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Abstract. This paper is concerned with a class of neutral-type neural networks with impulses and delays.
By using continuation theorem due to Mawhin and constructing the appropriate Lyapunov-Krasovskii
functional, several new sufficient conditions ensuring the existence and global exponential stability of the
periodic solution are obtained. Moreover, a numerical example is provided to illustrate the main results.
Our results can extend and improve some earlier publications.

1. Introduction

1.1. Previous works
In recent years, neutral-type neural network models have been extensively studied and successfully

applied to various science and engineering fields such as mechanics, electrical engineering, automatic
control, parallel computation and so on. As was pointed by Hale [9] that the main reason for considering
the neutral equation with difference operators is that it will be included without imposing too many
smoothness conditions on the initial data.

A source of instability for neural networks is time delay which inevitably exists in the implementation of
artificial neural networks due to the finite switching speed of amplifiers or network congestion. Therefore,
stability analysis for delayed neutral-type neural networks has become an important research topic and
various criteria have been developed in the literature over the past decade, see [7], [12], [13], [21], [22], [25],
[28] and the references therein. For example, Orman [21] derived the sufficient conditions for global stability
of neutral-type neural networks with time delays, by using the new LMI conditions, Rakkiyappan and
Balasubramaniam [22] considered the global asymptotic stability results for neutral-type neural networks
with distributed time delays. Taken the discontinuous activations into account, Kong et al. in [12] and [13]
studied the stability and synchronization of the discontinuous neutral-type neural networks with delays
based on the Filippov solution theory and the Lyapunov-Krasovskii functionals.

On the other hand, some evolution processes are subject to sudden changes. The mathematical descrip-
tion of these processes leads to impulsive differential equations. This type of differential equations can use
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to describe population dynamics, biological phenomena or several physical situations. We refer the reader
to [3], [11], [20], for some results and applications of the impulsive differential equations. Impulsive effects
are also likely to exist in the neural network system. For example, in implementation of electronic networks
in which state is subject to instantaneous perturbations and experiences abrupt change at certain moments,
which may be caused by switching phenomenon, frequency change, or other sudden noise, that is, does
exhibit impulsive effects [14]. So, it is worthwhile to study the neural networks with impulse. Recently,
several kinds of neural networks with impulse have been investigated, see [1], [2], [4], [6], [10], [15], [19],
[23], [24], [26] and the references therein. For example, Wang et al in [24] studied globally exponential
stability of periodic solutions for impulsive neutral-type neural networks with delays, by establishing a
singular impulsive delay differential inequality and employing contraction mapping principle, the authors
established the new results of existence and global exponential stability of the periodic solution.

Although the neutral-type neural networks with impulses have been widely studied, there are still two
problems needed to be considered further.

• First, through the research of neutral-type neural networks with impulses, we find that the neutral
character in neural networks is often showed by the nonlinear term like h j(ẋ j(t− ·) and rarely showed
by the difference operator Ax(t) = x(t) − c(t)x(t − ·). This may be due to the fact that the mechanism
on which how the solution is influenced by the impulses and the difference operator A associated to
neutral-type neural networks is far away from clear.

• Second, to the author’s best knowledge, few papers applied the method of Mawhin’s continuation
theorem to study the generalized neutral-type neural networks with impulses and delays.

1.2. Model Formulation

Motivated by the above fact, in this paper, we consider the following neutral-type neural networks with
impulses and delays:

(Aixi)′(t) = −ai(t)xi(t) +
n∑

j=1

[
bi j(t) f j(x j(t))

+di j(t)1 j(x j(t − τi j(t)))
]
+ Ii(t), t > 0, t , tk,

∆xi(tk) = xi(t+k ) − xi(t−k ) = eik(xi(tk)),
i = 1, 2, ...,n, k = 1, 2, ...,

(1.1)

where Ai is the difference operator defined by

Aixi(t) = xi(t) −
n∑

j=1

ci j(t)xi(t − δi j(t)), i = 1, 2, ...,n, (1.2)

