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Abstract. By making use of the generalized difference operator, we have defined a new class of λ-pseudo
Pascu type functions of complex order using subordination. Interesting results such as subordination re-
sults, inequalities for the initial Taylor-Maclaurin coefficients and unified solution of Fekete-Szegő problem
have been obtained. Also, the study has been extended to quantum calculus by replacing the ordinary
derivative with a q-derivative in the defined function class. Several applications, known or new of the main
results are also presented.

1. Introduction and Preliminaries

Current developments and numerous extensions of well-known special transcendental functions, we
referred to expository articles by Srivastava [1–5]. In this vein, Srivastava in [1, 2] has allied methodological
principles in expository writing so as to convey such a representative insight into the diversity of the Special
Function Theory. The outcome is a unique and masterly primer of articles are very much comprehensive and
self-contained pertaining to the study of higher transcendental functions. Further, Srivastava in [3] detailed
some recent developments and potential directions for further researches which can be based on a non-trivial
family of the Riemann-Liouville type fractional integrals and fractional derivatives. The main highlight
of the article is that, providing extensions and generalizations of known and readily accessible definitions
and results by introducing some obviously redundant and seemingly inconsequential parameters or by
changing the variable of integration in an integral definition. As long ago as 1940, Wright [6] investigated a
rather general form of the various multi-parameter extensions of the Mittag-Leffler functions. in which he
introduced and systematically studied the asymptotic expansion of the following Taylor-Maclaurin series
(see [6, p. 424]):

Eθ, ϑ(χ, z) =
∞∑

n=0

χ(n)zn

Γ (θn + ϑ)
(z, θ, ϑ,∈ C,Re(θ) > 0),
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where χ(n) is a function satisfying suitable conditions. In his recent survey-cum-expository review articles,
Srivastava [1-3] introduced and investigated a hybrid unification of various multiparameter generalizations
of the Mittag-Leffler function and the Hurwitz-Lerch zeta function in the following form (see [1, p. 9, Eq.
(25)],[2, p. 140, Eq. (15)], and [3, p. 1516, Eq. (8.4)])

Ea
θ, ϑ(τ; z) :=

∞∑
n=0

zn

(n + a)τΓ (θn + ϑ)
, (z, θ, ϑ,∈ C,Re(θ) > 0). (1)

Srivastava [1–3] also used the hybrid unification in (1) as the kernel of a general form of the operators
of the Riemann-Liouville type fractional calculus. For comprehensive study on the extensions of the
Mittag-Leffler functions and its relationship with higher transcendental functions, we refer to survey cum
expository articles by Srivastava [1–5] .Srivastava et al. [11, Eq. 8] considered the following family of the
multi-index Mittag-Leffler functions as a kernel of some fractional-calculus operators

Eγ,ω, δ, ϵ(θ j, ϑ j)m
(z) =

∞∑
n=0

(γ)ωn (δ)ϵn∏m
j=1 Γ

(
θ jn + ϑ j

) zn

n!
, (2)

θ j, ϑ j, γ, ω, δ, ϵ ∈ C; Re(θ j) > 0; Re

 m∑
j=1

θ j

 > Re(ω + ϵ) − 1

 .
Many researchers studied well-known families of Univalent Function Theory involving the Fox H-function
[12] (also see [13, p. 271]) defined by a Mellin–Barnes integral, which is a generalization of the Meijer
G-function (see [14, p. 45]) and the Fox–Wright function (see [2, Definition 2]) has almost all the special
functions as its special cases(see[15–18] ) and Mittag-Leffler functions by Attiya [19], Srivastava and El-
Deeb [20], Srivastava et al. [21–24] , Tomovski et al. [25] (also see [26], Hurwitz-Lerch Zeta functions
[27–30], also by Sălăgean-difference operator [31, 32] . Motivated by aforementioned studies on Univalent
Function Theory in this article we defined a new generalized operator given in (4) denoted by Dm

k (θ, ϑ, ρ)
and a new class of λ-pseudo Pascu type functions of complex order using subordination. Interesting results
such as subordination results, inequalities for the initial Taylor-Maclaurin coefficients and unified solution
of Fekete-Szegő problem have been obtained.

