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Abstract. Interaction between prey and predator is a natural phenomenon in ecology that significantly
contributes to the structure of ecological variety. Recent studies indicate that the presence of predator can
influence the physiological behaviour of prey species to such an extent that it can be more efficient than
direct predation in decreasing the prey biomass. Moreover, such non-lethal effects can be carried over
through seasons or generations. In this present article, we analyze the impact of predator-induced fear and
its carry-over effect in a predator-prey model in which the predator species can access some alternative
or additional food sources. Well-posedness of the system and some basic dynamical properties such as
extinction criteria, stability analysis with global stability, uniform persistence etc. are discussed thoroughly.
From the bifurcation analyzes, we can observe that fear and its carry-over effect can not switch the stability
from one equilibrium state to other equilibrium state. However once the coexistence equilibrium state
occurs in the system, a higher level of fear can stabilize it. On the other hand, higher level of carry-over
effect promote the oscillatory dynamics around the coexistence state. Therefore, fear and its carry-over
effects have two opposite roles in the stability of the coexistence equilibrium. Predator species may go
extinct if the effective quantity of additional food is sufficiently low. Next we study the model system
in presence of gestation delay and observe some interesting dynamics by taking the delay parameter as a
bifurcation parameter. Our study demonstrates how non-lethal effects alter the dynamics of a prey-predator
model and provides valuable biological insights, particularly into the dynamics of small food web.

1. Introduction

Predator-prey interactions have a long history in mathematical ecology. The relationship between prey
and predator is one of the most important factors that contributes considerably to the formation of commu-
nity establishment and the conservation of ecological diversity. Typical predator–prey interaction models
usually focus on an organism’s principal purpose within a food web. Due to its significant importance,
the dynamical behaviour of predator–prey model has remained one of the most prevalent subjects in
mathematical ecology.

In a predator–prey system, the access to additional food can have a major impact on the system’s
dynamics. Most predators’ diets include additional food as a crucial key component. Despite the fact
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that additional food receives less attention in the scientific literature, many predator species’ life cycles are
profoundly influenced by this type of food sources. Many scientists have shown interest in the effects of
feeding additional food to predator and the resulting effects on predator-prey dynamics, as well as its appli-
cation in mathematical biology. The primary goal of this strategy is to decrease predation pressure on prey
species. In recent years, many scientists and ecologists have studied the effects of feeding additional food
to predators in predator–prey systems. Field experiments have also revealed that diversionary/substitute
feeding does not always serve the objective of biological conservation [4]. Mondal et al. [17] discussed
a prey-predator model with the effect of fear and additional food and observed its dynamical behaviour.
They demonstrated that feeding additional food to the predator biomass reduces the predator’s attack
rate on the prey biomass and promotes the growth of the prey population. Das and Samanta [18] studied
similar type of prey-predator interactions in presence of additional food and prey refuge in the fluctuating
environment. ‘Quality’ and ‘quantity’ are the critical factors that determine the impact of additional food
on a model system. Huxel et al. [19, 20] and Srinivasu [21] observed in their research that a high-quality
additional food source causes a high frequency of predation, but a low-quality source may help to save
the target prey. Das and Samanta [22] have concluded that when the predator’s effective food level of
additional food is high, the predator dominates the prey population in a fluctuating environment.

Over a long period of time, it was thought that predators only had a long-term impact on prey popu-
lations through direct consumption. However, emerging research indicates that predator-prey interactions
are influenced not just by direct predation but also by indirect impacts such as the cost of fear, which
can affect preys’ physiological, morphological, and life cycle responses [1–3, 38, 40]. Prey exhibits numer-
ous anti-predator behaviours to avoid predation, such as habitat alterations, reduced foraging activities,
vigilance, physiological changes, and many more [2]. These types of indirect effects are recognized as trait-
mediated effects and are caused by the predator on prey characteristics rather than prey density. The risk of
predation has a far greater influence on prey foraging behaviour than growth, survivorship, or fecundity [5].
Such non-lethal effects are also based on some field experiments: the interaction between larval dragonfly
Anax sp. (predator species) and bullfrog tadpoles Rana catesbeiana (prey species) [6]. According to certain
recent research works [7, 8], fear of predation may play a significant role in determining the long term
behaviour of a predator-prey model. A field experiment on song sparrows (Melospiza melodia) in 2011
confirmed the impact of fear on prey populations [8]. In that experiment, song sparrows population were
separated to an open atmosphere by eliminating direct predation and manipulating fake predation risk
with predator sound playbacks and it was found that due to the fear of predation, the number of offspring
generated each year is reduced by roughly 40%. Prey that perceives a high degree of predation risk may
temporarily leave their area and returning only when the threat has passed and they are reasonably secure.
Prey population are afraid to come to an open space because of predators, thus they don’t have a free
environment to complete their everyday tasks, such as coupling. As a result, the level of fear may reduce
prey fertility and survival, and when compared to only direct predation, the overall drop in prey population
may be significantly larger. One more field experiment was studied on snowshoe hares, which reveals that
any physiological stress, not simply predatory stress, can lower reproductive output [23]. Das et al. [9]
proposed a gestation delay-induced prey-predator model with the cost of predation fear into both the birth
rate and death rate of prey species in presence of the Holling type II functional response. They found that
the presence of a coexistence equilibrium point is enough to stop the extinction of predator population. The
basic bifurcation analyzes reveal that a larger cost of fear or a larger intraspecific competition rate aids the
population’s survival in a coexistence stage. The suggested model may induce the bi-stable phenomena
between two coexisting steady states with an appropriate choice of parametric variables.

Almost all biological and ecological processes involve time delay. Therefore introducing time delay into
an ecological model makes it more realistic than the non-delayed model. Predator reproduction after prey
consumption is not instantaneous, but is mediated by a time lag necessary for gestation. As a result, the
time lag between prey capture and its associated contribution to predator’s growth is an essential issue in
model construction and biological elucidation [37, 39]. In 2018, Ma and Wang [25] studied how a delay-
induced prey-predator system with habitat complexity respond dynamically. Dutta et al. [24] analyzed
a delay-induced eco-epidemic model, where they found Bautin bifurcation and Gavrilov-Guckenheimer
bifurcation for some preferable parametric values.
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Understanding the components or conditions that influence the fitness of wild organisms is a primary
objective of ecologists [14]. Repeated measurements of clinical tests gave rise to the phrase “carry-over
effect”. After that, it has recently been applied to the area of ecological and evolutionary studies and hence
may be used to a wide range of research areas. O’Connor et al. [10] defined the term “carry-over” as
follows:

“In an ecological context, carry-over effects can occur in any situation in which an individual’s
previous history and experience explains their current performance in a given situation”.

They recommended that ecological carry-over effect can also be happened in the stages of life-history,
physiological states etc., and each of this will be associated with a discrete time-scale. Furthermore, several
laboratory investigations have revealed that nonlethal carry-over effects have an impact on long-term
population dynamics [11, 29, 41]. In 2022, Sasmal and Takeuchi [26] investigated the role of predation fear
and its carry-over effects in a prey-predator model with Holling type I functional response. They identified
that a phenomena known as the ‘paradox of enrichment’ may occur in this sort of model, which may be
eliminated by selecting appropriate non-lethal parameters. Mondal and Samanta [27] studied similar type
of model but with Holling type II functional response and prey refuge. They also compared this model to
a stochastic variant that includes Gaussian white noise terms due to the effect of fluctuating environment.

In this present article, we propose a delay-induced predator-prey model that takes into account the
influence of fear and its carry-over effect on prey reproduction caused by the predator. Further we also
assume that growth of predator depends not only on prey species but also on some alternative/additional
food sources. The main goal of this article is to figure out how the stability of the system dynamics is
influenced by the fear and its carry-over effect in presence of additional food to predator. This study is
organised as follows: In Section 2, we formulate a predator-prey model with (i) cost of fear and its carry-over
effect in prey reproduction and (ii) additional food to predator. The well-posedness of our derived model
system is verified in Section 3. In Section 4, we evaluate some conditions in terms of model parameters
under which the prey or predator biomass goes extinct. In absence of prey, predator species can expand
exponentially under some restriction due to the presence of additional food, as detailed more in this section.
In Section 5, we discuss the existence of various steady states and explore the local stability analysis around
these steady states. Global stability and uniform persistence are verified in Sections 6 and 7 respectively.
Existence of various local bifurcations are discussed in Section 8. In Section 9, we introduce the gestation
delay and investigate the impact of delay parameter on system dynamics. All of the theoretical results are
illustrated by various numerical examples. Finally, we discuss and conclude our findings with biological
significance in Section 10.

2. The Model

First, we model the growth of a prey species in absence of predator, which is governed by the logistic
growth dynamics [32] and can be expressed by the following ODE:

dx
dt
= rx − d1x − a1x2, (2.1)

where x is the prey biomass, r is the prey reproduction rate, d1 is the natural mortality rate and a1 is
the density-dependent death rate. Next, we consider the prey biomass together with a constant predator
biomass, y. Many experimental studies suggest that the presence of predator can indirectly affect the
reproduction of prey species by generating the predator-induced fear and its carry-over effect in prey
individuals [8, 29–31]. Ignoring the direct consumption of predator, we therefore, modify the above logistic
growth model incorporating with fear and it’s carry-over effect in prey reproduction, which is given by:

dx
dt
= rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2. (2.2)

Here the parameter c defines the carry-over effect due to fear as quantified by the parameter k. The term
f (c, k, x, y) = 1+cx

1+cx+ky ,which is related to the fear and its carry over effects, has the following properties:
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(i) For c = 0, f (0, k, x, y) = 1
1+ky which modifies the model (2.2) to a single prey species population model

incorporating with only fear effect [7, 9].

