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Existence and uniqueness of a mild solution for a class of the fractional
evolution equation With nonlocal condition involving ¢-Riemann
Liouville fractional derivative

Moubhssine Zakaria?, Abdelaziz Moujahid?®, Arij Bouzelmate®

TLaR2A, FS, Abdelmalek Essaad University,Tetouan, Morocco

Abstract. In this paper, by using the fractional power of operators and theory fixed point theorems,
we discuss Existence and uniqueness of mild solution to initial value problems for fractional semilinear
evolution equations with compact semigroup in Banach spaces with nonlocal conditions. In particular,
we derive the form of fundamental solution in terms of semigroup induced by resolvent and ¢-Riemann-
Liouville fractional derivatives. These results generalize previous works where the classical Riemann-

Liouville fractional derivative is considered. In the end, we give an example to illustrate the applications
of the abstract results.

1. Introduction

Fractional differential equations have been an exciting field of applied mathematics, it s gives very
important tools for describing and studying natural phenomena, on fractional calculus more authors are
interesting by the theory of fractional evolution equations since they are abstract formulations for many
problems in physics, engineering, chemistry, finance ... (see [1]-[12], [31], [32], [33]).

Our work is inspired by many studies on the existence and unique solutions of partial evolution equations
based on semi-group and fixed point theory (see [13]-[17]).

Consider the following nonlocal Elliptic problem of fractional evolution equation with Riemann-Liouville
fractional derivative:

{ D" (u(t) = Au(t) + f(t,u(t), ae te[0,al=] M
D) W) = uo ~ g(u),
where D7% is ¢ - Riemann-Liouville fractional derivative of order o, 0 < a < 1.

A is the infinitesimal generator of a Cy - semigroup of bounded linear operators {5(t)}:0 in Banach space
Uf:]xU— Uis a given function, g : C(J,U) — L(J, U) is a given operator satisfying some assumptions
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and u is an element of the Banach space U.

This study will be organized as follows. In Sect 2, we will briefly recall some definitions and preliminary
concepts about fractional calculus and auxiliary results used in the following sections. We construct a mild
solution by using semigroup for the problem (1) in Sect 3. We prove the existence and uniqueness of mild
solutions of the problem (1) under compact analytic semigroup by Darbo-Sadovskii’s fixed point theorem
in Sect 4. Finally, we give some examples to illustrate the application of the results obtained in Sect 5.

2. Preliminaries

We give some indications about the semigroups of linear operators. [18], [19]. For a strongly continuous
semigroup (i.e., Co-semigroup) {S(t)}i=0, the infinitesimal generator of {S(t)}: is defined by

Au = lim 2% #
t—0* u

uell

We denote by D(A) the domain of A, that is,

D(A) = {u e U: lim S(t)uT—u exists }

t—0*

Lemma 2.1. . [18],[19] Let {S(t)}i=0 be a Co-semigroup, then there exist constants C > 1 and a > 0 such that
IS(H)I| < Ce™ forall t > 0.

Lemma 2.2. . ([18],[19]) A linear operator ‘A is the infinitesimal generator of a Co-semigroup if and only if:
(1) A is closed and D(A) = U
(ii) The resolvent set p(A) of A contains R*and, for every A > 0, we have

1

R(AA) < —
IR, Al < 5,

where R(A, A) := (A%] — A) tu = fooo e MS(Hudt
let A be the infinitesimal generator of a compact Cy-semigroup of uniformly bounded linear operators {T(t)}>0 on U.
Then there exists & > 1 such that & = SUP;(0,00) [Tl

Definition 2.3. The gamma function I'(z) is defined by
I'(z) = f #le7tdt (Re(z) >0) zeC,
0

Definition 2.4. ([21]). Let a > 0, f be an integrable function defined on [a,b] and ¢ € C'([a,b]) be an increasing
function with ¢’(t) # 0 for all t € [a,b]. The left p-Riemann-Liouville fractional integral operator of order a of a
function f is defined by:

T () = —— f O - o) Fds
at - 1"(0() , (P (P (P .