2. λ-pseudo Pascu type functions of complex order

LetH be the class of functions analytic in the open unit discU = {z : | z |< 1}. LetH(a,n) be the subclass
ofH consisting of functions of the form f (z) = a + anzn + an+1zn+1 + . . .. Let

An = { f ∈ H , f (z) = z + an+1zn+1 + an+2zn+2 + . . .}

and let A = A1. Ibrahim and Darus [31] introduced the Sălăgean-difference operator Dm
k f (z) : A → A

which is defined by

Dm
k f (z) = z +

∞∑
n=2

[
n +

k
2

(1 + (−1)n+1)
]m

anzn, m ∈N0 =N ∪ {0}. (3)

If we let k = 0, then Dm
k f (z) reduces to the well-known Sălăgean differential operator. Dm

k f (z) is a modified
Dunkl operator of complex variables which has many applications in the field of algebra and complex
analysis, for details refer to [32] and references provided therein.

Using Hadamard product, we now define the following operator Dm
k (θ, ϑ, ρ) f : U −→ U by

Dm
k (θ, ϑ, ρ) f (z) =

[
Dm

k f (z) ∗ Rρθ, ϑ(z)
]
= z +

∞∑
n=2

[
n +

k
2

(1 + (−1)n+1)
]m

Γ(ϑ)(ρ)n−1

Γ (ϑ + θ(n − 1)) (n − 1)!
anzn. (4)
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Remark 2.1. Here we list only few special cases of the operator Dm
k (θ, ϑ, ρ) f , for details refer to [33] and references

provided therein.

1. The operator Dm
k (θ, ϑ, ρ) f is closely related to the operator recently used by Mashwan et. al. [33].

2. If we let θ = 0 and ρ = 1 in (4), then Dm
k (θ, ϑ, ρ) f reduces to Dm

k f (z) defined by Ibrahim and Darus [31, 32].

Let P denote the class of functions of the form p(z) = 1+ p1z+ p2z2 + p3z3 + · · · that are analytic inU and
Re

{
p(z)

}
> 0 for all z in U. Throughout this paper, we shall assume that Φ(z) is an analytic function in U

such that Re {Φ(z)} > 0 (z ∈ U). Further, we assume that Φ(z) has a power series expansion of the form

Φ(z) = 1 + L1z + L2z2 + L3z3 + · · · , z ∈ U, L1 , 0. (5)

Using the operator Dm
k (θ, ϑ, ρ) f , we now introduce the following the class of functions using the

principle of subordination:

Definition 2.2. Let the classNBλ,mk (α; θ, ϑ, ρ; b; Φ) consist of function inA satisfying the subordination condition

1 +
1
b

2z1−λ
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]λ
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

− 1

 ≺ Φ(z), (6)

where Hm
k (θ, ϑ, ρ) f =

[
Dm

k (θ, ϑ, ρ) f (z) −Dm
k (θ, ϑ, ρ) f (−z)

]
, 0 ≤ α ≤ 1, λ ≥ 1, b ∈ C \ {0}, θ, ϑ, ρ ∈ C, Re(θ) >

0.

Remark 2.3. Here we will point out some special cases of our classNBλ,mk (α; θ, ϑ, ρ; b; Φ).

1. If we let θ = k = α = 0, λ = ρ = 1 and ϕ(z) = (1 + Xz)/(1 + Yz), the class NBλ,mk (α; θ, ϑ, ρ; b; Φ) will
reduce to the class of functions

Jb(X,Y,m) =
 f ∈ A : 1 +

1
b

 2Dm+1
0 f (z)

Dm
0 f (z) −Dm

0 f (−z)
− 1

 ≺ 1 + Xz
1 + Yz

 .
The class Jb(X,Y,m) was recently introduced and studied by Arif et al. in [34].

2. If we let θ = α = 0, λ = ρ = 1 and ϕ(z) = (1+Xz)/(1+Yz), the classNBλ,mk (α; θ, ϑ, ρ; b; Φ) will reduce to
the class of functions Jbk(X,Y,m) recently introduced and studied by Ibrahim in [32].

3. If we let b = 1 and ϕ(z) = (1 + Xz)/(1 + Yz), the class NBλ,mk (α; θ, ϑ, ρ; b; Φ) will reduce to the class of
functions closely related to the class recently introduced and studied by Mashwan et al. [33].