(ii) When there is no fear, i.e., k = 0, f (c, 0, x, y) = 1 and the model (2.2) becomes a simple logistic growth
model as in (2.1).

(iii) For y = 0, f (c, k, x, 0) = 1, that means in absence of predator, prey species does not suffer any
reproductive decay.

(iv) ∂
∂k f (c, k, x, y) < 0 and lim

k→∞
f (c, k, x, y) = 0, i.e., increasing the level of fear (k) has a negative impact on

the growth of prey biomass. Further, this detrimental impact may increase to such a stage where the
reproduction of prey population suffers as well.

(v) Similarly, ∂
∂y f (c, k, x, y) < 0 and lim

y→∞
f (c, k, x, y) = 0, i.e., increasing predator biomass gives adverse

impact on prey reproduction.

(vi) ∂
∂c f (c, k, x, y) = kxy

(1+cx+ky)2 > 0 and lim
c→∞

f (c, k, x, y) = 1, indicating that the carry-over effect (c) has positive
impact on the growth of prey biomass (due to gain experience from past incidents) and furthermore
the prey species can recover his natural reproduction rate when the carry-over effect is very high.

(vii) Similarly, ∂∂x f (c, k, x, y) = cky
(1+cx+ky)2 > 0 and lim

x→∞
f (c, k, x, y) = 1, that means increasing prey biomass has

positive impact on their own growth and if the prey population is very large, no reduction in prey
reproduction occurs due to anti-predator behaviour.

All of these properties ensure that the function f (c, k, x, y) = 1+cx
1+cx+ky can capture the main characteristics of

predation-induced fear and its carry-over effect, and hence can be used in modelling framework. Pictorial
representations of this fear function are shown in Fig.1, from which one can anticipate the behaviour of fear
function for varying x and y, or c and k.
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Figure 1: Contour plots illustrating the nature of fear function f (c, k, x, y) for variation of prey biomass (x)
and predator biomass (y). Similar types of contour plots occur for varying c and k. Increasing x or c has
positive impact and increasing y or k has negative impact on prey’s reproduction.

Recently Mondal and Samanta [27] have provided a detailed analysis of single prey population model
as in equation (2.2) from global perspective and investigated the impact of fear and its carry-over effect
on the growth dynamics of prey species. It has been shown that the fear and its carry-over effect can be a
cause of generating Allee dynamics. In other words, the single species system may represent three forms of
growth dynamics, namely, strong Allee dynamics, weak Allee dynamics and logistic dynamics, depending
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on the restrictions of model parameters. Moreover, the variation of reproduction rate (r) can produce
two types of local bifurcations: (i) saddle-node bifurcation and (ii) transcritical bifurcation. Further they
have discussed the model dynamics in the presence of predator population explicitly, with Holling type-I
functional response and observed some substantial role of fear and its carry-over impact in the stability
of coexistence equilibrium and the occurrence of ‘paradox of enrichment’. Mondal and Samanta [27] have
also investigated the similar type of predator-prey model but with Holling type II functional response and
prey refuge.

Predator species considered in the preceding articles are specialist predators whose growth is exclusively
dependent on the indicated prey species, i.e., predator species goes extinct in the absence of their specific
prey. However, this type of predator-prey relation is very rare in ecology. In absence of their primary
food source, most predator become dependent on the alternative/additional food sources in order to avoid
their extinction crisis. Therefore, provision of additional food to predator has great impact on regulating
ecological diversity. It is also one of the commonly accepted strategies in the field of biological control.
Hence it is quite reasonable to consider the additional food of constant biomass A, which is provided to the
predator species and allocated equally through out the habitat. We now modify the standard Holling type
II functional response in the presence of some additional food to the predator.

Let us presume that T represents the total amount of time needed by the predator to obtain food from
prey. This total time includes the time Ts : spent by predator for seeking prey and/or additional food, the
time Tx : spent for handling prey, the time TA : spent for handling additional food.

∴ T = Ts + Tx + TA.

Let, V(x) is the total amount of predated prey per predator individual which is proportional to the available
prey biomass (x) as well as the time budget (Ts) for seeking prey. Then V(x) = p1xTs, where p1 is the
proportionality constant. Similarly if V(A) be the amount of predated additional food, then V(A) = p2ATs,
where p2 is the proportionality constant. Biologically the constants p1 and p2 are defined as attack rates
or rates of predation. Further, assume h1 and h2 are the average handling times for each hunted prey and
additional food respectively, then Tx = h1V(x) and TA = h2V(A). Therefore the total time, T can be written
as:

T = Ts + h1V(x) + h2V(A) = (1 + h1p1x + h2p2A)Ts.

Now, the size of hunted prey and hunted additional food per predator individual per unit time are given
by

V(x)
T
=

p1x
(1 + h1p1x + h2p2A)

and
V(A)

T
=

p2A
(1 + h1p1x + h2p2A)

respectively. After some simplifications, we rewrite the expressions as follows:

V(x)
T
=

a2x
b + αµA + x

and
V(A)

T
=

a2µA
b + αµA + x

which represent the functional responses of predator towards prey and additional food respectively. Here
a2 =

1
h1
=maximum predation rate, b = 1

h1p1
= half saturation constant of predator biomass, α = h2

h1
= quality

of additional food and µ = p2

p1
= coefficient of effective quantity of additional food. So the growth of the prey

population in presence of direct predation, follows the following ODE:

dx
dt
= rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2

−
a2xy

b + αµA + x
, (2.3)

and the growth of predator biomass together with the derived functional responses on prey and additional
food together with natural mortality rate of predator, can be written as:
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dy
dt
=

c1a2(x + µA)y
b + αµA + x

− d2y. (2.4)

Here, c1 (0 < c1 < 1) is the conversion factor considered as the energetic efficiency in converting consumption
of prey into reproduction (of predator) for each captured prey and d2 is the mortality rate of predator. So,
together with the equations (2.3) and (2.4), our final model looks like as:

dx
dt
= rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2

−
a2xy

b + αµA + x
≡ F1(x, y),

dy
dt
=

c1a2(x + µA)y
b + αµA + x

− d2y ≡ F2(x, y),
(2.5)

with the following initial conditions

x(0) > 0, y(0) > 0. (2.6)

Description and range of model parameters are summarized in Table 1.

Table 1: Description and range of system parameters

Parameter Description Range
r Reproduction rate of prey 0.2 − 6

d1 Natural death rate of prey 0.01 − 1
a1 Density dependent death rate of prey 0.001 − 1
k Level of fear 0.05 − 10
c Carry-over effect rate due to fear 0.01 − 10
a2 Coefficient of consumption rate of predator 0.1 − 3
b Half saturation constant 0.1 − 5
α Quality of additional food 0.01 − 2
µ Coefficient of effective quantity of additional food 0.01 − 2
A Additional food 0.1 − 10
c1 Conversion coefficient 0.01 − 1
d2 Death rate of predator 0.01 − 1

We first verify the well-posedness of our proposed dynamical system before investigating its stability.

3. Preliminaries

The well-posedness of a system refers that the solution of that system exists uniquely and is positive for
any time t ≥ 0 and also the solution does not grow abruptly for long time interval. Biologically, these assert
that the interacting species in the system are ecologically well behaved and abundance of each species is
restricted due to limited resources.

Theorem 3.1. Solution of system (2.5), with initial conditions (2.6), exists uniquely and is positive for any time
t ≥ 0.

Proof. It can be easily verified that the right hand side of system (2.5) are continuous and locally lipschitzian
inR2

+. Hence the solution
(
x(t), y(t)

)
of the system exists uniquely on [0, ξ) where 0 < ξ ≤ ∞ [33]. Now from

system (2.5) with initial conditions x(0) > 0 and y(0) > 0, we have

x(t) = x(0) exp
[∫ t

0

{
r(1 + cx(s))

1 + cx(s) + ky(s)
− d1 − a1x(s) −

a2y(s)
b + αµA + x(s)

}
ds

]
> 0,

y(t) = y(0) exp
[∫ t

0

{
c1a2(x(s) + µA)
b + αµA + x(s)

− d2

}
ds

]
> 0.

(3.1)
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This proves that the solution of the proposed system remains positive for any time t ≥ 0.

Next, we show the uniform boundedness of the system’s solution under certain parametric constraint.

Theorem 3.2. Solutions of system (2.5), initiating in R2
+, are uniformly bounded, provided µA < bd2

c1a2
.

Proof. From the first equation of system (2.5), we have

dx
dt
≤ rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2

≤ (r − d1)x − a1x2

[
∵

1 + cx
1 + cx + ky

≤ 1
]

= (r − d1)x

1 −
x

r−d1
a1

 .
∴ lim

t→∞
sup x(t) ≤

r − d1

a1
.