Definition 2.5. ([21]). Letn -1 < a <n, f € C*([a, b]) and ¢ € C*([a, b]) be an increasing function with ¢’(t) # 0
forall t € [a,b]. The left p-Riemann-Liouville fractional derivative of order a of a function f is defined by:

1 d
') dt

no At
) f @' (5)(@(t) = ()"~ f(s)ds,

DI f(H) =( ) L7 f()

1 1 d
T T -a)\@(t) dt

where n = [a] + 1.
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Lemma 2.6. ([21],[22]). Let @ > 0 and > 0O, then

(i) I () = p@) () = me (0(8) — @)+,

(ii) Dy (9(s) = p@) (1) = iy (@(t) — (@),

Lemma 2.7. ([20]). Let f € C"([a,b]) and n — 1 < a < n. Then we have
(1) DEPLP () = f(8);

@ LFDIFf(t) = f(H) — Lk r(k](g)>(§0(t) ~ (@)

where fH¥(t) := (L( di) f(t) on [a,b]. In particular, given a € (0, 1), one has
LPDRPf(h) = f(t) — et —a)*,
where c is a constant.

Lemma 2.8. ([21]). Let u, ¢ : [a,00) — R be real valued functions such that ¢(t) is continuous and ¢'(t) > 0 on
[0, 00). The generalized Laplace transform of f is denoted by

Lyfuoie) = | 0000 )

foralls.

Lemma 2.9. ([21]). Let u and v be two functions which are piecewise continuous at each interval [0, T] and of
exponential order.
We define the generalized convolution of u and v by

t
(%4 V() = f u(@yo (7 (1) + (@) - YD) ' (D)t

Theorem 2.10. (Gronwall’s inequality [23], [24])

Let u, v be two integrable functions and h be a continuous function on [a,b]. Let ¢ € C'([a,b]) be an increasing
function such that ¢’(t) # 0 for all t € [a,b]. Assume that (1) u and v are nonnegative; (2) h is nonnegative and
nondecreasing. If

t
u(t) <o(t) + h(t) f () - (p(s))“‘lu(s)(p’(s)ds,
then
]’l k
u(t) < o(t) + f s () = () o)y’ s
forall t € [a,b].

Definition 2.11. ([25],[26]) The Wright function ¢, is defined by

(o]

o (=2)"
Pal2) := nz;s n'T(-an+1-a)

= % nzzf %F(na) sin(nma), zeC

1!

with0<a<1
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Proposition 2.12. ([25],[26]) For =1 < r < 00, A > 0, the following results hold.

(i) $a(0) 2 0for 020 and [~ $o(0)d0 = 1;
(i) Pa(t) = 0, > 0

(iii) [} o () e Nt = "
(i) [} palttrdt = L2

(@) [ Pa(t)edt = Eq(-2),z € C
(iv) [\ atpa(tedt = ex(~z),z € C.

When E, and e, are a Mittag-Leffler functions

We introduce the definition for Kuratowski measure of noncompactness, which will be used in the
proofs of our results.

Definition 2.13. ([27])Let U be a Banach space and B(U) be the bounded subset of U. The Kuratowski measure of
noncompactness is the map p : B(U) — [0, co) define by

u(B) =infle>0:Bc| |Bjdiam(B)) <efori=12,...,n,
j=1

where diam (Bj) = sup {Ix -yl:x,y€ B]-}.

Lemma 2.14. ([27],[28]) Let U be Banach spaces and W,V C U be bounded. Then the noncompactness measure has
the following properties:

(i) w(W) = 0 if and only if W is compact, where W means the closure hull of W;

(i1) L(AW) = |A|u(W), where A € R;

(iii) w(W) = (W) = u(conv W), where conv W means the convex hull of W;

(iv) (W U V) = max{u(W), u(V)};

(0) w(W) < w(V)if W V;

(Vi) yWW + V) < w(W) + (V) where W+ V ={u|lu=w+v,we WoeV)

(vii) u(W + u) = p(W), for any u € U;

(viii) If the map Q : dom(Q) € U — X is Lipschitz continuous with constant k, then u(Q(S)) < ku(S) for any
bounded subset S ¢ dom(Q), where X is another Banach space.

Lemma 2.15. ([29])Let U be a Banach space, and let D C U be bounded. Then there exists a countable set Dy C D
such that u(D) < 2u (Dy).

Theorem 2.16. (Darbo-Sadovskii’s fixed point theorem [28]). If B is a bounded, closed and convex subset of a Banach
space U, and the continuous map 7 : B — B is an a-contraction, then the map 7 has at least one fixed point in B.
3. Mild Solutions

Lemma 3.1. The nonlocal Elliptic problem 1 is equivalent to the integral equation,

(p(t) — p(0))*~!
I'(a)

’ e f | @' ) (@(t) — @(s))* HAu(s) + f(s, u(s))lds.