∆xi(tk) = xi(t+k )− xi(t−k ) denotes the impulses at moments tk and t1 < t2 < · · · is a strictly increasing sequence
such that limk→∞ tk = +∞; xi(t) and Ii(t) represent the activation and external input of the ith neuron at time
t, respectively; ai(t) represents the rate with which the ith unit will reset its potential to the resting state
when disconnected from the network and external inputs at time t; δi j(t) and τi j(t) correspond to the finite
speed of the axonal transmission of signal; bi j(t) denotes the strength of the jth unit on the ith unit at time
t; di j(t) denotes the strength of the jth unit on the ith unit at time t − τi j(t); f j and 1 j are signal transmission
functions. Throughout this paper, we always assume that ai(t), bi j(t), di j(t), τi j(t), Ii(t), δi j(t) are continuously
periodic functions defined on t ∈ [0,∞). Moreover, ai(·), bi j(·), di j(·), τi j(·), δi j(·) are positive everywhere,
f j(x j) and 1 j(x j) are continuous. Let ξ = max

1≤i, j≤n
{supt∈R |τi j(t)|, supt∈R |δi j(t)|}.

System (1.1) is supplemented with initial values given by

xi(s) = ϕi(s), s ∈ [−ξ, 0], i = 1, 2, ...,n,
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where ϕi(·) denote continuous T-periodic function defined on [−ξ, 0].

1.3. Major contributions

In comparison to the existing results, the key contributions of this paper can be shown by the following
four aspects:

• Unlike the previous neutral-type neural networks, the neutral-type neural networks considered in
the paper shows the neutral character by the Ai operator, which is different from the corresponding
results of other papers.

• When ci j ≡ 0, i, j = 1, 2, ...,n, system (1.1) is changed into a non-neutral type neural networks with
impulses which have been extensively studied.

• Since there is few paper concerning with the periodic solution and stability of the neutral-type neural
networks with impulses and delays, this paper aims to investigate the new existence results of periodic
solutions based on the new method of continuation theorem. Moreover, the periodic solutions are
further proved to be global exponential asymptotic stable.

The remainder of this paper is organized as follows: In Section 2, we present some preliminary results.
In Section 3, under suitable hypotheses, we show that system (1.1) possesses at least one T-periodic solution.
In Section 4, by constructing the appropriate Lyapunov function, we derive several sufficient conditions
ensuring that the periodic solutions of (1.1) are global exponential stable. In Section 5, with the help of an
example, we demonstrate the applicability of our main results.

2. Preliminary

In this section, we make some necessary preparations. Firstly, we introduce the following notations

ai =
1
T

∫ T

0
ai(t)dt, bi j =

1
T

∫ T

0
bi j(t)dt, di j =

1
T

∫ T

0
di j(t)dt,

Ii =
1
T

∫ T

0
Ii(t)dt, a+i = max

t∈[0,T]
|ai(t)|, b+i j = max

t∈[0,T]
|bi j(t)|,

d+i j = max
t∈[0,T]

|di j(t)|, I+i = max
t∈[0,T]

|Ii(t)|, a−i = min
t∈[0,T]

|ai(t)|,

b−i j = min
t∈[0,T]

|bi j(t)|, d−i j = min
t∈[0,T]

|di j(t)|, I−i = min
t∈[0,T]

|Ii(t)|,

τ = max
1≤i≤n,1≤ j≤n

{τ+i j}, τ
+
i j = max

t∈[0,T]
τi j(t), i, j = 1, 2, ...,n.

Define

∥x∥2 =
( ∫ T

0
|x(t)|2dt

) 1
2
, for x ∈ C(R,R),

Bi(t) = − ai(t)xi(t) +
n∑

j=1

[
bi j(t) f j(x j(t)) + di j(t)1 j(x j(t − τi j(t)))

]
+ Ii(t), i = 1, 2, ...,n,

CT =
{
ϕ ∈ C(R,R), ϕ(t + T) ≡ ϕ(t)

}
.

