∞

−∞

log+ |Q(x)|
1 + x2 dx < +∞.

Therefore, by Lemma 2.2, we get∑
k∈N

∣∣∣∣∣Im 1
sk

∣∣∣∣∣ < +∞.
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Since | Im sk| ≥ δ|sk| for all k ∈N and some δ > 0, and∣∣∣∣∣Im 1
sk

∣∣∣∣∣ = | Im sk|

|sk|
2 ≥

δ
|sk|
,

we have

∞∑
k=1

1
|sk|
< +∞.

This contradicts condition (4). Thus, the theorem is proved.

Theorem 3.8. Let (sk)k∈N be a sequence of distinct nonzero complex numbers such that s2
k , s2

m for k , m. Let a
sequence (sk)k∈Z\{0}, where s−k := −sk, be a sequence of zeros of some even entire function G of exponential type σ ≤ 1
for which on the rays {z : arg z = φ j}, j ∈ {1; 2; 3; 4}, φ1 ∈ [0;π/2), φ2 ∈ [π/2;π), φ3 ∈ (π; 3π/2], φ4 ∈ (3π/2; 2π),
we have |G(z)| ≥ C2(1 + |z|)e| Im z|. Then the system

{
θk : k ∈N

}
is complete in L2((0; 1); x2dx).

Proof. Assume the converse. Then, according to Theorem 3.6, there exists a nonzero even entire function
Q ∈ E2,+ for which the sequence (sk)k∈Z\{0} is a subsequence of zeros. Let V(z) = Q(z)/G(z). Then V is an
even entire function of order τ ≤ 1, for which by Corollary 3.3 and Lemma 2.1, we obtain

|V(z)| ≤ C3
1

√
1 + | Im z|

, arg z = φ j, j ∈ {1; 2; 3; 4}.

Therefore, according to the Phragmén-Lindelöf theorem (see [10, p. 38], [11, p. 4263]), we get V(z) ≡ 0.
Hence Q(z) ≡ 0. This contradiction proves the theorem.

Corollary 3.9. Let (sk)k∈N be a sequence of zeros of the function J−3/2. Then the system
{
θk : k ∈ N

}
is complete in

L2((0; 1); x2dx).

Proof. Indeed, a sequence (sk)k∈Z\{0}, where s−k = −sk, is a sequence of zeros of an entire function G(z) =
cos z + z sin z, and this function satisfies the conditions of Theorem 3.8. Therefore, a system

{
θk : k ∈ N

}
is

complete in L2((0; 1); x2dx). Corollary 3.9 is proved.

Theorem 3.10. Let (sk)k∈N be a sequence of distinct nonzero complex numbers such that s2
k , s2

m for k , m. Let a
sequence (sk)k∈Z\{0}, where s−k := −sk, be a sequence of zeros of some even entire function G < E2,+ of exponential
type σ ≤ 1 for which on the rays {z : arg z = φ j}, j ∈ {1; 2; 3; 4}, φ1 ∈ [0;π/2), φ2 ∈ [π/2;π), φ3 ∈ (π; 3π/2],
φ4 ∈ (3π/2; 2π), the inequality |G(z)| ≥ C4(1 + |z|)−αe| Im z| holds with α < 3/2. Then the system

{
θk : k ∈ N

}
is

complete in L2((0; 1); x2dx).

Proof. Assume the converse. Then, according to Theorem 3.6, there exists a nonzero even entire function
Q ∈ E2,+ for which the sequence (sk)k∈Z\{0} is a subsequence of zeros. Let V(z) = Q(z)/G(z). Then V is an
even entire function of order τ ≤ 1, for which by Corollary 3.3 and Lemma 2.1, we get

|V(z)| ≤ C5
(1 + |z|)α+1

√
1 + | Im z|

, arg z = φ j, j ∈ {1; 2; 3; 4}.

Since α + 1 < 5/2, according to the Phragmén-Lindelöf theorem, the function V is a polynomial of degree
ζ < 2. However, V is an even entire function, and therefore the function V is a constant. Hence, Q(z) = C6G(z)
and Q < E2,+. Thus, we have a contradiction and the proof of the theorem is completed.
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Theorem 3.11. Let (sk)k∈N be a sequence of distinct nonzero complex numbers such that s2
k , s2

m for k , m. Let a
sequence (sk)k∈Z\{0}, where s−k := −sk, be a sequence of zeros of some even entire function F < E2,+ of exponential type
σ ≤ 1 such that for some α < 1 and η ∈ R

|F(x + iη)| ≥ δ|x|−α, δ > 0, |x| > 1. (5)

Then the system
{
θk : k ∈N

}
is complete in L2((0; 1); x2dx).

Proof. Let F < E2,+ and the inequality (5) is true. Suppose, to the contrary, that the system
{
θk : k ∈ N

}
is

not complete in L2((0; 1); x2dx). Then, by Theorem 3.6, there exists a nonzero even entire function Q ∈ E2,+
which vanishes at the points sk. However, the sequence (sk)k∈Z\{0} is a sequence of zeros of an even entire
function F(z) < E2,+ of exponential type σ ≤ 1. Therefore, T(z) = Q(z)/F(z) is an even entire function of order
τ ≤ 1. Since Q ∈ E2,+, taking into account Corollary 3.3 and Lemma 2.1, we obtain

|Q(x + iη)| ≤ C7
e|η|√

1 + |η|

(
1 +

√
x2 + η2

)
, x ∈ R.