I'(a) 0 ’

fort e (0,4],

u(t) = [0 — g(u)]
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Proof. Suppose 2 is true, then:

_ a-1
Z)g_l;q)u(t) _ el ((ﬁo(t) ¢(0))

0 I'(a)

+ O (ﬁ fo OO — PO AU + 5w

[0 - g(u)])

We use de lemma 2.6 so:
t
Dgfw’u(t) = [uo — g(w)] + j(; Au(s) + f(s, u(s))ds
When t=0 we conclue the intial codition, Z)gfl; ¥ is absolutely continuous on [0, ] then:

a; d a—1;
Dy (u(t) = Do () = [Au(s) + f(s,u(s))]

for the other side:
If u satisfies the problem 2, then applying to both sides of 1, we have

Ig;(”Z)g;q’(u(t)) = Ig;(’)[Au(S) + f(s,u(s))], almost all ¢ € [0, 4]

By Lemma 2.7, we obtain

a— 1 t ’ a—
u(t) = c(p(t) — p(0)* " + @ fo @' (5)(@(t) — ()" [Au(s) + f(s,u(s))lds. 3)
for t € (0,a],
And
u(t) = c(p(t) — (0)* " + I [Au(s) + f(s, u(s))l. 4)

for t € (0,a],
Then, we applique D}~ :

Dy u(t) = Dy (p(H) — 9(0)* ™ + Dy I [Au(s) + fls, u(s))]- ©)
Also

t
Dy u(t) = c + f Au(s) + f(s, u(s))ds. (6)
0

of the following condition:

D) ((0)) = uo — g(u)

Then:
c=1uy—g(u)

The proof is complete.
Lemma 3.2. If (2) holds, then we have
u(t) = a fo (@(t) = P(0))* " Pa(O)S (p(t) — P(0)*0)) (0 — g())dO

t )
— a—le R 0)S _ ag
+0zf(;f(; (p(t) = @(s)) 62(0)S ((p(t) — @(5)°0))
X f (5,1 (5)) dOg’ (t)ds
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Proof. Let A > 0. Applying the generalized Laplace transforms to (2) , we have

- g(u)
Aa

Uue) = + —(AU(/\) + F(A)),

where

U(A) = f me*W“HP(O))u(T)(p'(T)dT, F(A) = fo me*M(P(T)*@(O))f(T,u(T))ga'(T)dq:.

0

Then we have:
UA) = AT = A (uo — g(w)) + (AT = A F(A)
f ) e8(5) (ug — g(u))ds + f ) ¢35 (s)F(A)ds
0 0
a j; P15 (8) (uo — g(u))dt + a j; Pl () F(A)dt

=e1 + e

Now putting: f = @(t) — ¢(0), next we consider the following one-sided stable probability density in
[30]

1y k-1 y-ak-1 L@k +1) .
pa(0) = - k; -1D=o™ — sin(kmta), O € (0, )
whose integration is given by

f e %po(0)d0 = e, where a € (0,1).
0

o f (@(t) = ()& MO S ((t) — (0))*) (10 — ) (E)

a f f (p(t) — p(0))* e M WO=0O8p ()S () — P(0))*) (1o — g(w))¢’ (t)dOdt

- f f Ap-poy (PO = 9O) ‘P(O)) (9)5(—(@(” ;f(o))a)(uo = g(w)e’ ()dOdt
:ﬁ Me(H)-9(0) fom M 2(0)S (M)(HO — g(u))@’ (t)dOdt

Similar procedure:

— * * _ a=1_,—(A(p(t)—p(0)))* _ a
e = a fo fo (@) — p(0)" e S (@) - p(O)°)
% ¢~ @E)-0))" f(s u(s ))(p’(s)(p'(t)dsdt

t _ 0 a-1 H— 0))2
=f - "’“”f f R a<9>s((¢(’9f( )))

x e~ MPE=eO)) £(5 14(5))q’ (5)dOdsqp’ ()t

Y (p(t) = p(0))*! (p(t) — p(0))*
_ @O)+p($)=29(0)) 5, A AL S e
I R e S

X f(s, u(s))p’ (s)d0dsq’ (t)dt
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f f f Aot 2O ~ PO <0)>“1 a(e)s(((P(t) ;p(ona)

X f (97 @) - p(t) + p(0)), u (—1<<p<T> () + @(0)))) @' ()dOdTe’ (H)dt

f f f Ao0-s0),, PO — 9O <P(0))0‘1 a(Q)S(«P()—@(O))“)