From Hale’s terminology [9], a solution of the system (1.1) is xi ∈ C(R,R) such that Aixi ∈ C1(R,R)
and system (1.1) is satisfied on R. In general, xi is not from C1(R,R). Nevertheless, it is easy to see that
(Aixi)′ = Aix′i . Thus, a T-periodic solution xi of the (1.1) must be from C1(R,R).
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For any solution x(t) = (x1, x2, ..., xn)⊤ and periodic solution of system (1.1), x∗(t) = (x∗1, x
∗

2, ..., x
∗
n)⊤, let

∥φ − x∗∥ =
n∑

i=1

max
t∈[−τ,0]

|φi(t) − x∗(t)|.

Consider the impulsive systemx′(t) = f (t, xt), t , tk, k = 1, 2, ...,
∆x(tk) = ek(x(tk)),

(2.1)

where x ∈ Rn, f : R × Rn
→ Rn is continuous and f (t + T, x) = f (t, x), ek : Rn

→ Rn are continuous,
xt(s) = x(t + s), −τ ≤ s ≤ 0, and there exists a positive integer q such that tk+q = tk + T, ek+q(x) = ek(x) with
tk ∈ R, tk+1 > tk, lim

k→∞
tk →∞, ∆x(tk) = x(t+k ) − x(t−k ). For tk , 0(k = 1, 2, ...). [0,T]∩ {tk} = {t1, t2, ..., tm}, where tk

are called the set of jump points.
Let us recall some definitions. For the Cauchy problemx′(t) = f (t, xt), t , tk, t ∈ [0,T], k = 1, 2, ...,
∆x(tk) = ek(x(t−k )), x(0) = x0.

(2.2)

Definition 2.1. A map x : [0,T]→ Rn is said to be a solution of (2.2), if it satisfies the following conditions:

(1) x(t) is a piecewise continuous map with first-class discontinuity points in [0,T] ∩ {tk}, and at each
discontinuity point it is continuous on the left;

(2) x(t) satisfies (2.2).

Definition 2.2. (See [3]) A map x : [0,T]→ Rn is said to be a T-periodic solution of (2.2), if

(1) x(t) satisfies (1) and (2) of Definition 2.1 in the interval [0,T];

(2) x(t) satisfies x(t + T−) = x(t−), t ∈ R.

Obviously, if x(t) is a solution of (2.2) defined on [0,T] such that x(0) = x(T), then by the periodicity of
(2.2) in t, the function x∗(t) defined by

x∗(t) =

x(t − hT), t ∈ [hT, (h + 1)T] \ {tk},

x∗(t) is left continuous at t = tk

is a T-periodic solution of (2.1).

Definition 2.3. (See [3]) The periodic solution x∗ of system (1.1) is said to be globally exponentially stable,
if there exist constants λ > 0 and M > 1 such that

n∑
i=1

|xi(t) − x∗i (t)| ≤Me−λt
∥φ − x∗∥.

Lemma 1. (See [8, 18]) Let X and Y be two real Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator
with index zero, Ω ⊂ X be an open bounded set, and N : Ω̄ ⊂ X → Y be L-compact on Ω̄. Suppose that all
of the following conditions hold:

(1) Lx , λNx,∀x ∈ ∂Ω ∩D(L), ∀λ ∈ (0, 1);
(2) QNx , 0,∀x ∈ ∂Ω ∩ ker L;
(3) deg{JQN,Ω ∩ ker L, 0} , 0,where J : ImQ→ ker L is an homeomorphism map.

Then the equation Lx = Nx has at least one solution on D(L) ∩ Ω̄.
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Lemma 2. (See [16]) Suppose δi j ∈ C1(R,R) with δi j(t + T) ≡ δi j(t) and 0 < δ′i j(t) < 1 for all t ∈ [0,T]. Then
the function t − δi j(t) has an inverse µi j(t) satisfying µ ∈ C(R,R) with µi j(t + T) = µi j(t) + T for all t ∈ [0,T].

Throughout this paper, besides δi j(i, j = 1, 2, ...,n) being a periodic function with period T, we assume
in addition that δi j ∈ C1(R,R) with 0 < δ′i j(t) < 1 for all t ∈ [0,T].

Remark 1. From the above assumption, one can see from Lemma 3 that the function t−δi j(t) has an inverse.
Denote the inverse of the function t − δi j(t) by the function µi j(t).