3. Conditions For Starlikeness and Coefficient Inequalities ofNBλ,m
k

(α; θ, ϑ, ρ; b; Φ)

Throughout this paper, we let

Dm
k (θ, ϑ, ρ) f ′(z) = [Dm

k (θ, ϑ, ρ) f (z)]′ and Hm
k (θ, ϑ, ρ) f ′(z) = [Hm

k (θ, ϑ, ρ) f (z)]′.

By Definition 2.2, the superordinate functionΦ is assumed to be inP, it is well-known that class of function
P need not be univalent. Throughout this section, we assume Φ ∈ P to be convex univalent inU.

If f ∈ NB1,m
k (α; θ, ϑ, ρ; b; Φ), then by Definition 2.2 there exist a function p(z) ∈ Pwith p(z) ≺ Φ(z) such

that

2
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

= 1 + b
[
p(z) − 1

]
. (7)
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Replacing z by −z in (7)

−2
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (−z) + αDm+2
k (θ, ϑ, ρ) f (−z)

]
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

= 1 + b
[
p(−z) − 1

]
. (8)

Adding (7) and (8), we have the following after simplification

1 +
1
b

 (1 − α)Dm+1
k (θ, ϑ, ρ)h(z) + αDm+2

k (θ, ϑ, ρ)h(z)

(1 − α)Dm
k (θ, ϑ, ρ)h(z) + αDm+1

k (θ, ϑ, ρ)h(z)
− 1

 ≺ p(z) + p(−z)
2

, (9)

with Dm
k (θ, ϑ, ρ)h(z) =

Dm
k (θ, ϑ, ρ) f (z)−Dm

k (θ, ϑ, ρ) f (−z)
2 . If we assume Φ(z) to be univalent, then from (9) follows

that p(z)+p(−z)
2 ≺ Φ(z).

On summarising the above discussion, we have the following.

Theorem 3.1. Let the function Φ ∈ P be convex univalent in U. If f ∈ NB1,m
k (α; θ, ϑ, ρ; b; Φ), then the odd

function

h(z) =
1
2

[ f (z) − f (−z)]

satisfies

1 +
1
b

 (1 − α)Dm+1
k (θ, ϑ, ρ)h(z) + αDm+2

k (θ, ϑ, ρ)h(z)

(1 − α)Dm
k (θ, ϑ, ρ)h(z) + αDm+1

k (θ, ϑ, ρ)h(z)
− 1

 ≺ Φ(z).

Remark 3.2. For appropriate choice of the parameters involved, we can deduce the results obtained by Arif et al. [34,
Theorem 4] and Ibrahim [32, Theorem 2.1.].

3.1. Conditions For Starlikeness

Motivated by the results presented in Chapter 4 of [35], here we obtain some conditions for starlikeness.
We now state the following result which will be used in the sequel.

Lemma 3.3. [35, Theorem 3.6.1.] Let the function q be univalent in the open unit disc U and θ and ϕ be analytic
in a domain D containing q(U) with ϕ(w) , 0 when w ∈ q(U). set Q(z) = zq′ (z)ϕ(q(z)), h(z) = θ(q(z)) + Q(z).
Suppose that

1. Q is starlike univalent inU, and

2. Re( zh′ (z)
Q(z) ) > 0 for z ∈ U.

If θ(p(z)) + zp′ (z)ϕ(p(z)) ≺ θ(q(z)) + zq′ (z)ϕ(q(z)), then p(z) ≺ q(z) and q is the best dominant.

For conivenience, we denoteTm
k (θ, ϑ, ρ) f (z) = (1−α)Dm+1

k (θ, ϑ, ρ) f (z)+αDm+2
k (θ, ϑ, ρ) f (z) andRm

k (θ, ϑ, ρ) f (z) =
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z).