Using (5), we get |T(x + iη)| ≤ C8(1 + |x|)1+α, x ∈ R. It is easy to see that T(z) is a polynomial of degree ζ < 2.
Further, since T is an even entire function, we have T(z) = C9. Furthermore, F(z) = C10Q(z) and F(z) ∈ E2,+.
This contradiction concludes the proof of the theorem.

Let n(t) be the number of points of the sequence (sk)k∈N ⊂ C satisfying the inequality |sk| ≤ t, i.e.,
n(t) :=

∑
|sk |≤t

1, and let

N(r) :=
∫ r

0

n(t)
t

dt, r > 0.

Theorem 3.12. Let (sk)k∈N be an arbitrary sequence of distinct nonzero complex numbers. If

lim sup
r→+∞

(
N(r) −

2r
π
+

1
2

log r − log(1 + r)
)
= +∞,

then the system
{
θk : k ∈N

}
is complete in L2((0; 1); x2dx).

Proof. It suffices to assume the incompleteness of the system
{
θk : k ∈N

}
and prove that

lim sup
r→+∞

(
N(r) −

2r
π
+

1
2

log r − log(1 + r)
)
< +∞. (6)

Due to Theorem 3.6, there exists a nonzero even entire function Q ∈ E2,+ of exponential type σ ≤ 1 for
which the sequence (sk)k∈N is a subsequence of zeros. We may consider that Q(0) = 1. Then, consecutively
applying the Jensen formula (see [10, p. 10], [11, p. 4316]), Corollary 3.3 and Lemma 2.1, we obtain

N(r) ≤
1

2π

∫ 2π

0
log |Q(reiφ)| dφ

≤ C11 +
1

2π

∫ 2π

0

(
r| sinφ| −

1
2

log(1 + r| sinφ|) + log(1 + r)
)

dφ

≤ C11 +
1

2π

∫ 2π

0

(
r| sinφ| −

1
2

log r −
1
2

log | sinφ| + log(1 + r)
)

dφ

=
2r
π
−

1
2

log r + log(1 + r) + C12, r > 0,

whence it follows (6). The theorem is proved.
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Theorem 3.13. Let (sk)k∈N be a sequence of distinct nonzero complex numbers. Let |sk| ≤ ∆k+β+αk for 0 < ∆ < π/2,
−∆ < β < 1 − ∆(2 + π)/π, and the sequence (αk)k∈N such that αk ≥ 0, αk = O(1) as k→ +∞ and

∞∑
k=1

|αk+1 − αk| < +∞,
∞∑

k=1

αk

k
< +∞.

Then the system
{
θk : k ∈N

}
is complete in L2((0; 1); x2dx).

Proof. Let µk = ∆k + β + αk, k ∈N, and

n1(t) =
∑
µk≤t

1, N1(r) =
∫ r

0

n1(t)
t

dt, r > 0.

Then n(t) ≥ n1(t), N(r) ≥ N1(r) and n1(t) = m for ∆m + β + αm ≤ t < ∆(m + 1) + β + αm+1 (n1(t) = 0 on (0;µ1)).
Let r ∈ [µ j;µ j+1). Then j = r/∆ + O(1) as r → +∞. Therefore, under the assumptions of the theorem, by
analogy with [7, p. 894] (see also [6, p. 9]), we obtain

N1(r) ≥
j−1∑
k=1

k log
∆(k + 1) + β
∆k + β

−

∣∣∣∣∣∣∣
j−1∑
k=1

k
(
log
∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β
∆k + β

)∣∣∣∣∣∣∣ +O(1)

≥
r
∆
−

(
1
2
+
β

∆

)
log r − C13

∞∑
k=1

(
|αk+1 − αk| +

αk

k

)
+O(1)

≥
r
∆
−

(
1
2
+
β

∆

)
log r +O(1), r→ +∞.

In view of this, for 0 < ∆ < π/2 and −∆ < β < 1 − ∆(2 + π)/π, we get

lim sup
r→+∞

(
N(r) −

2r
π
+

1
2

log r − log(1 + r)
)

≥ lim sup
r→+∞

(
N1(r) −

2r
π
+

1
2

log r − log(1 + r)
)

≥ lim sup
r→+∞

(
r
∆
−

(
1
2
+
β

∆

)
log r −

2r
π
+

1
2

log r − log(1 + r) +O(1)
)

≥ lim sup
r→+∞

(
r
( 1
∆
−

2
π

)
−

(
β

∆
+ 1

)
log(1 + r) +O(1)

)
≥ lim sup

r→+∞

(
r
(

1
∆
−

2
π
−
β

∆
− 1

)
+O(1)

)
= +∞.

Finally, according to Theorem 3.12, we obtain the required proposition. The proof of theorem is com-
pleted.
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