Define

σ0 = − min
t∈[0,T]

δ′i j(t), σ1 = max
t∈[0,T]

δ′i j(t), δ
+
i j = max

t∈[0,T]
|δi j(t)|.

Clearly, σ0 ≥ 0 and 0 ≤ σ1 < 1.

Lemma 3. Let

Wi : CT → CT,

(Wixi)(t) =
n∑

j=1

ci j(t)xi(t − δi j(t)), i = 1, 2, ...,n,

if
∑n

j=1 |c
+
i j| < 1, then Wi satisfies the following conditions:

(1) ∥Wi∥ ≤
∑n

j=1 |c
+
i j| < 1, i = 1, 2, ...,n;

(2)
∫ T

0

∣∣∣(Wixi)(t)
∣∣∣dt ≤

∑n
j=1 |c

+
i j |

1−σ1

∫ T

0 |xi(t)|dt, i = 1, 2, ...,n;

(3)
∫ T

0

∣∣∣(Wixi)(t)
∣∣∣2dt ≤

∑n
j=1 |c

+
i j |

2

1−σ1

∫ T

0 |xi(t)|2dt, i = 1, 2, ...,n,
where σ1 = max

t∈[0,T]
δ′i j(t), i, j = 1, 2, ...,n, and 0 ≤ σ1 < 1.

Proof. (2) By Lemma 2 and Remark 1, we have∫ T

0

∣∣∣(Wixi)(t)
∣∣∣dt ≤

n∑
j=1

∫ T

0
|ci j(t)||xi(t − δi j(t))|dt

≤

n∑
j=1

|c+i j|

∫ T

0
|xi(t − δi j(t))|dt

=

n∑
j=1

|c+i j|

∫ T−δi j(T)

−δi j(0)

1
1 − δ′i j(µi j(s))

|xi(s)|ds

=

n∑
j=1

|c+i j|

∫ T

0

1
1 − δ′i j(µi j(s))

|xi(s)|ds

≤

∑n
j=1 |c

+
i j|

1 − σ1

∫ T

0
|xi(t)|dt.

(3) By Lemma 2 and Remark 1, we have∫ T

0

∣∣∣(Wixi)(t)
∣∣∣2dt ≤

n∑
j=1

∫ T

0
|ci j(t)|2|xi(t − δi j(t))|2dt
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≤

n∑
j=1

|c+i j|
2
∫ T

0
|xi(t − δi j(t))|2dt

=

n∑
j=1

|c+i j|
2
∫ T−δi j(T)

−δi j(0)

1
1 − δ′i j(µi j(s))

|xi(s)|2ds

=

n∑
j=1

|c+i j|
2
∫ T

0

1
1 − δ′i j(µi j(s))

|xi(s)|2ds

≤

∑n
j=1 |c

+
i j|

2

1 − σ1

∫ T

0
|xi(t)|2dt.

Thus, the proof is completed.

Lemma 4. If
∑n

j=1 |c
+
i j| < 1 and

∑n
j=1 |c

+
i j |

2

1−σ1
< 1, then the inverse of difference operator Ai, denoted by A−1

i , exists
and

(1) ∥A−1
i ∥ ≤

1
1−
∑n

j=1 |c
+
i j |
, i = 1, 2, ...,n;

(2)
∫ T

0 |(A
−1
i xi)(t)|dt ≤ 1

1−
∑n

j=1 |c
+
i j |

1−σ1

·

∫ T

0 |xi(t)|dt, i = 1, 2, ...,n;

(3)
∫ T

0 |(A
−1
i xi)(t)|2dt ≤ 1

1−
∑n

j=1 |c
+
i j |

2

1−σ1

·

∫ T

0 |xi(t)|2dt, i = 1, 2, ...,n.

Proof. (1) From the first part of Lemma 3, we can know that ∥Wi∥ ≤
∑n

j=1 |c
+
i j| < 1, by A−1

i = (Ii −Wi)−1, we

can have ∥A−1
i ∥ = ∥(Ii −Wi)−1

∥ ≤
1

1−
∑n

j=1 |c
+
i j |
.