Next, let us assume W = x + y
c1

. Then,

dW
dt
=

dx
dt
+

1
c1

dy
dt

= rx
(

1 + cx
1 + cx + ky

)
− d1x − a1x2 +

a2µAy
b + αµA + x

−
d2y
c1

≤ rx − d1x − a1x2 +
a2µAy

b
−

d2y
c1

[
∵

1 + cx
1 + cx + ky

≤ 1 and
a2µAy

b + αµA + x
≤

a2µAy
b

]
= rx − a1x2

− d1x −
(
d2 −

c1a2µA
b

)
y
c1
.

Taking µA < bd2
c1a2

and ζ = min
{
d1, d2 −

c1a2µA
b

}
, we have

dW
dt
+ ζW ≤ rx − a1x2

− (d1 − ζ)x −
(
d2 −

c1a2µA
b

− ζ

)
y
c1

≤ rx − a1x2

= −a1

(
x −

r
2a1

)2
+

r2

4a1

≤
r2

4a1
.

Then by applying the theorem of differential inequality [15] for W(t), we obtain

0 ≤W
(
x(t), y(t)

)
≤

r2

4a1ζ
(1 − e−ζt) +W

(
x(0), y(0)

)
e−ζt

=⇒ 0 ≤W
(
x(t), y(t)

)
≤

r2

4a1ζ
+ ϵ, for any ϵ > 0, as t→∞.

Therefore, every positive solution in R2
+ confined in the region

Ω =

{
(x, y) ∈ R2

+ : 0 < x(t) ≤
r − d1

a1
, 0 ≤W

(
x(t), y(t)

)
≤

r2

4a1ζ
+ ϵ, for any ϵ > 0

}
. (3.2)

This demonstrates that any solution of system (2.5) is uniformly bounded provided µA < bd2
c1a2

.
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4. Extinction Criterion

In this section, we derive certain parametric restrictions under which one or both of the prey and
predator go extinct.

Theorem 4.1. If r < d1, then lim
t→∞

x(t) = 0.

Proof. From the first equation of system (2.5), we have

dx
dt
≤ rx

(
1 + cx

1 + cx + ky

)
− d1x

≤ rx − d1x.

Then clearly lim
t→∞

x(t) = 0 as r < d1. Therefore higher mortality rate always drives the prey population to

extinction. This is ecologically realistic and intuitive.

Next, we show that in absence of prey, predator species either goes extinct or grows in larger biomass.

Theorem 4.2. For r < d1:

lim
t→∞

y(t) = 0 if µA(c1a2 − αd2) < bd2, and y(t)→∞ as t→∞ if µA(c1a2 − αd2) > bd2.

Proof. For large time t, the second equation of system (2.5) gives

dy
dt
=

(
c1a2µA

b + αµA
− d2

)
y.

Then it is easy to conclude that lim
t→∞

y(t) = 0 if µA (c1a2 − αd2) < bd2 and y(t)→∞ as t→∞ if µA(c1a2−αd2) >

bd2. Biologically, it states that in absence of prey species, predator growth is regulated by the effective
quantity of additional food. The provision of sufficient additional food increases the size of predator
biomass; otherwise, predator species goes extinct due to a lack of food source.

Now we show that under some certain parametric constraints, the prey species goes extinct even its
reproduction rate is higher than the natural mortality rate.

Theorem 4.3. If r > d1, µA(c1a2 − αd2) > bd2 + d2

(
r−d1

a1

)
, then y(t)→∞ as t→∞ and hence lim

t→∞
x(t) = 0.

Proof. From the second equation of system (2.5), we have (for large t):

dy
dt
≥

c1a2µAy
b + αµA + x

− d2y

≥

 c1a2µA

b + αµA + r−d1
a1

− d2

 y
(
∵ lim

t→∞
sup x(t) ≤

r − d1

a1

)
Therefore, y(t)→∞ as t→∞ for r > d1 and µA(c1a2 − αd2) > bd2 + d2

(
r−d1

a1

)
.

Now from the first equation of system (2.5):

dx
dt
≤ rx

(
1 + cx

1 + cx + ky

)
− d1x

≤ rx
(

1 + cx
1 + ky

)
− d1x

≤

 r
{
1 + c

(
r−d1

a1

)}
1 + ky

− d1

 x.

So, for large t,
dx
dt
< 0, as y(t)→∞ as t→∞ and this implies lim

t→∞
x(t) = 0. Hence the theorem is proved.
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Remark 4.4. The provision of sufficient additional food increases the predator population to large extent, where it
causes a massive predation burden on prey species and drives them to extinction.

Next on the other side, for the extinction of predator population, we have the following theorem:

Theorem 4.5. If r > d1 and 0 < µA < bd2
c1a2
−

(
r−d1

a1

)
, then lim

t→∞
y(t) = 0.

Proof. We have from the second equation of (2.5), for large time t:

dy
dt

=
c1a2(x + µA)y
b + αµA + x

− d2y

≤

[
c1a2(x + µA)

b
− d2

]
y

≤

[
c1a2

b

(
r − d1

a1
+ µA

)
− d2

]
y.

Therefore, lim
t→∞

y(t) = 0 for r > d1 and 0 < µA < bd2
c1a2
−

(
r−d1

a1

)
. This proves the theorem.

Different types of extinction scenarios are presented in Fig.2. In Fig.2a, (i) r < d1 and (ii) µA(c1a2−αd2) <
bd2; hence both the prey and predator population go extinct. But for Fig.2b, (i) r < d1 and (ii) µA(c1a2−αd2) >
bd2 which imply that prey species goes extinct and predator population survives with the consumption
of additional food sources. However, even if r > d1, prey species may experience extinction possibility
depending upon the effective quantity of additional food to predator. If µA(c1a2 − αd2) > bd2 + d2

(
r−d1

a1

)
,

predator biomass enlarges in size and prey species goes extinct due to massive predation pressure as
illustrated in Fig.2c. But for Fig.2d, 0 < µA < bd2

c1a2
−

(
r−d1

a1

)
; hence predator population goes extinct and prey

population grows towards the environmental carrying capacity.

5. Local stability

Here we derive some parametric conditions under which various types of steady state solutions of
system (2.5) are emerged, and further we also explore the stability conditions around these steady states.
Since the condition µA < bd2

c1a2
is sufficient for boundedness of the system solutions, we, therefore restrict

our analysis under this parametric constraint.

5.1. Equilibrium Points
System (2.5) always possesses two following boundary equilibrium points:

(i) Trivial equilibrium point: E0(0, 0) and
(ii) Axial equilibrium point: Ea

(
r−d1

a1
, 0

)
, provided r > d1.

But it is biologically intuitive that higher mortality rate is always harmful for any kind of species and drives
that species to extinction, so throughout this manuscript, we assume that r > d1. The interior equilibrium
point Ec(x∗, y∗) satisfies the two non-trivial prey and predator nullclines together in the interior of the first
quadrant:

Φ(x, y) ≡ r
(

1 + cx
1 + cx + ky

)
− d1 − a1x −

a2y
b + αµA + x

= 0, (5.1)

Ψ(x, y) ≡
c1a2(x + µA)
b + αµA + x

− d2 = 0. (5.2)

From equation (5.2), we get the explicit expression of x∗ which is given by

x∗ =
(d2α − c1a2)µA + bd2

c1a2 − d2
,

provided c1a2 − d2 , 0. For positive x∗, any of the following two sets of conditions must be satisfied:
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Figure 2: Extinction scenarios for different parametric set. (a): Both prey and predator go extinct. (b): Prey
population goes extinct and predator biomass increases in size. (c): Predator biomass increases in size and
prey population goes extinct due to massive predation pressure. (d): Predator species goes extinct and
prey biomass increases to the environmental carrying capacity.

1. c1a2µA
b+αµA < d2 < c1a2,

2. c1a2 < d2 <
c1a2µA
b+αµA .

But the feasibility conditions mentioned in the second set violate the boundedness criterion stated in
Theorem 3.2. Hence in the rest of the article, we consider only the first set of feasibility condition. Now by
using the value of x∗ in the first equation of system (2.5), we derive the following quadratic equation in y,
say f (y) = 0, where

f (y) ≡ Py2 +Qy + R. (5.3)

Here,

P = a2k,
Q = a2(1 + cx∗) + k(b + αµA + x∗)(d1 + a1x∗) and
R = −(1 + cx∗)(b + αµA + x∗)(r − d1 − a1x∗).

Clearly P > 0, Q > 0 and hence the existence of positive root of equation (5.3), say y∗, depends upon the
sign of R. If R > 0, no positive root occurs but for R < 0, exactly one positive root exists. Therefore, the
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Figure 3: Prey and Predator nullclines and the existence of equilibrium points. Trivial and axial equilibrium
points always exist, whereas the existence of interior equilibrium point depends upon the condition:
(d2α − c1a2)µA + bd2 < (c1a2 − d2)

(
r−d1

a1

)
. (a): (b = 0.4) Interior equilibrium point exists. (b): (b = 0.5) Interior

equilibrium point fails to exist. Other parametric values are given as r = 0.5, c = 0.5, k = 1, d1 = 0.1,
a1 = 0.38, a2 = 0.08, α = 0.7, µ = 0.3, A = 0.5, c1 = 0.5, d2 = 0.03.

interior equilibrium Ec(x∗, y∗), where y∗ is a positive root of the equation (5.3) exists provided R < 0, that
means when x∗ < r−d1

a1
i.e., (d2α − c1a2)µA + bd2 < (c1a2 − d2)

(
r−d1

a1

)
. One can anticipate these parametric

restrictions by analyzing the predator-prey nullclines, as plotted in Fig.3. Clearly the non-trivial predator
nullcline is a line given by x = (d2α−c1a2)µA+bd2

c1a2−d2
which is parallel to the y-axis and the non-trivial prey nullcline

is a curve that cuts the x-axis at
(

r−d1
a1
, 0

)
. Then the intersection between these two non-trivial nullclines will

be possible if (d2α − c1a2)µA + bd2 < (c1a2 − d2)
(

r−d1
a1

)
.