X f (@7 p(r) = p(t) + p(0)), u (g 1(<p<T> — p(t) + 9(0)))) @' (D)0 (Hdtdr

- fo A9 fo ' fo maww(ms(«pm 5;,)(5))“)

X f(s,u(s)) @' (1)dO¢’ (t)dsdt

UQ) = fo " o Mo-p0) fo (O _ea(O))a_l pa(e)s(((P(t) . a(p(O))“)

Then we get:

X (ug — g(u))@’ (1)dOdt

N f o~ Mp(@-p(0) f f (p(7) 910(5) (Q)S((@(T)Q(P(S))“)

X f(s,u(s)) @’ (t)dOg’ (t)dsdt

Now we invert the generalized Laplace transforms:

0o _ 0 a-1 _ 0))*
o= [ ()~ ¢0) a(e)s(((’)(t)ef( >>)(u0_g(u))d6

a-1 a
s f f (00 - p(5) a(@)5(< oo~ <s>>)

X f(s,u(s))dO¢’(s)ds
=a f (P(H) = @(0)* 09a(0)S ((p(+) = @(0)*0)) (o — 9(14))dO
ta f f (P(t) = P(5)* ' 09a(0)S ((¢(t) = ¢(5)"0))
X f(s,u(s))dO¢’(s)ds
where ¢,(0) = i@‘l_% Pa (9_%) is the probability density function defined on (0, c0).
Proof is completed.

We define the operator Yo (h):

Tg(t)u = a‘fo 0, (0)S (t*0) udo
forueE,0<s<t<T.

Definition 3.3. A function u € C([0, T, E) is called a mild solution of 1 if it satisfies:
u(t) = (@(t) = p0)* " Yg(p(t) — p(0) (1o — g(w)
t
+ fo (@) = ) g (p(t) = 9(6))f (5,u () @' (s)ds € [0, T].
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Lemma 3.4. The operator Y¢, have the following properties:

(i) For any fixed t > 0, Y¢(t) are bounded linear operator with

O = £
I'l+a) " T(a)

[y < ]
forallu € E.

;lii) The operator Yg(t) are strongly continuous for all t > 0, that is, for every u € Eand 0 <t < t, < T we
ave:

Y% (t2) u = Y2 (1) u|| - O
as fl — tz.
(iii) If S(t) is compact operator for every t > 0, then Y (t) are compact for all t > 0.

(iv) If Y, (t) is compact strongly continuous semigroup of bounded linear operator for t > 0, then Y¢,(t) are continuous
in the uniform operator topology.

(v)Assume that S(t)i0 is compact operator. Then S(t)i¢ is equicontinuous.

Proof. See the argument of [17].

4. Main results

U is a Banach space with the norm |.|. Leta € R*, ]’ = (0,4]. Denote C(J,U) as the Banach space of
continuous functions from | into U with the norm:

llull = sup |u(t)],
te[0,a]

where u € C(J,U), and B(U) be the space of all bounded linear operators from U to U with the norm
ISIIBwy = sup{|S(u)l; |u| = 1}, where S € B(U) and u € U.

We put
LI((;Y) (J) = {u eC(,u: tli%1 (p(t) — (0))!*u(t) exists and is finite }
—0+

For any x € U((,f‘) (J'), let the norm || - [|o,, defined by:

ltllop = sup {(p(5) = O lu()}

te(0,a]

is not difficult to verify | - [|4,, is a norm, the norm is covenable with U(({f‘ ) (J"), Then (U((pa ) - ||a,<p) isa
Banach space .

For r > 0, define a closed subset Bi"‘) (J)c U((; ) (J) as follows

B (1) = e U (1) < Tl < 7).



M. Zakaria et al. / Filomat 37:18 (2023), 6041-6057 6049

Thus, Bi‘x) (') is a bounded closed and convex subset of Uéf ) (J'). Let B(J) be the closed ball of the space
C(J, U) with radius r and center at 0, that is

B(J) ={ue Cq U) : llull < r}.
Thus B(]) is a bounded closed and convex subset of C(J, U).