(2) By A−1
i = (Ii −Wi)−1 and ∀k ∈ Z, we have∫ T

0
|(A−1

i xi)(t)|dt ≤
∫ T

0

∣∣∣∣[(Ii −Wi)−1xi](t)
∣∣∣∣dt

≤

∫ T

0

∣∣∣∣∑
k≥0

(Wk
i xi)(t)

∣∣∣∣dt ≤
∑
k≥0

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣dt

=

∫ T

0
|xi(t)|dt +

∑
k≥1

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣dt, i = 1, 2, ...,n.

By using the second part of Lemma 3, we find if k ≥ 1 and k ∈ Z, then∫ T

0

∣∣∣(Wk
i xi)(t)

∣∣∣dt ≤
∫ T

0

∣∣∣(WiWk−1
i xi)(t)

∣∣∣dt

≤

∑n
j=1 |c

+
i j|

1 − σ1

∫ T

0

∣∣∣(Wk−1
i xi)(t)

∣∣∣dt

≤

(∑n
j=1 |c

+
i j|

1 − σ1

)k ∫ T

0

∣∣∣xi(t)
∣∣∣dt, i = 1, 2, ...,n.

Thus, we can obtain∫ T

0
|(A−1

i xi)(t)|dt ≤
∫ T

0
|xi(t)|dt +

∑
k≥1

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣
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≤

∑
k≥0

(∑n
j=1 |c

+
i j|

1 − σ1

)k ∫ T

0

∣∣∣xi(t)
∣∣∣dt

=
1

1 −
∑n

j=1 |c
+
i j |

1−σ1

·

∫ T

0

∣∣∣xi(t)
∣∣∣dt, i = 1, 2, ...,n.

(3) Similar to the proof of (2). By A−1
i = (Ii −Wi)−1 and ∀k ∈ Z, we have∫ T

0
|(A−1

i xi)(t)|2dt ≤
∫ T

0

∣∣∣∣[(Ii −Wi)−1xi](t)
∣∣∣∣2dt

≤

∫ T

0

∣∣∣∣∑
k≥0

(Wk
i xi)(t)

∣∣∣∣2dt ≤
∑
k≥0

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣2dt

=

∫ T

0
|xi(t)|2dt +

∑
k≥1

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣2dt, i = 1, 2, ...,n.

By using the third part of Lemma 3, we find if k ≥ 1 and k ∈ Z, then∫ T

0

∣∣∣(Wk
i xi)(t)

∣∣∣2dt ≤
∫ T

0

∣∣∣(WiWk−1
i xi)(t)

∣∣∣2dt

≤

∑n
j=1 |c

+
i j|

2

1 − σ1

∫ T

0

∣∣∣(Wk−1
i xi)(t)

∣∣∣2dt

≤

(∑n
j=1 |c

+
i j|

2

1 − σ1

)k ∫ T

0

∣∣∣xi(t)
∣∣∣2dt, i = 1, 2, ...,n.

Thus, we can get∫ T

0
|(A−1

i xi)(t)|2dt ≤
∫ T

0
|xi(t)|2dt +

∑
k≥1

∫ T

0

∣∣∣∣(Wk
i xi)(t)

∣∣∣∣2dt

≤

∑
k≥0

(∑n
j=1 |c

+
i j|

2

1 − σ1

)k ∫ T

0

∣∣∣xi(t)
∣∣∣2dt

=
1

1 −
∑n

j=1 |c
+
i j |

2

1−σ1

·

∫ T

0

∣∣∣xi(t)
∣∣∣2dt, i = 1, 2, ...,n.

Therefore, the proof is completed.

For any nonnegative integer q, let tq < T < tq+1 = T + t1 and

C[0,T; t1, t2, ..., tq] =
{
x|x : [0,T]→ Rn, x(t) exists everywhere

except tk, x(t+k ), x(t−k ) exist and x(tk) = x(t−k ), k = 1, 2, ..., q
}
.