Now we investigate the stability behaviour of the system around these equilibrium states by examining
the sign of the eigenvalues of the corresponding Jacobian matrix. The Jacobian matrix J(x, y) of system (2.5)
is given by

J(x, y) =


r(1+ky)(1+2cx)+rc2x2

(1+cx+ky)2 − d1 − 2a1x − (b+αµA)a2 y
(b+αµA+x)2 −

krx(1+cx)
(1+cx+ky)2 −

a2x
b+αµA+x

c1a2(b+(α−1)µA)y
(b+αµA+x)2

c1a2(x+µA)
b+αµA+x − d2

 . (5.4)

At the trivial equilibrium point E0(0, 0), the Jacobian matrix reduces to

J0 =

(
r − d1 0

0 c1a2µA
b+αµA − d2

)
.

Since one of the eigenvalues is r − d1 > 0, E0(0, 0) is unstable.

Theorem 5.1. The trivial equilibrium point E0 is always unstable.

Now the Jacobian matrix at the predator free equilibrium point Ea

(
r−d1

a1
, 0

)
is given by

Ja =

−(r − d1) −(r − d1)
[

kr
a1+c(r−d1) +

a2
a1b+a1αµA+(r−d1)

]
0

c1a2(r−d1+a1µA)
a1b+a1αµA+r−d1

− d2

 .
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Then the eigenvalues are −(r − d1) and c1a2(r−d1+a1µA)
a1b+a1αµA+r−d1

− d2. Now as (r − d1) > 0, the first eigenvalue is

negative in sign, so Ea is stable if c1a2(r−d1+a1µA)
a1b+a1αµA+r−d1

−d2 < 0, i.e., (αd2−c1a2)µA+bd2 > (c1a2−d2)
(

r−d1
a1

)
. Otherwise

it will be unstable.

Theorem 5.2. The axial equilibrium point Ea

(
r−d1

a1
, 0

)
is stable if (αd2 − c1a2)µA + bd2 > (c1a2 − d2)

(
r−d1

a1

)
and

unstable if (αd2 − c1a2)µA + bd2 < (c1a2 − d2)
(

r−d1
a1

)
.

Remark 5.3. Existence of interior equilibrium point Ec violates the stability condition of axial equilibrium point Ea.
Therefore, the existence of Ec is enough to stop the predator species from extinction.

Now the Jacobian matrix at the coexistence equilibrium point Ec(x∗, y∗) is given by

Jc =

(
a11 a12
a21 a22

)
,

where

a11 =

[
a2x∗y∗

(b + αµA + x∗)2 +
rckx∗y∗

(1 + cx∗ + ky∗)2 − a1x∗
]
,

a12 = −x∗
[

kr(1 + cx∗)
(1 + cx∗ + ky∗)2 +

a2

b + αµA + x∗

]
,

a21 =
a2c1(b − µA(1 − α))y∗

(b + αµA + x∗)2 and

a22 = 0.

Then the characteristic equation of the above matrix is

λ2
− a11λ − a21a12 = 0.

According to the Routh–Hurwitz criteria, a11 < 0 and −a12a21 > 0 ensure that the two eigenvalues of Jc are
negative or having negative real parts. But as a12 is always negative, a21 should be positive for stability, i.e.,
b > (1 − α)µA.

Theorem 5.4. The coexistence equilibrium point Ec is locally asymptotically stable if (i) r < 1
cky∗

(
a1 −

a2 y∗

(b+αµA+x∗)2

)
(1+

cx∗ + ky∗)2 and (ii) b > (1 − α)µA.

6. Global Stability

In this section, we will look at the global stability analysis of all possible equilibrium points arising from
system (2.5).

Theorem 6.1. The trivial equilibrium E0 is globally asymptotically stable if r < d1 and µA(c1a2 − αd2) < bd2.

Proof. First we choose a Lyapunov function as:

V0 = x +
1
c1

y.

Then

dV0

dt
=

dx
dt
+

1
c1

dy
dt
.
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Now putting the values of dx
dt and dy

dt from system (2.5), we have

dV0

dt
=rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2 +

a2µAy
b + αµA + x

−
d2

c1
y

≤ (r − d1)x − a1x2 +

(
a2µA

b + αµA
−

d2

c1

)
y

[
as rx

(
1 + cx

1 + cx + ky

)
≤ rx and

a2µAy
b + αµA + x

≤
a2µAy

b + αµA

]

So,
dV0

dt
< 0, provided r < d1 and µA(c1a2 − αd2) < bd2. Also,

dV0

dt

∣∣∣∣∣
E0

= 0.

Therefore, by Lyapunov theorem [12], E0 is globally asymptotically stable for r < d1 and µA(c1a2 − αd2) <
bd2.

Theorem 6.2. The axial equilibrium Ea of system (2.5) is globally asymptotically stable if (αd2−c1a2)µA+bd2

c1a2
> r−d1

a1
.

Proof. From the first equation of system (2.5),

dx
dt
≤ (r − d1)x − a1x2 = (r − d1)x

1 − x(
r−d1

a1

)  .
∴ lim

t→∞
sup x(t) ≤

r − d1

a1
.

Now for large time t,

dy
dt
=

(
c1a2(x + µA)
b + αµA + x

− d2

)
y

≤

(
c1a2(x + µA)

b + αµA
− d2

)
y

≤ −
1

(b + αµA)

[
(b + αµA)d2 − c1a2

(
r − d1

a1
+ µA

)]
.

Therefore, lim
t→∞

y(t) = 0 if (αd2−c1a2)µA+bd2

c1a2
> r−d1

a1
. Hence the theorem.

Theorem 6.3. Interior equilibrium point Ec is globally asymptotically stable if r−d1 > a2c1−d2 > 0, (b+αµA)d2 >

a2c1µA and min
{

2a1−rc−(r−d1)c
c(c1a2−d2) ,

(a1−rc)(b+αµA)−(r−d1)
c1a2−d2+a2cc1µA

}
> 0.

Proof. Let F1(x, y) and F2(x, y) represent the R.H.S of system (2.5). Next we assume the Dulac function
G(x, y) as:

G(x, y) = x−1yβ
(
1 + cx + ky

) (
b + αµA + x

)
,

where β is to be calculated later. Now we have:

D(x, y) =
∂
∂x
{G(x, y)F1(x, y)} +

∂
∂y
{G(x, y)F2(x, y)}

≤ x−1yβ{11(x, β)ky + 12(x, β)},
(6.1)

where

11(x, β) =
[{

(β + 2)(a2c1 − d2) − (b + αµA)a1
}

x − 2a1x2 + (β + 2)a2c1µA − (b + αµA)(β + 2)d2

]
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and

12(x, β) =[{(r − d1)c − 2a1 + (β + 1)c(c1a2 − d2) + rc}x2 + {(r − d1) − a1(b + αµA)
+ (β + 1)(c1a2 − d2) + (1 + β)a2cc1µA + rc(b + αµA)}x + a2c1µA(1 + β)
− (1 + β)(b + αµA)d2].

So,

12(x, β) − 11(x, β) =[(d2 − a2c1) + (r − d1) + (1 + β)a2cc1µA]x + rcx(b + αµA + x) − a2c1µA

+ (b + αµA)d2 + {(1 + β)(a2c1 − d2) + (r − d1)}cx2.

∴ 12 − 11 > 0 if (d2 − a2c1) + (r − d1) > 0 i.e., r − d1 > a2c1 − d2 > 0 and
−a2c1µA + (b + αµA)d2 > 0, i.e., (b + αµA)d2 > a2c1µA.

∴ 12(x, β) > 11(x, β).

So, D(x, y) < x−1yβ(1 + ky)12(x, β). Thus, D(x, y) < 0 for (x, y) ∈ R2
+, if

12(x, β) < 0, f or x ∈ [0,∞). (6.2)

Therefore, it is sufficient to find a β such that the equation (6.2) holds. Now (6.2) is satisfied if

{(r − d1)c − 2a1 + (β + 1)c(c1a2 − d2) + rc} < 0,
{(r − d1) − a1(b + αµA) + (β + 1)(c1a2 − d2) + (1 + β)a2cc1µA + rc(b + αµA)} < 0 and
(1 + β){a2c1µA − (b + αµA)d2} < 0.

From the first and second conditions, we obtain β+1 < 2a1−rc−(r−d1)c
c(c1a2−d2) and β+1 < (a1−rc)(b+αµA)−(r−d1)

c1a2−d2+a2cc1µA respectively,
and from the third one, we get β + 1 > 0 as {a2c1µA − (b + αµA)d2} < 0. Therefore, one can find a β if the
following parametric restriction is satisfied:

0 < min
{

2a1 − rc − (r − d1)c
c(c1a2 − d2)

,
(a1 − rc)(b + αµA) − (r − d1)

c1a2 − d2 + a2cc1µA

}
.