We introduce the following hypotheses :

(HO) S(t)(t > 0) is equicontinuous, i.e., 5(t) is continuous in the uniform operator topology for t > 0;

(H1) for each t € J’, the function f(¢,-) : U — U is continuous and for each u € U, the function f(-,u): |’ - U
is strongly measurable;

(H2) there exists a function i € L (J’, R*)such that

I"neCU,RY),  lim(p(H) - p(O)' 5 n(t) =0,
—0+
and

If(t, u) < Hh(t) forallu € B“(J’) and almost all ¢ € [0, a];

(H3) there exists a constant L € (0, %‘1)) such that the operator g : C(J’, U) — L (J', U) satisfies:

|9 (1) = g (u2)| < Llluy — tolly,,  for uy, up € BO ()

(H4) there exists a constant » > 0 such that

M —a 7054
I‘(a)—_]\/IL |MO| + |g(0)| + tset,gl)] {((p(t) _ (p(o))l IO Ph(t)} <7

(H5) For any r > 0, there exists k(t) € L*([0, a], U) such that

If (t, ur(t) = f (t,uz(t)| < k(t)lug — upl,  foruy,uy € B (1)

Forany u € Bﬁa) (J), define an operator ‘R as follows
(Ru)(t) = (Rau) () + (Rau) (1),

where
(Rau) (£) = (p(t) = @(0)* Y5 (, 0)(uo — g(u)), fort € (0,4a],

(Raw) (1) = [ (@() = (&) Y(t,)f (5,1 () ¢/ (5)ds, for t € (0,a]

It is easy to see that lim;_o. (p(t) — @(0)' " (Ru)(t) = % For any v € B(]), set

u(t) = (p(t) — (0)*o(t), for t € (0,al.
Then, u € B (J’). Define W as follows
(Wo) (t) = (W10) (1) + (W20) (1),

where

(@) = )= (Riu) (t), fort e (0,a]
(\Plv) (t) = {ugr—(i()u), forf =0

(p(t) — (0= (Rou) (1), fort € (0,4a]

(P20) () = {O, fort=0
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Obviously, u is a mild solution of (1) in B®W () if and only if the operator equation # = Ru has a solution
ue B (J).

Before giving the main results, we firstly prove the following lemmas.

Lemma 4.1. Assume that (Hy) — (Hy) hold, then {Wv : v € B(])} is equicontinuous.

Proof. 1. {Wiv: v € B(])} is equicontinuous.
For any v € B(J), let u(t) = (¢(t) — 9(0))*o(t), t € (0,a). Then u € B (J'). Fort; = 0,0 < t, < a, we get

0 — g(u)

|(¥19) (1) = (10) 0) < [T502)) = =

<| (Ys;(tz) (10 — 9(u)|

)
i)
(Y“(tz> r( )) (luol + Lilulla,g + 19(0)])

I/\

< I(Té(tz) ) | (Juo| + Lr +1g(0)])
—0,ast, -0

For 0 <t; <t <a, we get

| (W10) (F2) = (W10) (t1) | < 1S (£2) (1o = (1)) = Y2 (1) (o — g())
<1(Y2 (k2) = Y% (1) (1o — g() |
<| (Yg (t2) = Y5 (tl)) | (Iuol + Llull; + Ig(O)I)
<1 (Y2 (k2) = Y% (1)) | (lu] + Lr + |g(0))

— 0, astp — 1.

Hence, {10 : v € B(J)} is equicontinuous.
IL. {W,v : v € B(J)} is equicontinuous.

For any v € B(J), let u(t) = (¢(t) — 9(0))*o(t), t € (0,a). Then u € B? (J'). Fort; = 0,0 < t, < a, we get
| (W20) (t2) — (W20) (0)] = |(¢(t2) — @(0))' "%

1)
[ o =™ 3 (e = 96 s 1

15}
= 1-a _ a—1
< T =P [ (@l — ) ks

— 0, ast, — 0.
For0 <t <t; <a,wehave

[ (W20) (t2) — (W20) (1) |
to

<[ (@(t) = @(0)' ~(p(t2) — ()" Y5 (¢(t2) = @(6)) f(s, u(s))ds]

ty

+1(@(t2) = 9(0)' ™ (p(t2) = (&) YG ((p(t2) = 9(s))) f (5, u(s))ds

t
- fo (@(t1) = (0))*(p(tr) = @)™ Vg ((@(t2) = 9(5))) f (s, u(s))dsl



M. Zakaria et al. / Filomat 37:18 (2023), 6041-6057 6051
t
+1 fo (@(t) = @O0)"*(@(tr) — P())* 1Y (@(t2) — @(s))) £ (s, u(s))ds
£
- fo (@(t1) = P(0))' " ((tr) — @(s)* X5 ((@(t1) = @(5))) f (s, u(s))ds
1)
S%I ftl ((t2) — @(0))' " *(@(t2) — @(s))* " Ta(s)ds|
M g 1-a a—1 1-a a—1
T fo (1) = 9(0))'"*(p(tr) = ()™ = (@(t2) = P(O)*(p(t2) — (5))* ")
X Fi(s)ds

sl
+ f (@(t) = @(0)"*(@(tr) — p(s))*™"
0
X (T$ ((p(t2) — @(s)) f(s,u(s)) = Y, ((p(t2) — @(s))) f(s, M(S))) ds|