Theorem 3.4. Let the function Φ ∈ P be convex univalent inU and let κ(z) := tΦ2(z) + tzΦ′(z) + (s − t)Φ(z) with
t > 0 and s > t. If the function f ∈ A satisfies the conditions

Hm
k (θ, ϑ, ρ) f (z)

Hm+1
k (θ, ϑ, ρ) f (z)

, −
α

1 − α
and

Dm+1
k (θ, ϑ, ρ) f (z)

Dm+2
k (θ, ϑ, ρ) f (z)

, −
α

1 − α
,
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then

1
b

2z1−λ
[
T

m
k (θ, ϑ, ρ) f (z)

]λ
Rm

k (θ, ϑ, ρ) f (z)
− 1

 ×
(s + (b − 1)t − bλt) + btλ

z
[
T

m
k (θ, ϑ, ρ) f (z)

]′
Tm

k (θ, ϑ, ρ) f (z)
− b

tz
[
R

m
k (θ, ϑ, ρ) f (z)

]′
Rm

k (θ, ϑ, ρ) f (z)

+
t
b

2z1−λ
[
T

m
k (θ, ϑ, ρ) f (z)

]λ
Rm

k (θ, ϑ, ρ) f (z)
− 1


 + t

λz
[
T

m
k (θ, ϑ, ρ) f (z)

]′
Tm

k (θ, ϑ, ρ) f (z)
−

z
[
R

m
k (θ, ϑ, ρ) f (z)

]′
Rm

k (θ, ϑ, ρ) f (z)
− λ + 1

 + s ≺ κ(z),

(10)

implies f ∈ NBλ,mk (α; θ, ϑ, ρ; b; Φ). Moreover, the function Φ is the best dominant of the left-hand side of (6).

Proof. If we define the function p by

p(z) := 1 +
1
b

2z1−λ
[
T

m
k (θ, ϑ, ρ) f (z)

]λ
Rm

k (θ, ϑ, ρ) f (z)
− 1

 , z ∈ U,

then from the hypothesis, it follows that p is analytic inU. By a straight forward computation, we have

bzp′(z) = 1 + b
[
p(z) − 1

] λz
[
T

m
k (θ, ϑ, ρ) f (z)

]′
Tm

k (θ, ϑ, ρ) f (z)
−

z
[
R

m
k (θ, ϑ, ρ) f (z)

]′
Rm

k (θ, ϑ, ρ) f (z)
− λ + 1

 ,
and thus, the subordination (10) is equivalent to

tp2(z) + tzp′(z) + (s − t)p(z) ≺ κ(z). (11)

SettingΩ(w) := tw2 + (s − t)w and Υ(w) := t, thenΩ and Υ are analytic functions in C, with Υ(0) , 0.
Therefore

Q(z) = zΦ′(z)Υ(Φ(z)) = tzΦ′(z) and κ(z) = Ω(Φ(z)) +Q(z) = tΦ2(z) + tzΦ′(z) + (s − t)Φ(z),

and using the fact that Φ is a convex univalent function inU, it follows that

Re
zQ′(z)
Q(z)

= Ret
(
1 +

zΦ′′(z)
Φ′(z)

)
> 0, z ∈ U,

(
Q′(0) = t1′(0) , 0

)
,

hence Q is a starlike univalent function inU. Further, the convexity of Φ together withℜ[Φ(z)] > 0 implies

Re
zκ′(z)
Q(z)

= Re
{

2Φ(z) +
zΦ′′(z)
Φ′(z)

+
β

α

}
> 0, z ∈ U.

Since both of the conditions of Lemma 3.3 are satisfied it follows that (11) implies p(z) ≺ Φ(z), and Φ is
the best dominant of p, which prove our conclusions.

Theorem 3.5. If the function f ∈ A satisfies the conditions [Dm
k f (z)−Dm

k f (−z)]
z , 0 and let κ(z) = X2z2+(3X−Y)z+1

(1+Yz)2 , −1 ≤
Y < X ≤ 1.Then

1
b

 2Dm+1
k f (z)

Dm
k f (z) −Dm

k f (−z)
− 1


2 + z

(
Dm+1

k f (z)
)′

Dm+1
k f (z)

−

z
[
Dm

k f (z) −Dm
k f (−z)

]′[
Dm

k f (z) −Dm
k f (−z)

] + 1
b

 2Dm+1
k f (z)

Dm
k f (z) −Dm

k f (−z)
− 1


+

λ
b

z
(
Dm+1

k f (z)
)′

Dm+1
k f (z)

−

z
[
Dm

k f (z) −Dm
k f (−z)

]′
b
[
Dm

k f (z) −Dm
k f (−z)

] + 1 ≺ κ(z),

implies f ∈ Jbk(X,Y,m) [see Remark 2.3].
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Proof. If we define the functions

Φ(z) =
1 + Xz
1 + Yz

and p(z) = 1 +
1
b

 2Dm+1
k f (z)

Dm
k f (z) −Dm

k f (−z)
− 1

 ,
then p is analytic inU, and Φ is a convex univalent function inU with Re {Φ(z)} > 0, z ∈ U. Proceeding as
in the proof of Theorem 3.4 with α = 0 and λ = s = t = 1, we can establish the assertion of the Theorem
3.5.