Therefore, there exists β such that D(x, y) < 0 for (x, y) ∈ R2
+.Hence by the Bendixson-Dulac theorem, system

(2.5) has no periodic orbits in the positive quadrant.

7. Uniform Persistent

In evolutionary biology, persistence refers to the long-term survival of all interacting species which exist
initially. Here, we prove the permanence of system (2.5) by utilizing average Lyapunov function [28, 34].

Theorem 7.1. System (2.5) is uniformly persistent if (c1a2 − d2)
(

r−d1
a1

)
> (αd2 − c1a2)µA + bd2.

Proof. For (x, y) ∈ R2
+, we consider the following average Lyapunov function:

L(x, y) = Nσ1 Pσ2 ,

where σ1 and σ2 are some positive constants. Now, differentiating with respect to t, we obtain:

L̇

L
= σ1

ẋ
x
+ σ2

ẏ
y

= σ1

{
r(1 + cx)

1 + cx + ky
− d1 − a1x −

a2y
b + αµA + x

}
+ σ2

{
c1a2(x + µA)
b + αµA + x

− d2

}
.
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Figure 4: Phase portrait for the stable coexistence equilibrium point Ec(3.29, 0.597) with different initial
population biomass. Parameter values are: r = 1.6, c = 2, k = 3, d1 = 0.4, a1 = 0.25, a2 = 0.7, b = 2.15, α = 0.4,
µ = 0.25, A = 4, c1 = 0.35, d2 = 0.18.

Let us denote the right hand side expression by∆(x, y). The system will be uniformly persistent if∆(x, y) > 0
at the boundary equilibrium points (0, 0) and

(
r−d1

a1
, 0

)
for some σ1 > 0 and σ2 > 0. Computing ∆ at the

prescribed boundary equilibrium points, we obtain

∆(0, 0) = σ1(r − d1) + σ2

(
c1a2µA

b + αµA
− d2

)
and

∆

(
r − d1

a1
, 0

)
= σ2

c1a2

(
r−d1

a1
+ µA

)
b + αµA + r−d1

a1

− d2

 .
Since r > d1, ∆(0, 0) > 0 for some suitable choices of σi > 0, i = 1, 2. But ∆

(
r−d1

a1
, 0

)
> 0, provided

c1a2

(
r−d1

a1
+µA

)
b+αµA+ r−d1

a1

− d2 > 0, i.e., (c1a2 − d2)
(

r−d1
a1

)
> (αd2 − c1a2)µA + bd2.

Thus ∆ > 0 at the boundary equilibrium points under the above stated conditions for some σi > 0, i = 1, 2.
Hence system (2.5) is uniformly persistent.

Remark 7.2. Persistency implies instability of the boundary equilibria.

8. Local Bifurcations

In this section, we investigate whether the system has any local bifurcations that may result in various
sorts of dynamical implications such as stability exchange from one state to another, emergence of new
steady state, appearance of limit cycle, and so on. Such local bifurcations can also be analyzed from the
positions of nontrivial nullclines.

8.1. Transcritical bifurcation
Theorem 8.1. System (2.5) undergoes a transcritical bifurcation at the bifurcation threshold

A[TC] =
1
µ

[
bd2

c1a2 − αd2
+

(
d2 − c1a2

c1a2 − αd2

) (
r − d1

a1

)]
provided (c1a2 − αd2) , 0.
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Proof. We apply Sotomayor’s theorem [12] to prove this theorem. For A = A[TC], the Jacobian matrix at Ea
is evaluated as:

J
(
Ea; A = A[TC]

)
=

(
−(r − d1) −(r − d1)

[
kr

a1+c(r−d1) +
a2

a1b+a1αµA[TC]+(r−d1)

]
0 0

)
. (8.1)

Clearly, zero is an eigen value of this Jacobian matrix. Now corresponding to the zero eigenvalue, the

eigenvector of J
(
Ea; A = A[TC]

)
and

[
J
(
Ea; A = A[TC]

)]T
are obtained as V =

(
v1
1

)
and W =

(
0
1

)
respectively,

where v1 = −
[

kr
a1+c(r−d1) +

a2
a1b+a1αµA[TC]+(r−d1)

]
. Utilizing the identical formulae from [12], we evaluate the

transversality criteria for transcritical bifurcation given as:

∆1 =WT
[
FA

(
Ea; A = A[TC]

)]
= 0,

∆2 =WT
[
DFA

(
Ea; A = A[TC]

)
V
]
=

c1a2µ
{
b + (1 − α)

(
r−d1

a1

)}
(
b + αµA[TC] + r−d1

a1

)2 , 0,

∆3 =WT
[
D2F

(
Ea; A = A[TC]

)
(V,V)

]
=

c1a2

{
b + (α − 1)µA[TC]

}
(
b + αµA[TC] + r−d1

a1

)2 v1 , 0.

Here F ≡
(
F1
F2

)
, where F1 and F2 are defined in (2.5). Since these satisfy all the requirements of Sotomayor’s

theorem, a transcritical bifurcation occurs at A = A[TC] through which the system exchanges its stability
from Ea to Ec or vice versa.

Theorem 8.2. For each of the bifurcation parameters r, µ and c1, system (2.5) undergoes a transcritical bi-
furcation respectively at r[TC] = d1 +

1
c1a2−d2

{
d2(a1b + αa1µA) − c1a1a2µA

}
, provided (c1a2 − d2) , 0; µ[TC] =

1
A

[
bd2

c1a2−αd2
+

(
d2−c1a2

c1a2−αd2

) (
r−d1

a1

)]
, provided (c1a2 − αd2) , 0 and c[TC]

1 =
d2(a1b+a1αµA+r−d1)

a2(r−d1+a1µA) .

Proof. The proofs are same as above and so omitted.

8.2. Hopf-bifurcation
To explore the instability of the interior equilibrium point Ec(x∗, y∗), we consider the birth rate, r as a free

parameter. The characteristic equation of the Jacobian matrix Jc can be written in terms of r as

λ2
− T(r)λ +D(r) = 0, (8.2)

where T(r) and D(r) are smooth functions of r, generated by trace and determinant respectively of the said
matrix given as:

T =
[

a2x∗y∗

(b + αµA + x∗)2 +
rckx∗y∗

(1 + cx∗ + ky∗)2 − a1x∗
]

and

D = a2c1x∗y∗
[

kr(1 + cx∗)
(1 + cx∗ + ky∗)2 +

a2

b + αµA + x∗

] [
b − (1 − α)µA

(b + αµA + x∗)2

]
.

If equation (8.2) has a pair of imaginary roots, the stability of Ec depends upon the sign of their real parts.
For negative real parts, Ec is locally asymptotically stable and for positive real part of at least one root, Ec
is unstable. Therefore, stability changes when equation (8.2) creates purely imaginary roots. In relation to
this type of stability change, we have the following theorem.
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Theorem 8.3. (Hopf-Bifurcation Theorem [13]) If T(r) and D(r) are differentiable functions of r in a neighbourhood
Nϵ

(
r[H]

)
(ϵ > 0) such that equation (8.2) has a pair of imaginary roots, say λ = q1(r) + iq2(r) with q1(r), q2(r) ∈ R

which become purely imaginary at r = r[H] and
[ dq1(r)

dr

]
r=r[H]

, 0, then a Hopf-bifurcation occurs around Ec at r = r[H].

Next we will show that system (2.5) exhibits Hopf-bifurcation at r = r[H].

Theorem 8.4. System (2.5) undergoes a Hopf-bifurcation around the coexistence equilibrium point Ec when the
bifurcating parameter r passes through its threshold value r = r[H] provided T(r[H]) = 0, D(r[H]) > 0 and

[
dT
dr

]
r=r[H]

, 0.
The threshold value of r can be obtained by solving the equation:

a2y∗

(b + αµA + x∗)2 +
rcky∗

(1 + cx∗ + ky∗)2 − a1 = 0,

where x∗ = (d2α−c1a2)µA+bd2

c1a2−d2
and y∗ satisfies (5.3).

Proof. At r = r[H], it is given that T(r[H]) = 0, D(r[H]) > 0. Then the equation (8.2) has two purely imaginary
roots λ1 = i

√
D(r[H]) and λ2 = −i

√
D(r[H]). Now if r ∈ Nϵ

(
r[H]

)
(ϵ > 0) the roots have of the form

λ1 = q1(r) + iq2(r) and λ2 = q1(r) − iq2(r), where q1(r) and q2(r) are real valued functions of r. Therefore, by
the help of the theorem of Hopf-bifurcation [13], we can easily say that system (2.5) shifts its stability via
Hopf-bifurcation at r = r[H] provided the transversality conditions[

d
dr

(Reλi(r))
]

r=r[H]

=

[
dq1(r)

dr

]
r=r[H]

, 0, i = 1, 2,

are satisfied. Putting λ1(r) = q1(r) + iq2(r) in (8.2) and differentiating with respect to r, we have

2(q1(r) + iq2(r))(q̇1(r) + iq̇2(r)) − T(r)(q̇1(r) + iq̇2(r)) − Ṫ(k)(q1(r) + iq2(r)) + Ḋ(r) = 0.