SEl + Ez + E3,

where
M

" Tl

— @)™ hls)ds ~ fo (@(t) = P(O)'~(p(tr) — p(5))* " Fi(s)ds]

ty
£ = 24 fo (@ (t2) — PO (p(t)

2M (™ _a o
B= o fo (@(11) - pO) " (p(tr) — ()"
— (@(t) — PO (@(t2) — 9(&)* (s)ds
Es=| f (@(t) — PO ((t) — ()"

0

x (Y2 ((p(t2) — (5)) = Y% ((p(tr) — 9(5))) f(s, x(5))ds]
One can reduce that limy,_,;, E; = 0, since Ig;(ph € C(J/,R"). We know
(p(t2) = P(O)' (1) — ()™ = p(t2) — PO) (@ (t2) — () )
< @(t) = (0) ~*(@(t1) — @(s))* " i(s)

and fotl p(t) — (O (p(t) — @(s))*1hi(s)ds exists (s € [0,#]), then by Lebesgue dominated convergence
theorem, we have

t
fo ((t) = 9O) = (p(t1) = 96" = p(t2) — (O (p(t2) = 9(s))*") ()5 — O,

ast, —

then one can deduce that limy,_,;, E» = 0.
For ¢ > 0 be enough small, we have

t—¢
Es < fo (1) — PO (p(t) - P!
x |15 ((@(t2) = 9(5) = T ((p(tr) = ()| L (5, )l

t

+ | (p(t) = 0)' " (p(t) - ()™

t1—¢

X |05 ((p(t2) = () = Y5 (@ (1) = &) 1 (5, uls)lds
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t
<(p(tr) = p(O)'™ f (p(t) = () hi(s)ds
x sup |3 ((p(t2) = 9() = Y5 ((@(t) = &),

s€[0,t—¢]

% — 1-a _ a1
' TW) tl,{.((P(“) () fo (p(t1) — p(s))* " (s)ds

<E31 +E3p +E33,

where

Es, = 10 sup [ ((0() = 9(9) = T (@61 = 9Dy
s€[0,t1 E
t

Esp = FZ(M)| ((t1) — PN (@(tr) — (s))* (s)ds

- fo @(t1 — £) = 9(O) "l — €) — ()" i(s)ds],

t1—¢
Ess = % fo (@t — &) — PO) " (p(t1 — £) — ()™
— (1) — PO) " ((tr) — () Yi(s)ds.

By Hy, it is easy to see that E3; — 0 as t, — #;. Similar to the proof that E;, E, tend to zero, we get E3» — 0
and E33 — 0 as ¢ — 0. Thus, E3 tends to zero independently of v € B(]) as t, — t;,& — 0. Therefore,
| (\W7v) (f2) — (W20) (t1) | tends to zero independently of v € B(J) as t, — t;, which means that {W,v : v € B(])}
is equicontinuous. Therefore, {Wv : v € B(J)} is equicontinuous.

Lemma 4.2. Assume that (Hy) — (Hy) hold. Then \V maps B(]) into B(J), and \V is continuous in B(]).

Proof. . 1. W maps B(J) into B(J). For any v € B(]), let u(t) = (¢(t1) — @(0))* o(t). Then u € ng) (J'). For
t €[0,a], by (H1) — (Hs) , we have

I(Wy) (D] < Yo () (o — g(w))]
t
+((8) = p(0))' ™ f (@) = &) Yy (@(t) = PN f (5,1 (5) @' (5)dsl

< T Mol + Ll + 190))

M(p(t) — p(0))'
I'(a)

fo (@) = P 1f 6, )P’ (5)ds

M !
< [uol + Lr + |g(0)| + sup {(qo(t) - p(0)'™ f (pt) - @(S))“h(S)(P’(s)ds}
F( ) 0

te[0,a]

<r

Hence, ||WYv|| < r, for any v € B(J).
II. W is continuous in B(J). For any v,,,v € B(J),n = 1,2, ..., with lim,,., v, = v, we have

lim v,(t) = v(t) and ;}gn t1710,(t) = (@) — 9(0))* 'o(t), for t € (0,a].
Then by (H1), we have

F () = £ (£ @) = 90 ou(t) = £ (£ () = O)* 0()) = f(t, u(®)),

asm — oo,
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where u,(t) = (¢(t) — @(0))*tv,(t) and u(t) = (¢(t) — @(0))*~o(t). On the one hand, using (H,), we get for
eachte ],

(@) = PN I (5, ua(s)) = fls, u(s)] < (p(t) = ()" '20(s) , ae. in [0, ¢].