As a consequence of Theorem 3.5, we get the following result.

Corollary 3.6. If the function f ∈ A satisfies the conditions [ f (z)− f (−z)]
z , 0 and let κ(z) = X2z2+(3X−Y)z+1

(1+Yz)2 , −1 ≤ Y <
X ≤ 1. Then

2z f ′(z)
f (z) − f (−z)

[
1 +

z f ′′(z)
f ′(z)

−
z
[

f (z) − f (−z)
]′

f (z) − f (−z)
+

(
2z f ′(z)

f (z) − f (−z)

)]
≺ κ(z) =⇒

2z f ′(z)
f (z) − f (−z)

≺
1 + Xz
1 + Yz

.

Remark 3.7. If we let α = 1 and by choosing appropriate values to the other parameters involved, we can obtain the
conditions for convexity.

3.2. Solution to Fekete-Szegő Problem for the Functions ofNBλ,mk (α; θ, ϑ, ρ; b; Φ)
We will give the solution of the Fekete-Szegő problem for the functions that belong to the classes we

defined in the first section.

Lemma 3.8. [36] If p(z) = 1 +
∞∑

k=1
pkzk
∈ P, and v is complex number, then

∣∣∣p2 − vp2
1

∣∣∣ ≤ 2 max {1; |2v − 1|} and the

result is sharp for the functions p1(z) = 1+z
1−z and p2(z) = 1+z2

1−z2 .

Throughout this subsection, we denote Πn to be of the form

Πn =
Γ(ϑ)(ρ)n

Γ (ϑ + θ(n − 1)) (n − 1)!
.

Theorem 3.9. If f (z) = z + a2z2 + a3z3 + · · · ∈ NBλ,mk (α; θ, ϑ, ρ; b; Φ), then for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ |bL1|

(2 + k)(3 + k)m[1 + α(2 + k)]|Π3|
max {1; |2Υ − 1|} ,

where Υ is given by

Υ :=
1
4

(
2 −

2L2

L1
+

bL1(λ − 1)
λ

+
µbL1(2 + k)(3 + k)m[1 + α(2 + k)]Π3

λ2(1 + α)222m+2Π2
2

)
.

The inequality is sharp for each µ ∈ C.

Proof. As f ∈ NBλ,mk (α; θ, ϑ, ρ; b; Φ), by (6) we have

2z1−λ
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]λ
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

= 1 + b {Φ[w(z)] − 1} (12)

where w(z) = p(z)−1
p(z)+1 is a Schwartz function. The left hand side of (12) is given by

2z1−λ
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]λ
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

= 1 +
[
λ(1 + α)2m+1Π2

]
a2z+[

(α(2 + k) + 1)(2 + k)(3 + k)mΠ3a3 + 22m+1λ(λ − 1)(1 + 2α)2Π2
2a2

2

]
z2 + · · · . (13)



M. Çağlar et al. / Filomat 37:19 (2023), 6277–6288 6283

From [37, Theorem 4], it can be easily seen that the right hand side of (12)

1 + b {Φ[w(z)] − 1} = 1 + b

p1L1

2
z +

L1

2

p2 −
p2

1

2

(
1 −

L2

L1

) z2 + · · ·

 . (14)

From (13) and (14), we obtain

a2 =
bp1L1

2
[
λ(1 + α)2m+1Π2

] (15)

and

a3 =
bL1

2(2 + k)(3 + k)m[1 + α(2 + k)]Π3

[
p2 −

1
4

(
2 −

2L2

L1
+

bL1(λ − 1)
λ

)
p2

1

]
. (16)

To prove the Fekete-Szegő inequality for the classNBλ,mk (α; θ, ϑ, ρ; b; Φ), we consider∣∣∣a3 − µa2
2

∣∣∣ ≤ |bL1|

2(2 + k)(3 + k)m[1 + α(2 + k)]|Π3|

[
2 +
|p1|

2

4

(∣∣∣∣∣2L2

L1
−

bL1(λ − 1)
λ

−
µbL1(2 + k)(3 + k)m[1 + α(2 + k)]Π3

λ2(1 + α)222m+2Π2
2

∣∣∣∣∣∣ − 2
)]
. (17)