Comparing the real and imaginary parts, we obtain:

q̇1(2q1 − T) + q̇2(−2q2) − Ṫq1 + Ḋ = 0 =⇒ q̇1X1 − q̇2X2 + X3 = 0, (8.3)

q̇1(2q2) + q̇2(2q1 − T) − Ṫq2 = 0 =⇒ q̇1X2 + q̇2X1 + X4 = 0, (8.4)

where X1 = (2q1 − T), X2 = 2q2, X3 = −Ṫq1 + Ḋ and X4 = −Ṫq2.
Solving the equations (8.3) and (8.4), we get

q̇1 = −
(X1X3 + X2X4)

X2
1 + X2

2

. (8.5)

Now at r = r[H], two cases arise:
Case 1: When q1 = 0, q2 =

√
D. Then X1 = 0, X2 = 2

√
D, X3 = Ḋ and X4 = −Ṫ

√
D. Hence from (8.5), we get

[
q̇1

]
r=r[H] =

[
dq1(r)

dr

]
r=r[H]

=
1
2

[
dT(r)

dr

]
r=r[H]

, 0,

since T(r[H]) = 0, D(r[H]) > 0 and
[

dT
dr

]
r=r[H]

, 0.

Case 2: When q1 = 0, q2 = −
√

D. Then X1 = 0, X2 = −2
√

D, X3 = Ḋ and X4 = Ṫ
√

D. Hence from (8.5), we
get

[
q̇1

]
r=r[H] =

[
dq1(r)

dr

]
r=r[H]

=
1
2

[
dT(r)

dr

]
r=r[H]

, 0,

since T(r[H]) = 0, D(r[H]) > 0 and
[

dT
dr

]
r=r[H]

, 0. Hence the theorem.
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Remark 8.5. Similarly, system (2.5) may experience Hopf-bifurcations with respect to k (fear effect) and c (carry-over
effect).

Now we conduct some numerical simulations to illustrate these local bifurcations consistent with the
analytical findings. We, therefore consider the following parametric set which is although hypothetical but
biologically feasible.

Parametric Values: Set 1
r c k d1 a1 a2 b α µ A c1 d2

1.6 2 3 0.4 0.25 0.7 2.15 0.4 0.25 4 0.35 0.18

Table 2: Parameter values used for numerical simulation of system (2.5)
.

The feasibility criteria c1a2µA
b+αµA < d2 < c1a2 and (d2α − c1a2)µA + bd2 < (c1a2 − d2)

(
r−d1

a1

)
are satisfied for the

existence of Ec which is obtained as Ec (3.29, 0.5965) from the above mentioned parametric set (Table 2).
Also the coexistence state Ec (3.29, 0.5965) is globally asymptotically stable which is depicted in Fig.4.
Now, if we gradually increase the level of additional food from A = 4 to A = 6.905368, the system exhibits
oscillatory behaviour around the coexistence equilibrium point, Ec. Again, if we decrease A to A = 1.734104,
the predator species can not survive in the ecosystem but the prey species can survive properly in absence
of predation and approach to its carrying capacity, i.e., the system undergoes a transcritical bifurcation at
A[TC] = 1.734104. Also, it should be noted that increasing value of A have a positive impact on predator
biomass, which is biologically intuitive. However, the increased predator biomass generates additional
predation burden on prey species, resulting in a decrease in prey biomass. All of these scenarios are
depicted in Figs.5(a),(b). Similar types of qualitative behaviour are observed for the bifurcating parameter
µ (see Figs.5(c),(d)). A transcritical bifurcation occurs at µ[TC] = 0.1084 and a Hopf-bifurcation appears at
µ[H] = 0.4316.
In every prey-predator model, the reproduction rate r plays a crucial role in system dynamics. So, it is quite
reasonable to study the impact of this parameter on the proposed model. For this purpose, we vary the
parameter r while keeping the rest of the parameters fixed as in Table 2. If r < d1 = 0.4, both species go
extinct from the environment and the system becomes stable at E0. If r exceeds the value r[TC1] = 0.4, prey
species can survive in the environment, but predator species cannot. Therefore, the system experiences
a transcritical bifurcation at r[TC1] = 0.4. Another transcritical bifurcation occurs at r[TC2] = 1.223, through
which the system exchanges its stability with the interior equilibrium point Ec. Higher value of r drives the
system oscillatory around Ec. More precisely the system undergoes a Hopf-bifurcation at r[H] = 3.018 (see
Figs.6(a),(b)). We also analyze the change of system behaviour by varying the conversion coefficient c1. In
this case, a transcritical bifurcation occurs at c[TC]

1 = 0.3259 and a Hopf-bifurcation appears at c[H]
1 = 0.424

(see Figs.6(c),(d)).
Next, we investigate the qualitative change of system behaviour in r − A parametric plane as depicted

in Fig.7. A Hopf-bifurcation curve and two transcritical bifurcation curves are shown in this diagram.
The whole r − A parametric plane is divided by these three bifurcation curves into four sub-regions that
are referred to as R1, R2, R3 and R4. In R1, none of the species can survive in ecosystem. Moreover, in
this parametric region, provision of additional food upto (c1a2 − αd2)A < bd2 have no impact on predator
growth. But for (c1a2 − αd2)A > bd2, predator species follows the exponential growth model. Analytical
explanations of these scenarios are described in Theorem 4.2. We can now only enter the region R2 by raising
the value of r. In this region, predator-free equilibrium point Ea is globally asymptotically stable. Next if
we raise the value of r or A and enter into the region R3, the system will go through another transcritical
bifurcation, which will result in a stability switch between Ea and Ec. Stability of Ec will be lost if the values
of r and A are taken from R4. In this case, oscillatory behaviour around Ec is observed. Therefore, any
of the higher value of r and A can produce a oscillatory behaviour around the coexistence state. Now we
investigate the impact of fear (k) and its carry-over effect (c) on the system dynamics. We have already
observed that if the parametric condition (d2α − c1a2)µA + bd2 = (c1a2 − d2)

(
r−d1

a1

)
is satisfied, a transcritical
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(a) (b)

(c) (d)

Figure 5: Bifurcation diagrams of system (2.5) with respect to the bifurcation parameters A and µ. Dotted
line describes the unstable behaviour and solid line represents the stable behaviour of the system. First
column depicts the change of prey biomass and the second column describes the change of predator
biomass. (a),(b): A transcritical and a Hopf-bifurcation occurs for the bifurcating parameter A. (c),(d):
Similarly the system undergoes a transcritical and a Hopf-bifurcation for the bifurcating parameter µ. The
parametric values are taken from Table 2.

bifurcation occurs through which the system trades its stability between Ea and Ec. It can be noticed that
this parametric condition is independent of k and c. Therefore, no transcritical bifurcation occurs for the
varying parameters k and c. On the other hand, the parametric criteria that cause the system to experience a
Hopf-bifurcation around Ec, explicitly depend on k and c. Hence the only bifurcation that the system faces
for varying the parameters k and c is the Hopf-bifurcation. For numerical demonstration, we consider the
following set of parametric values.

Parametric Values: Set 2
r c k d1 a1 a2 b α µ A c1 d2

4 0.1 5 0.4 0.25 0.7 2.15 0.4 0.25 4 0.35 0.18

Table 3: Parameter values used for numerical simulation of system (2.5)
.

For this particular set of parametric values, the coexistence equilibrium point Ec is globally asymptoti-
cally stable. Now if the level of fear (k) is decreased to k = 0.1204, a Hopf-bifurcation occurs through which
the system exhibits oscillatory behaviour around Ec as depicted in Figs.8(a),(b). Except for a decrease in
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(a) (b)

(c) (d)

Figure 6: Bifurcation diagrams of system (2.5) with respect to the bifurcation parameters r and c1. Dotted line
describes the unstable behaviour and solid line represents the stable behaviour of the system. First column
depicts the change of prey biomass and the second column describes the change of predator biomass.
(a),(b): Two transcritical and a Hopf-bifurcation occurs for the bifurcating parameter r. (c),(d): Similarly
a transcritical and a Hopf-bifurcation occurs for the bifurcating parameter c1. The parametric values are
taken from Table 2.

predator biomass, a higher level of fear has no effect on the system’s qualitative behaviour. Therefore,
higher level of fear has stabilizing effect on the system dynamics. On the other hand, if we gradually
increase c to c = 1.065, oscillatory behaviour around Ec is emerged, but for lower value of c, no bifurcation
occurs (see Figs.8(c),(d)). Hence higher carry-over has destabilizing effect on the system dynamics.