On the other hand, the function s — (p(t) — ¢(s))*"12/(s) is integrable for s € [0,¢] and t € |. By Lebesgue
dominated convergence theorem, we get

t
LL@@—@»*W@mm»amm@w&aa%nea
For t € [0,4a]
[(W0,) () — (Wo)B)] = I(p(t) — (O (Rutn(t) — Ruu(t) | < [Y4(0) (7 2t = 90|

t
+ (1) = @(0))' ™ fo (@) = @E)* Yo O@1) = 9()) (f (5, 1as)) = £(5, 1(s))) ds]

() — (
I'(@)

1-a
5 jYwﬂ P(E) S (5, un(s)) = f(s, uls))lds

1-a t
< % ||Mn - ulllw + M((P O)) f ((p(t) _ (p(s))a—llf (S, Mn(S)) _ f(S/ M(S))|d5

ML M(p(t) -
Sr(q) [0, — ol + T(a)

Therefore, Wv, — Wov pointwise on | as m — oo, by which Lemma 4.1 implies
that Wv, — Wo uniformly on [ as # — oo and so WV is continuous.

4.1. Existence result

In the following, we suppose that the operator A generates a compact Cp-semigroup {S(¢)}s=0 on U, that
is, for any ¢ > 0, the operator S(t) is compact.

Theorem 4.3. Assume that (H1) — (Hy) hold. Then nonlocal problem (1) has at least one mild solution in Bg“) .

Proof. . Obviously, u is a mild solution of (1) in By) (J') if and only if v is a fixed point of v = Wv in B(J),
where u(t) = (¢(t) — (0))™*v(t). So, it is enough to prove that v = Wo has a fixed point in B(J). For any
v1, 02 € B(J), according to (H3), we have

Wi (t) — Wrioo(t)| = ((P(f) = @0)' " (Ryu1) (H) — (Ryu) (t)|
Ig (u1) — g (u2)|

= I'(a)
ML

= Iﬁ( ) ”ul u2“a,(p
ML 1o = ool
F( ) 01— 02

which implies that || W01 — W10a]| < {5 [[o1 — 02l Thus, we obtain that
ML
a(Wi(B(N)) < w—a(B())). @)
I'(a)

Next, we show that for any t € [0,a], W(t) = {(W20) (t),v € B(])} is relatively compact in U. Obviously,
W(0) is relatively compact in U. Let t € (0,4] be fixed. For every ¢ € (0,t) and 6 > 0, define an operator W, 5
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on B(J) by the formula

(We0) (1) = alp(t) - p(O))*! f f 0(p() — () Da(0)S (@(6) — P()°0)
X f(s,u(s))d0ds

t—e 00
= a(e(t) - p(0)S((e0)) fo fb 0(p(t) — P Ba(0)S (Pt — P()"0 - P(e"))
X f(s,u(s))dods,

where u € Biq) (J'). Then from the compactness of S(@(£%0)) (€76 > 0), we obtain that the set W, s(t) =

{(W,s)(t),v € B(J)} is relatively compact in U for every ¢ € (0,t) and 6 > 0. Moreover, for every v € B(]), we
have

t )
| (W20) (8) = (Pe50) ()] < la((8) — ()" fo fo B(p(t) — 9(5) 6 (6)
X S ((p(t) — ($))*0) f(s, u(:))d0ds]

s 00
— 0 a-1 0 _ 1-a N 0
+lalp®) -0 [ [ 6t~ 9" 9u(0)
xS () — @(s))*0) f(s, u(s))dods|

¢ O
< atg) - 90)"" [ () ntsxts [ 0.(0)e
t 0o
+apt) =) [ (@01- o) s [ 06,00

t O
< aM(p() - @(0))' ™ | (@(t) = ()" h(s)ds fo 0¢.(6)d0

(<P(t) PO)'™ | (@(t) = p(s)* ' R(s)ds
r( ) t—¢

- 0 ase—>0,6—-0.