Take

X =
{
x|x ∈ C[0,T; t1, t2, ..., tq], x(0) = x(T), x(t+k ), x(t−k ) exists,

x(tk) = x(t−k ), k = 1, 2, ...q
}
,
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Y = X ×Rn×(q+1) and ∥x∥ =
n∑

i=1

max
t∈[0,T]

|xi(t)|, then X and Y are all Banach spaces.

Let

L : D(L) ⊂ C1[0,T; t1, t2, ..., tq] ∩ X→ Y,

Lx(t) =
(
x′(t),∆x(t1),∆x(t2), ...,∆x(tq)

)
,

(2.3)

where

D(L) =
{
x|x ∈ C1([0,T; t1, t2, ..., tq],R) : x(t + T) = x(t)

}
,

∆(x(tk)) = x(t+k ) − x(t−k ), k = 1, 2, ..., q.

Let

N : X→ Y,

Nx(t) =



B1(t),
B2(t)
· · ·

Bn(t)

 ,

∆x1(t1),
∆x2(t1)
· · ·

∆xn(t1)

 , · · ·,

∆x1(tq),
∆x2(t1)
· · ·

∆xn(tq)


 . (2.4)

Obviously, ker L =
{
x|x = c ∈ Rn, t ∈ [0,T]

}
, and

Im L =
{
y|y = ( f , c1, c2, ..., cq, d) ∈ Y,

∫ T

0
f (t)dt +

q∑
i=1

ci + d = 0
}

=X ×Rn×q
× {0}.

Then Im L is closed in Y and dim ker L = codim Im L = n. Hence, Im L is closed in Y and L is a Fredholm
mapping of index zero.

Define P : X→ X, Px(t) = 1
T

∫ T

0 x(t)dt, and Q : Y→ Y,

Q
(

f (t), c1, c2, ..., cq, d
)
=
( 1
T

[ ∫ T

0
f (t)dt +

q∑
i=1

ci + d
]
, 0, 0, ..., 0

)
.

It is easy to show that P and Q are continuous projectors such that

Im P = ker L, ker Q = Im L = Im(I −Q).

The inverse Kp : Im L→ ker P ∩D(L) of Lp has the form

Kp

(
f (t), a1, a2, ..., aq

)
=

∫ t

0
f (s)ds +

∑
t>tk

ck

−
1
T

∫ T

0

∫ t

0
f (s)dsdt −

q∑
k=1

ck,

(2.5)

then

QNx(t) =




1
T

∫ T

0 B1(t) − 1
T
∑q

k=1 e1k(x1(tk))
· · ·

1
T

∫ T

0 Bn(t) − 1
T
∑q

k=1 enk(xn(tk))

 , 0, · · ·, 0


n×(q+1)

,
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and

Kp(I −Q)Nx(t) =


∫ t

0 B1(s)ds −
∑

t>tk
e1k(x1(tk))

· · ·∫ t

0 Bn(s)ds −
∑

t>tk
enk(xn(tk))


n×1

−


1
T

∫ T

0

∫ t

0 B1(s)dsdt −
(

t
T −

1
2

) ∫ T

0 B1(t)dt
· · ·

1
T

∫ T

0

∫ t

0 Bn(s)dsdt −
(

t
T −

1
2

) ∫ T

0 Bn(t)dt


n×1

−


∑q

k=1 e1k(x1(tk))
· · ·∑q

k=1 enk(xn(tk))


n×1

.

Clearly, QN and Kp(I − Q)N are continuous. For any bounded open subset Ω ⊂ X, QN(Ω̄) is bounded,
moreover, applying the Arzela-Ascoli theorem, it is not difficult to show that Kp(I − Q)N(Ω̄) are relatively
compact. Therefore, N is L-compact on X for any open bounded set Ω.

Throughout the rest of this paper, we always assume that:

• [H1] There exist constants p j ≥ 0 and q j ≥ 0 such that

| f j(x j)| ≤ p j, |1 j(x j)| ≤ q j, j = 1, 2, ...,n.