To investigate the combine effect of k and c, we analyze the system behaviour in k − c parametric plane
(see Fig.9(a)) and it is observed that a Hopf-bifurcation curve divides the whole parametric plane into
two sub-regions which are labeled as R1 and R2. In R1, the coexistence equilibrium point Ec is globally
asymptotically stable and in R2, the coexistence becomes oscillatory through the Hopf-bifurcation. It
should be emphasised that higher level of fear or lower level of carry-over effect decreases the possibility of
occurrence of Hopf-bifurcation. From Fig.9(b), one can investigate how the different combinations of A and
k affect the system behaviour. This figure contains a transcritical bifurcation curve and a Hopf-bifurcation
curve that divides the whole A − k parametric plane into three sub-regions: R1, R2 and R3. In R1, Ea is
globally asymptotically stable; In R2, the coexistence equilibrium Ec is globally asymptotically stable and
in R3, the coexistence is oscillatory. Similar types of dynamical changes are observed in A − c parametric
plane as depicted in Fig.9(c). It should also be observed that there is a tiny range of A for which the system
exhibits two Hopf-bifurcations with respect to the bifurcation parameter k, and the coexistence follows the
stable-oscillatory-stable transition (see Fig.9(b) and Fig.10).
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Figure 7: Two-parametric bifurcation diagram and stability zone of various equilibrium points of system
(2.5) in the r − A plane. In R1, E0 is stable; In R2, the axial equilibrium point Ea is stable; In R3, the
coexistence equilibrium point Ec is stable and in R4, the system exhibits oscillatory behaviour around Ec.
R1, R2 and R3 are separated by the transcritical bifurcation curves, whereas R3 and R4 are separated by the
Hopf-bifurcation curve. The parametric values are taken from Table 2.

9. Effect of discrete time delay

Almost all biological processes exhibit time delay. When it comes to mathematical modelling, incor-
poration of time delay in any ecological system, makes the system more genuine than the corresponding
non-delayed system [9, 35, 36]. During the time of prey-predator interaction, the energy conversion process
that takes place during predation does not happen instantly. The entire conversion process takes time,
which is referred to as gestation delay. So, in presence of gestation delay (τ), system (2.5) can be modified
as follows:

dx
dt
= rx

(
1 + cx

1 + cx + ky

)
− d1x − a1x2

−
a2xy

b + αµA + x
,

dy
dt
=

c1a2(x(t − τ) + µA)y(t − τ)
b + αµA + x(t − τ)

− d2y.
(9.1)

The initial history function is assumed as:

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), (9.2)

where θ ∈ [−τ, 0] and Φ = (ϕ1, ϕ2) belongs to the Banach space of continuous functions Φ : [−τ, 0] → R2
+

with

||Φ|| = sup
−τ≤θ≤0

(
|ϕ1(θ)|, |ϕ2(θ)|

)
.

For biological feasibility, we further consider x(0) > 0, y(0) > 0.
In the system, τ represents the time lag for predator’s digestion and gestation. System (9.1) has the
same steady state as the non-delayed system discussed previously. To preserve biological biodiversity, we
primarily focus on determining the parametric conditions under which this delay-induced system is stable
around the interior equilibrium point Ec. Using the transformation X(t) = x(t) − x∗, Y(t) = y(t) − y∗, system
(9.1) can be transformed into a linearized system as follows:

d
dt

(
X(t)
Y(t)

)
= C

(
X(t)
Y(t)

)
+D

(
X(t − τ)
Y(t − τ)

)
. (9.3)
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(a) (b)

(c) (d)

Figure 8: Bifurcation diagrams of system (2.5) with respect to the bifurcation parameters k and c. Dotted line
describes the unstable behaviour and solid line represents the stable behaviour of the system. First column
depicts the change of prey biomass and the second column describes the change of predator biomass.
(a),(b): A Hopf-bifurcation occurs for the bifurcating parameter k. (c),(d): Similarly the system undergoes
a Hopf-bifurcation for the bifurcating parameter c. The parametric values are taken from Table 3.

Here,

C =
(
c11 c12
0 c22

)
and D =

(
0 0

d21 d22

)
,

where

c11 =
a2x∗y∗

(b + αµA + x∗)2 +
rckx∗y∗

(1 + cx∗ + ky∗)2 − a1x∗,

c12 = −x∗
[

kr(1 + cx∗)
(1 + cx∗ + ky∗)2 +

a2

b + αµA + x∗

]
,

c22 = −d2,

d21 =
c1a2y∗

(
b + (α − 1)µA

)
(b + αµA + x∗)2 ,

d22 =
c1a2(x + µA)

(b + αµA + x)
.
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(a) (b)

(c)

Figure 9: Two-parametric bifurcation diagrams and stability zone of various equilibrium points of system
(2.5) in the k−c, A−k and A−c parametric planes. (a): In R1, Ec is stable; In R2, oscillatory behaviour around
Ec appears; (b): In R1, Ea is stable; In R2, Ec is stable and in R3 the system exhibits oscillatory behaviour
around Ec. (c): In R1, Ea is stable; In R2, Ec is stable and in R3, Ec is oscillatory. For Fig.(a), the parametric
values are taken from Table 3 and for Fig.(b) and Fig.(c), the parametric values are taken from Table 2.

The characteristic equation of the linearized system (9.3) is

λ2 +M1λ +M2 + (N1λ +N2)e−λτ = 0, (9.4)

where

M1 = −c11 − c22,

M2 = c11c22,

N1 = −d22,

N2 = c11d22 − c12d21.

For τ = 0, the above characteristic equation reduces to

λ2 + (M1 +N1)λ +M2 +N2 = 0. (9.5)

Therefore, the coexistence equilibrium point will be stable if the following two conditions are satisfied:

M1 +N1 > 0, and M2 +N2 > 0. (9.6)
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(a) (b)

Figure 10: Bifurcation diagrams of system (2.5) with respect to the bifurcation parameter k. Two Hopf-
bifurcations occur at k[H1] = 0.1296 and at k[H2] = 2.921. In this case, the level of additional food is taken as
A = 6.9. The parametric values are taken from Table 2.

Now, when τ , 0, the sign of the real part of the roots of the associated characteristic equation (9.4), de-
termines the stability behaviour of the delay-induced system around the coexistence steady state, Ec(x∗, y∗).
Ec is locally asymptotically stable if all the real parts are negative; otherwise, it is unstable. First of all, it is
assumed that Ec is asymptotically stable for τ = 0. Then in presence of delay, we evaluate the parametric
conditions for which Ec is stable for τ > 0. Continuity property of τ ensures that the characteristic equation
(9.4) has roots with positive real parts if and only if it has purely imaginary roots. This property helps to
deduce the parametric conditions for which the equation (9.4) has roots with negative real parts.
Now substituting λ = ξ + iω in equation (9.4), we obtain

(ξ + iω)2 +M1(ξ + iω) +M2 + (N1(ξ + iω) +N2)e−ξτ (cos(ωτ) − i sin(ωτ)) = 0. (9.7)

Comparing the real and complex parts from both sides, we obtain:

ξ2
− ω2 +M1ξ +M2 + ξN1e−ξτ cos(ωτ) +N2e−ξτ cos(ωτ) +N1ωe−ξτ sin(ωτ) = 0, (9.8)

2ξω +M1ω +N1ωe−ξτ cos(ωτ) −N1ξe−ξτ sin(ωτ) −N2e−ξτ sin(ωτ) = 0. (9.9)

Now for purely imaginary roots, let us take ξ = 0 and then the above two equations are reduced to

N1ω sin(ωτ) +N2 cos(ωτ) = ω2
−M2, (9.10)

N1ω cos(ωτ) −N2 sin(ωτ) = −M1ω. (9.11)

By squaring and adding, we obtain

ω4 + (M2
2 − 2M2 −N2

1)ω2 +M2
2 −N2

2 = 0. (9.12)

Now by considering ω2 = σ, we have

Z(σ) ≡ σ2 + (M2
2 − 2M2 −N2

1)σ +M2
2 −N2

2 = 0. (9.13)

Clearly, Z(∞) > 0 and so the equation (9.13) has at least one positive real root if Z(0) < 0, i.e., M2
2 < N2

2 . Let
us assume that the positive root is σ+, then ω = ±

√
σ+.

Now we state a lemma proved by Ruan and Wang [16].
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Lemma 9.1. Consider the exponential polynomial

P(λ, e−λτ1 , e−λτ2 , ..., e−λτm ) = λn + p(0)
1 λ

n−1 + .... + p(0)
n−1λ + p0

n

+
[
p(1)

1 λ
n−1 + ... + p(1)

n−1λ + p(1)
n

]
e−λτ1

+ ...

+
[
p(m)

1 λ
n−1 + ... + p(m)

n−1λ + p(m)
n

]
e−λτm ,

where τi ≥ 0 (i = 1, 2, 3, ...m) and p(i)
j (i = 1, 2, 3, ...m; j = 1, 2, 3, ...n) are constants. As (τ1, τ2, ..., τm) vary, the sum

of the orders of zero of P(λ, e−λτ1 , e−λτ2 , ....e−λτm ) in the open half plane can change only if a zero appears on or crosses
the imaginary axis.

Now by considering τ as a bifurcation parameter, we investigate the existence of Hopf-bifurcation around
Ec which is given below as a theorem:

Theorem 9.2. Suppose the coexistence steady state Ec exists and is locally asymptotically stable under the parametric
restrictions stated in Theorem 5.4 for τ = 0. If M2

2 < N2
2 , one can obtain a threshold value of τ, say τ∗, so that Ec is

locally asymptotically stable for 0 ≤ τ < τ∗ and unstable for τ > τ∗, where

τ∗ = min
n
τ(n)
+ = min

n

 1
√
σ+

cos−1

 (N2 −M1N1)σ+ −M2N2

N2
2 +N2

1σ+

 + 2πn
√
σ+

 (n = 0, 1, 2, 3, ...)