Therefore, there are relatively compact sets arbitrarily close to the set W(f),t > 0. Hence the set W(t),t > O is
also relatively compact in U. Therefore, {(W,v) (t), v € B(J)} is relatively compact by Arzela-Ascoli theorem.
Indeed

For any {u,} C BW(J), set
vn(0+)/ lf t = O
Then {v,} C B(J). We can find at least one sequence {W,v,, },-_; which is convergent. Hence,

Tim ((t) - (0) ™ (Rax,,) () = lim (Wo0,,) (5, for t € (0,4,

or(t) = {«p(t) ~pO)' (), ifte ]

This means that {Rou,, |-, is convergent in Biq) (J'). Therefore, {(%zu) H),ue Bia) (J ’)} is relatively compact.
Thus, we have a (‘I’2 (Bﬁa) ( ]'))) = 0. By (7), we have

a(W(B())) < a (‘1’1 (B()) + a (W2(B())))

< —oz B

Fay B0

Thus, the operator WV is an a-contraction in B(J). By Lemma 4.2, we know that W is continuous. Hence,
Darbo-Sadovskii’s fixed point theorem 2.16 shows that W has a fixed point v* € B(]). Let u*(t) = (p(t) -
©(0))*1o*(t). Then u* is a mild solution of (1).
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4.2. uniqueness result

Theorem 4.4. Assume that (Hq) — (Hs) hold. Then problem (1) has a unique mild solution in Bﬁa) (). Provided that

a— 1
T(a )(QD() #(0))

Proof.  Let u; and u, be the solutions of the problem (1) in B#((0,a]). Then, for each i € {1,2}, the solution
u; satisfies

ui(t) = (9(t) = PO Y((t) ~ P(0))(uto ~ 9(u)
+ fo ()~ PO T — pENf (1) G5 £ [0,T],
Then, for any f € [0, ],
iy = 2l < (@(8) — 9O () — (O (gour) - g

+ f (@) = ) TG (P(t) = 9(8))f (5,11 (5)) = f (5,12 (5)) llg” (s)dls

== (@(t) = 9(0))* " lI(g(u1) = g(u2))I

= T

( ) t
* m f (@) = () If (5,11 (5)) = £ (s, 12 (5)) Il (5)ds

< ]"( )(@(t) @(0))"‘71“111 — | + - f (e — p(s)* 1”M1 _ “2||(P (5)ds

Then
( T(a )(<P(f)— P(0)*” 1)Ilul—uzll_ T(a )f () = ()" My — w2l (s)ds

under the previous condition

v
[(a) = EL(p(t) — ¢(0))*~!

where v = sup_,_r [fi()|. By Gronwall inequality (2.10), we obtain

[y — us|| <

f @0 — (&)l — tallg’ $)ds

[lu1(f) —ua(®)|| =0 forall te[0,T]

implies that 11 = u,, then the result.

5. Illustrative application

Let U = L2([0, ], R) equipped with the norm, for all u, v € L%([0, rt]) by:

lull = ( fo |u<x)|2dx)2 .

Consider the following problem of time-fractional parabolic partial differential equation:

D4 2In(1+1) (x’ t) _ g_xzzu(x, t) = t_% cos (u(x/ t))/ te (Ora]/x € [0/ T(]

u(O H=u(n,t)=0, te(0,4]
Lin(1+t)

D" u(x,0)+ Y, fon ey (t, y)dy = up(x), x€[0,m]
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31 . . . . . o . .
where D’ 0+ s In(1 + £) -Riemann-Liouville fractional derivative of order %, a > 0, nis a positive integer,

0<ty<t;<...<t, <a,u(z) €U=L%[0,n],R).
We define an operator A by Au = j—;u with the domain
D(A) = {v(-) € X : v,v" absolutely continuous, v"” € X,v(0) = v(n) = 0}.

Then A generates a Co-semigroup {S(f)}:»0 which is compact, analytic and selfadjoint.

F(t,u(x, 1)) = 75 cos (u(x, ),
and the operator g : C(J’, U) — L(J’, U) is given by

g(u) = Z f e~ Wy (ti, y)dy
i=0 Y0

for v € U = L*([0, ], R), x € [0, ], and choose:

hH =4, L= ”T” (1-e?)

1 [ L
r = —— ||uol + 2+/az In(1 + a)), rovided that ——— < 1.
r(g)_L( ' F r(G/4)

Then, (H1)-(H4) are satisfied. According to Theorem 4.3, system (1) has a mild solution in Bis/ 4)((O, al).
By using the theorem (4.4) provided that we had the uniquensses of solution:

and

(n+1)(1-e)
—1 <
2I(3)In(1 + t)1
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