• [H2] Functions f j(u) and 1 j(u)( j = 1, 2, ...,n) satisfy the Lipschitz condition, i.e., there are constants
L1 j > 0 and L2 j > 0 such that, for all u1, u2 ∈ R,

| f j(u1) − f j(u2)| ≤ L1 j|u1 − u2|,

|1 j(u1) − 1 j(u2)| ≤ L2 j|u1 − u2|.

• [H3]
∑n

j=1 |c
+
i j| < 1,

∑n
j=1 |c

+
i j |

2

1−σ1
< 1 and

a−i >
a+i
∑n

j=1 c+i j√
(1−σ1)−

∑n
j=1 |c

+
i j |

2
, i = 1, 2, ...,n.

• [H4] There exists a positive integer q such that

tk+q = tk + T, ek+q(x) = ek(x), k = 1, 2, ....

3. Existence of periodic solution

In this section, we study the existence of periodic solution of (1.1).

Theorem 3.1. Suppose that conditions [H1]-[H4] hold, then there exist positive constants Ki, which are
independent of λ such that

xi(t) ≤ Ki, i = 1, 2, ...,n, t ∈ R,

where x = (x1, x2, ..., xn)⊤ is any solution to the equation Lx = λNx, λ ∈ (0, 1].

Proof. First of all, consider the following operator equation

Lx = λNx, λ ∈ (0, 1),
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where L and N are defined by (2.3) and (2.4), respectively, then we have

(Aixi)′(t) = λ
[
− ai(t)xi(t) +

n∑
j=1

(
bi j(t) f j(x j(t))

+di j(t)1 j(x j(t − τi j(t)))
)]

+λIi(t), t ∈ [0,T], t , tk,

∆xi(tk) = xi(t+k ) − xi(t−k ) = λeik(xi(tk)),
xi(0) = xi(T), i = 1, 2, ...,n, k = 1, 2, ....

(3.1)

Suppose that (x1(t), x2(t), ..., xn(t))⊤ ∈ X is a solution of system (3.1) for a certain λ ∈ (0, 1). Integrating (3.1)
over the interval [0,T], we obtain∫ T

0
ai(t)xi(t)dt =

∫ T

0

[ n∑
j=1

(
bi j(t) f j(x j(t)) + di j(t) · 1 j(x j(t − τi j(t)))

)
+ Ii(t)

]
dt +

q∑
k=1

eik(xi(tk)). (3.2)

Let ξ(ξ , tk) ∈ [0,T], k = 1, 2, ..., q, such that xi(ξ) = inf
t∈[0,T]

xi(t), i = 1, 2, ...,n. Then, it follows from (3.2) and

[H1] that

Taixi(ξ) ≤
∫ T

0

[ n∑
j=1

∣∣∣∣bi j(t) f j(x j(t)) + di j(t)1 j(x j(t − τi j(t))) + Ii(t)
∣∣∣∣]dt +

q∑
k=1

|eik(xi(tk))|

≤

∫ T

0

[ n∑
j=1

∣∣∣bi j(t)
∣∣∣∣∣∣ f j(x j(t))

∣∣∣ + ∣∣∣di j(t)
∣∣∣1 j(x j(t − τi j(t)))

∣∣∣ + ∣∣∣Ii(t)
∣∣∣]dt +

q∑
k=1

|eik(xi(tk))|

≤ T
n∑

j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik.

Thus, we have

xi(ξ) ≤
1
ai

[ n∑
j=1

(
b+i jp j + d+i jq j

)
+ I+i +

1
T

q∑
k=1

eik

]
:=Mi, i = 1, 2, ...,n.

(3.3)

Let t0 = t+0 = 0 and tq+1 = T. From (3.1) and (3.2), and by using the Hölder inequality, we obtain∫ T

0

∣∣∣(Aixi)′(t)
∣∣∣dt =

q∑
k=1

∫ tk

t+k −1

∣∣∣(Aixi)′(t)
∣∣∣dt +

q∑
k=1

∣∣∣(Aixi)(t+k ) − (Aixi)(tk)
∣∣∣

≤

∫ T

0
|ai(t)||xi(t)|dt +

∫ T

0

n∑
j=1

[
|bi j(t)|| f j(x j(t))|

+ |di j(t)||1 j(x j(t − τi j(t)))|
]
dt +
∫ T

0
|Ii(t)|dt +

q∑
k=1

|eik((Aixi)(tk))|

≤ a+i
√

T
( ∫ T

0
|xi(t)|2dt

)1/2
+ T

n∑
j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik,
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which together with the third part of Lemma 4 yields∫ T