Denoting

Y :=

∣∣∣∣∣∣2L2

L1
−

bL1(λ − 1)
λ

−
µbL1(2 + k)(3 + k)m[1 + α(2 + k)]Π3

λ2(1 + α)222m+2Π2
2

∣∣∣∣∣∣ ,
if Y ≤ 2, from (17) we obtain∣∣∣a3 − µa2

2

∣∣∣ ≤ |bL1|

(2 + k)(3 + k)m[1 + α(2 + k)]|Π3|
. (18)

Further, if Y ≥ 2 from (17) we deduce∣∣∣a3 − µa2
2

∣∣∣ ≤ |bL1|

(2 + k)(3 + k)m[1 + α(2 + k)]|Π3|

( ∣∣∣∣∣2L2

L1
−

bL1(λ − 1)
λ

−
µbL1(2 + k)(3 + k)m[1 + α(2 + k)]Π3

λ2(1 + α)222m+2Π2
2

∣∣∣∣∣∣
)
. (19)

An examination of the proof shows that the equality for (18) holds if p1 = 0, p2 = 2. Equiv-

alently, by Lemma 3.8 we have p(z2) = p2(z) =
1 + z2

1 − z2 . Therefore, the extremal function of the class

NB
λ,m
k (α; θ, ϑ, ρ; b; Φ) is given by

1 +
1
b

2z1−λ
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]λ
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

− 1

 = Φ [
p(z2)

]
.

Similarly, the equality for (18) holds if p2 = 2. Equivalently, by Lemma 3.8 we have p(z) = p1(z) =
1 + z
1 − z

.

Therefore, the extremal function inNBλ,mk (α; θ, ϑ, ρ; b; Φ) is given by

1 +
1
b

2z1−λ
[
(1 − α)Dm+1

k (θ, ϑ, ρ) f (z) + αDm+2
k (θ, ϑ, ρ) f (z)

]λ
(1 − α)Hm

k (θ, ϑ, ρ) f (z) + αHm+1
k (θ, ϑ, ρ) f (z)

− 1

 = Φ [
p1(z)

]
,

and the proof of the theorem is complete.
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If we let θ = α = 0, ρ = 1 and ϕ(z) = (1+Xz)/(1+Yz) in Theorem 3.9, then we have the following result.

Corollary 3.10. If f (z) ∈ A satisfies the condition

1 +
1
b

 2z1−λ
[
Dm+1

k f (z)
]λ

Dm
k f (z) −Dm

k f (−z)
− 1

 ≺ 1 + Xz
1 + Yz

, (−1 ≤ Y < X ≤ 1),

then for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ (X − Y)|b|
(2 + k)(3 + k)m max {1; |2Υ − 1|} ,

where Υ is given by

Υ :=
1
4

(
2(1 + Y) +

(X − Y)b(λ − 1)
λ

+
µb(X − Y)(2 + k)(3 + k)m

22m+2λ2

)
.

The inequality is sharp for each µ ∈ C.

If we let m = k = θ = α = 0, ρ = 1 and ϕ(z) = (1 + Xz)/(1 + Yz) in Corollary 3.10, then we have the
following result.

Corollary 3.11. If f (z) ∈ A satisfies the condition

2z f ′(z)
f (z) − f (−z)

≺
1 + Xz
1 + Yz

, (−1 ≤ Y < X ≤ 1),

then for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ (X − Y)
2

max
{

1;
∣∣∣∣∣Y + µ(X − Y)

4

∣∣∣∣∣} .
The inequality is sharp for each µ ∈ C.

4. λ-Pseudo Pascu Functions Involving Quantum Calculus

In this section, we will present a q-differential symmetric operator analogous to the operator Dm
k (θ, ϑ, ρ) f (z)

defined in Section 1. The study of Geometric Function Theory in dual with quantum calculus was initiated
by Srivastava [38]. For recent developments and applications of quantum calculus in Geometric Function
Theory, refer to the recent survey-cum-expository article of Srivastava [39] and references provided therein.