In other words, system (9.1) exhibits a Hopf-bifurcation around Ec at τ = τ∗ provided KL > LN where K, L, M and
N are defined within the proof.

Proof. It is shown that the equation (9.13) has one positive root, say σ+ under the parametric condition
M2

2 < N2
2 . Then from equations (9.10) and (9.11), we can evaluate τ(n)

+ (n = 0, 1, 2, 3...) in terms of σ+ which
is given as follows:

τ(n)
+ =

1
√
σ+

cos−1

 (N2 −M1N1)σ+ −M2N2

N2
2 +N2

1σ+

 + 2πn
√
σ+

(n = 0, 1, 2, 3, ...)

Now we assume that τ∗ = min
n
τ(n)
+ . Therefore, using Butler’s Lemma, we can conclude that the coexistence

equilibrium point Ec is stable for τ < τ∗, provided Ec is stable for τ = 0.
Next we check the transversality condition:

[
d

dτ (Reλ(τ))
]
τ=τ∗
=

[
dξ
dτ

]
τ=τ∗
> 0.

Differentiating (9.8) and (9.9) with respect to τ and setting ξ = 0 and τ = τ∗, we obtain

K
[

dξ
dτ

]
τ=τ∗
+ L

[
dω
dτ

]
τ=τ∗
=M, (9.14)

−L
[

dξ
dτ

]
τ=τ∗
+ K

[
dω
dτ

]
τ=τ∗
= N, (9.15)

where

K =M1 +N1 cos(
√
σ+τ

∗) −N2τ
∗ cos(

√
σ+τ

∗) −N1
√
σ+τ

∗ sin(
√
σ+τ

∗),

L = −2
√
σ+ −N2τ

∗ sin(
√
σ+τ

∗) +N1 sin(
√
σ+τ

∗) +N1
√
σ+τ

∗ cos(
√
σ+τ

∗),

M = N2
√
σ+ sin(

√
σ+τ

∗) −N1σ
2
+ cos(

√
σ+τ

∗),

N = N1σ+ sin(
√
σ+τ

∗) +N2
√
σ+ cos(

√
σ+τ

∗).
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Solving (9.14) and (9.15), we obtain[
dξ
dτ

]
τ=τ∗
=

[
d

dτ
(Reλ(τ))

]
τ=τ∗
=

[KM − LN
K2 + L2

]
.

Then clearly
[

d
dτ (Reλ(τ))

]
τ=τ∗
> 0, provided KM > LN. Hence the system undergoes a Hopf-bifurcation

when τ crosses its threshold value τ∗.

Next, we study the delayed model numerically and investigate the influence of gestation delay on model
dynamics. For this purpose, we consider the set of parametric values stated in Table 4. One can easily

Parametric Values: Set 3
r c k d1 a1 a2 b α µ A c1 d2

0.5 0.5 1 0.1 0.38 0.08 0.4 0.7 0.3 0.5 0.9 0.03

Table 4: Parameter values used for numerical simulation of system (9.1)
.

check that for this particular set of parametric values the non-delayed system is asymptotically stable
around Ec(0.1036, 0.9442). We can now see how the system’s dynamics vary when the delay parameter
τ is gradually increased from 0. Fig.11 shows that the stability of Ec does not change initially, but as
soon as τ crosses some threshold value τ∗ (in this example approximate value of τ∗ is 8.1), the system
exhibits oscillatory behaviour around Ec. Therefore the system experiences a Hopf-bifurcation around the
coexistence steady state at τ = τ∗. Fig.12(a) depicts the stable behaviour of the system around Ec for a
typical value τ = 5 < τ∗. In Fig.12(b), oscillatory behaviour around Ec is observed for τ = 12 > τ∗.
Now we investigate numerically how the critical value of τ varies as the amount of additional food A
fluctuates. In Fig.13(a), we have plotted the bifurcation diagram for three different values of A and it is
observed that higher levels of A enhance the possibility of oscillatory dynamics. In particular, for A = 0.4,
the critical value of τ is obtained as τ∗ = 14 but for A = 0.6, that critical value reduces to τ∗ = 4.8. Similarly
from Fig.13(b), we can observe that higher level of fear promotes the stable coexistence in nature. In this
case, the critical value of τ increases to around 18.5 for k = 1.5. Fig.13(c) depicts the behaviour of τ∗ for three
different levels of carry-over effect (c) and it is noticed that higher level of c reduces the critical value of τ,
implying that higher level of c promotes the oscillatory dynamics.

10. Discussion

The ecological research focuses on determining the environmental components that control the dynam-
ical complexity of the ecosystem. Numerous mathematical models have been developed in recent years to
investigate the diverse ecological processes under various environmental restrictions. The predator-prey
interaction model is one such type of ecological models. The majority of studies has concentrated only
on the predator’s lethal effects in prey-predator interactions. However, recent study has discovered that,
in addition to lethal effects, there are certain non-lethal consequences that are equally as significant as the
preceding one. Predation-induced fear is one of such non-lethal effects that plays an important role in
population fitness. Non-lethal effects are not just restricted to a single generation but can also be carried
over through generations. So, it is biologically relevant to consider the predation-induced fear, together
with its carry-over effect in our predator-prey model. Further we modify the standard Holling type II
functional response in the presence of some additional food to the predator. In addition, to obtain more
realistic dynamics, we include the gestation delay in the predation term.

The well-posedness of our proposed model and extinction criteria for both species are determined under
various parametric constraints. Existence of various equilibrium states and their local stability are discussed
with standard linear stability analysis. We have also developed certain parametric criteria under which
all of the system’s interacting species can persist in nature. Various local bifurcations are also analyzed by
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Figure 11: Bifurcation diagram of the delay-induced system (9.1) for the bifurcation parameter τ. A Hopf-
bifurcation occurs when τ crosses a critical value τ∗ = 8.1. The parametric values are taken from Table 4.

taking r, k, c, A and µ as bifurcating parameters. It is also established that the gestation delay (τ) can cause
the system to oscillate around the coexistence state. According to our analytical and numerical outcomes,
fear and its carry-over effects with additional food to predator can jointly impact the proposed system in a
variety of ways, as explained below:

1. The provision of additional food (A) to predators on a wide scale promotes the expansion of predator
biomass, resulting in a significant predation burden on prey species and driving them to extinction.
However if the effective quantity of additional food is very minimal, the predator species may go
extinct. This scenario arises only when the predator species can not properly access the prey species
either for their (prey) lower reproduction rate or for predator’s lower hunting efficiency. The stable
coexistence is possible only for the intermediate values of A. For some critical value of A, the presence
of oscillatory dynamics around the coexistence state is also demonstrated.

2. Predation-induced fear (k) and its carry-over effect (c) are not capable to switch the system’s stability
from one equilibrium state to other equilibrium state, i.e., if the predator-free equilibrium becomes
stable for some set of parametric values, we can not change its stability only by changing the values
of k and c. However once the coexistence equilibrium state occurs in the system, a higher level of fear
can stabilize it. For the lower level of fear, the system may experience a Hopf-bifurcation around the
interior steady state Ec. Therefore, higher level of fear has stabilizing effect on the system dynamics.
It should also be mentioned that there is a limited range of A for which the system exhibits two
Hopf-bifurcations with respect to the bifurcation parameter k, indicating that the coexistence follows
the stable-oscillatory-stable transition.

3. For higher level of carry-over effect, in particular if c > c[H], the system exhibits oscillatory dynamics
around Ec. Hence higher carry-over has destabilizing effect on the system dynamics. To make the
system stable in a coexistence state, the critical value (c[H]) of c should be increased. This may be
accomplished in two ways: by reducing the amount of additional food or by enlarging the costs of
fear.

4. Lastly we analyse the delay-induced model by changing the delay parameter τ and obtain a critical
value of τ, say τ∗, where a Hopf-bifurcation takes place, i.e., the system is stable for 0 < τ < τ∗ and
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Figure 12: Time series for prey species, x and predator species, y. (a): Stable behaviour around Ec is
observed for τ = 5 < τ∗. (b): Oscillatory behaviour around Ec occurs for τ = 12 > τ∗. The parametric values
are taken from Table 4.

unstable for τ > τ∗. Our primary goal is to raise the critical value τ∗ so that the system becomes stable
across a wider range of τ. Based on our numerical simulations, we can conclude that the value of τ∗

may be increased in one of three ways: (i) by reducing the quantity of additional food, (ii) by raising
the fear level, or (iii) by decreasing the degree of carry-over impact.

Thus the current work explores many conceivable dynamical behaviours of the predator-prey sys-
tem, which will help in understanding the interplay between predator and prey with greater ecological
implications. The proposed model may be enhanced for a two prey and one predator species, which
may be important in forming community establishment and sustaining biological variety. Furthermore,
a realistic mathematical model may be developed to examine the impacts of spatial diffusion in pattern
formation via diffusion-driven instability. In addition, stochastic noise may be introduced in this model via
environment-dependent parameters.
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Figure 13: Variations of τ∗ (critical value of τ) for three different values of A, k and c. (a): Higher level of
A reduces the value of τ∗. (b): Higher level of k increases the value of τ∗. (c): Higher level of c reduces the
value of τ∗. The parametric values are taken from Table 4.
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