Here we will restrict ourselves to give just a very brief introduction of the q-calculus. For f ∈ A, the
Jackson’s q-derivative operator or q-difference operator for a function f ∈ A is defined by

∆q f (z) :=


f ′(0), if z = 0,
f (z) − f (qz)

(1 − q)z
, if z , 0.

(20)

From (20), if f ∈ A1 we can easily see that∆q f (z) = 1+
∞∑

n=2
[n]qanzn−1, for z , 0 and note that lim

q→1−
∆q f (z) = f ′(z).

For our study ,we let [n]q =
∑n

k=1 qk−1, [0]q = 0, (q ∈ C) and the q-shifted factorial by

(a; q)n =

1, n = 0
(1 − a)(1 − aq) . . .

(
1 − aqn−1

)
, n ∈N.



M. Çağlar et al. / Filomat 37:19 (2023), 6277–6288 6285

Srivastava et al. [40–45] introduced function classes of q-starlike functions related with conic region and
also studied the impact of Janowski functions on those conic regions. Inspired by aforementioned works
on q − calculus, we now define the q-analogue of the operator Dm

k (θ, ϑ, ρ) f (z) as follows.

M
m
q (k; θ, ϑ, ρ) f (z) = z +

∞∑
n=2

(
[n]q +

k
2

(1 + (−1)n+1)
)m (qρ; q)n−1Γq(ϑ)
Γq (ϑ + θ(n − 1)) (q; q)n−1

zn. (21)

Remark 4.1. The q-analogue of the three-parameter Mittag-Leffler function was provided by Purohit and Kalla in
[47, p. 18]. If we let θ = 0 and ρ = 1 in (21), thenMm

q (k; θ, ϑ, ρ) f reduces to Sk,m
q f defined by Ibrahim [46].

We now define the q-analogue of the function classNBλ,mk (α; θ, ϑ, ρ; b; Φ) (see Definition 6).

Definition 4.2. For u, v ∈ C, with u , v, |v| ≤ 1, let the class q − KBλ,mk (α; θ, ϑ, ρ; Φ) consist of function in A
satisfying the subordination condition

(u − v)z1−λ
[
(1 − α)Mm+1

q (k; θ, ϑ, ρ) f (z) + αMm+2
q (k; θ, ϑ, ρ) f (z)

]λ
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)

≺ Φ(z), (22)

where Lm
q (k; θ, ϑ, ρ) f =

[
M

m
q (k; θ, ϑ, ρ) f (uz) −Mm

q (k; θ, ϑ, ρ) f (vz)
]
, 0 ≤ α ≤ 1, λ ≥ 1, b ∈ C \ {0}, θ, ϑ, ρ ∈

C, Re(θ) > 0 and Φ ∈ P is defined as in (5).

4.1. Conditions For Starlikeness and Solution to Fekete-Szegő Problem of q −KBλ,mk (α; θ, ϑ, ρ; Φ)
Here we establish the conditions for starlikeness analogous to Theorem 3.4. Throughout this subsection,

we let Ωn to denote Ωn =
(qρ;q)n−1Γq(ϑ)

Γq(ϑ+θ(n−1))(q;q)n−1
.

Theorem 4.3. Let the function Φ ∈ P be convex univalent inU with Re {Φ(z)} > 0, (z ∈ U). If the function f ∈ A
satisfies the conditions

Lm
q (k; θ, ϑ, ρ) f (z)

Lm+1
q (k; θ, ϑ, ρ) f (z)

, −
α

1 − α
and

M
m+1
q (k; θ, ϑ, ρ) f (z)

Mm+2
q (k; θ, ϑ, ρ) f (z)

, −
α

1 − α
,

then

2[(u − v)z]1−λ
[
(1 − α)Mm+1

q (k; θ, ϑ, ρ) f (z) + αMm+2
q (k; θ, ϑ, ρ) f (z)

]λ
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)(1 − λ)(u − v) + λ

(1 − α)z[Mm+1
q (k; θ, ϑ, ρ) f (z)]′ + αz[Mm+2

q (k; θ, ϑ, ρ) f (z)]′[
(1 − α)Mm+1

q (k; θ, ϑ, ρ) f (z) + αMm+2
q (k; θ, ϑ, ρ) f (z)

]
+

2[(u − v)z]1−λ
[
(1 − α)Mm+1

q (k; θ, ϑ, ρ) f (z) + αMm+2
q (k; θ, ϑ, ρ) f (z)

]λ
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)

−

(1 − α)z
[
u(Mm

q (k; θ, ϑ, ρ) f (uz))′ − v(Mm
q (k; θ, ϑ, ρ) f (vz))′

]
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)

−α
z
[
u(Mm+1

q (k; θ, ϑ, ρ) f (uz))′ − v(Mm+1
q (k; θ, ϑ, ρ) f (vz))′

]
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)

 ≺ κ(z), (23)

with κ(z) = Φ2(z) + zΦ′(z) implies f ∈ q −KBλ,mk (α; θ, ϑ, ρ; Φ). Moreover, the function Φ is the best dominant of
the left-hand side of (22).
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Proof. If we define the function ℓ(z) by

ℓ(z) :=
2[(u − v)z]1−λ

[
(1 − α)Mm+1

q (k; θ, ϑ, ρ) f (z) + αMm+2
q (k; θ, ϑ, ρ) f (z)

]λ
(1 − α)Lm

q (k; θ, ϑ, ρ) f (z) + αLm+1
q (k; θ, ϑ, ρ) f (z)

,

then from the hypothesis, it follows that ℓ(z) is analytic in U. Now retracing the steps as in Theorem 3.4,
we can establish the assertion of the Theorem.

Remark 4.4. As q→ 1−, Theorem 4.3 reduces to the results listed in Section 3.

For completeness, we just state the coefficient estimate and the Fekete-Szegő inequality for functions
belonging to q −KBλ,mk (α; θ, ϑ, ρ; Φ).

Theorem 4.5. If f (z) = z + a2z2 + a3z3 + · · · ∈ q −KBλ,mk (α; θ, ϑ, ρ; Φ), then for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ |L1|max {1; |2F1 − 1|}[
1 + αq(1 + q) + k

]
[1 + q + q2 + k]m [

λ(1 + q + q2) + u2 + v2 + uv
]
|Ω3|
,

where F1 is given by

F1 =
1
2

1 −
L2

L1
+

L1

[
2λ(1 + q)(u + v) − 2(u + v)2 + λ(1 − λ)(1 + q)2

]
2
[
λ(1 + q) − (u + v)

]2

+
µL1

[
1 + αq(1 + q) + k

]
[1 + q + q2 + k]m

[
λ(1 + q + q2) + u2 + v2 + uv

]
Ω3[

λ(1 + q) − (u + v)
]2 (1 + αq)2(1 + q)2mΩ2

2

 .
The inequality is sharp for each µ ∈ C.

Remark 4.6. If we let u = 1, v = −1, q→ 1− in Theorem 4.5 and let b = 1 in Theorem 3.9, then the results coincide.

5. Conclusion

Using the newly defined operator, λ-pseudo Pascu type functions of complex order was defined to
unify the study of various classes of analytic function. Further keeping with the latest trend of research
we have extended the study using Quantum calculus. Srivastava in [3, 39] showed that, all the results
investigated using quantum derivative (q-derivative) can be translated into the corresponding so called
post-quantum analogues ((p, q)-derivative) using a straightforward parametric and argument variation of
the following types Dp, q f (z) = D q

p
f (pz) and Dq f (z) = Dp, pq f

(
z
p

)
, (0 < q < p ≤ 1). Hence the additional

parameter p is unnecessary, so here we have restricted our study with q-derivative rather than extending
to (p, q)-derivative. We also point out relevant connections of the various q-results, which we investigate
here, with those in several related earlier works on this subject.

References

[1] H. M. Srivastava, A survey of some recent developments on higher transcendental functions of analytic number theory and
applied mathematics. Symmetry 2021, 13, 2294.

[2] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher
transcendental functions. J. Adv. Engrg. Comput. 2021, 5 , 135–166.

[3] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions
and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520.

[4] H. M. Srivastava, On an extension of the Mittag-Leffler function, Yokohama Math. J. 16 (1968), 77–88.
[5] H. M. Srivastava, Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta

functions. SpringerPlus 2, 67 (2013). https://doi.org/10.1186/2193-1801-2-67.
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[37] K. R. Karthikeyan, G. Murugusundaramoorthy and T.Bulboacă, Properties of λ-pseudo-starlike functions of complex order

defined by subordination. Axioms. 2021, 10, Art. ID: 86.
[38] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent
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