0

∣∣∣(Aixi)′(t)
∣∣∣dt ≤ a+i

√

T
( ∫ T

0
|xi(t)|2dt

)1/2
+ T

n∑
j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik

≤ a+i
√

T
( 1

1 −
∑n

j=1 |c
+
i j |

2

1−σ1

·

∫ T

0
|(Aixi)(t)|2dt

)1/2
+ T

n∑
j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik

=
a+i
√

T(1 − σ1)√
(1 − σ1) −

∑n
j=1 |c+i j|

2
· ∥Aixi∥2 + T

n∑
j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik.

(3.4)

Furthermore, multiplying both sides of system (3.1) by (Aixi)(t) and integrating over [0,T], since∫ T

0
(Aixi)′(t)(Aixi)(t)dt =

λ
2
·

{
(Aixi)2(t1) − (Aixi)2(0)

+

q∑
l=2

[
(Aixi)2(tl) − (Aixi)2(t+l−1)

]
+ (Aixi)2(T) − (Aixi)2(t+q )

}
=
λ
2
·

q∑
l=1

[
(Aixi)2(tl) − (Aixi)2(t+l )

]
= −λ ·

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
eik((Aixi)(tk)),

(3.5)

we obtain

0 =
∫ T

0
(Aixi)′(t)(Aixi)(t)dt = −λ

∫ T

0
ai(t)xi(t)(Aixi)(t)dt

+ λ

∫ T

0

n∑
j=1

[
bi j(t) f j(x j(t)) + di j(t)1 j(x j(t − τi j(t)))

]
(Aixi)(t)dt

+ λ

∫ T

0
Ii(t)(Aixi)(t)dt + λ

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
· eik((Aixi)(tk)).

(3.6)

Moreover,∫ T

0
ai(t)xi(t)(Aixi)(t)dt =

∫ T

0
ai(t)(Aixi)(t)

[
xi(t)

−

n∑
j=1

ci j(t)xi(t − δi j(t)) +
n∑

j=1

ci j(t)xi(t − δi j(t))
]
dt

=

∫ T

0
ai(t)(Aixi)2(t)dt +

∫ T

0
ai(t)(Aixi)(t)

n∑
j=1

ci j(t)xi(t − δi j(t))dt.

(3.7)
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From (3.6) and (3.7), we can have

0 = −
[ ∫ T

0
ai(t)(Aixi)2(t)dt +

∫ T

0
ai(t)(Aixi)(t) ·

n∑
j=1

ci j(t)xi(t − δi j(t))dt
]

+

∫ T

0

n∑
j=1

[
bi j(t) f j(x j(t)) + di j(t)1 j(x j(t − τi j(t)))

]
(Aixi)(t)dt

+

∫ T

0
Ii(t)(Aixi)(t)dt +

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
· eik((Aixi)(tk)).

(3.8)

It follows from (3.8) and [H1] that

a−i ∥Aixi∥
2
2

≤ a+i

n∑
j=1

c+i j

( ∫ T

0
|(Aixi)(t)|2dt

)1/2( ∫ T

0
|xi(t − δi j(t))|2dt

)1/2
+
( n∑

j=1

[
b+i jp j + d+i jq j

]
+ I+i
)√

T
( ∫ T

0
|(Aixi)(t)|2dt

)1/2
+

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
eik((Aixi)(tk)).

(3.9)

Furthermore,∫ T

0
|xi(t − δi j(t))|2dt =

∫ T−δi j(T)

−δi j(0)

1
1 − δ′i j(µi j(s))

|xi(s)|2ds.

It follows from Lemma 2 that∫ T−δi j(T)

−δi j(0)

1
1 − δ′i j(µi j(s))

|xi(s)|2ds =
∫ T

0

1
1 − δ′i j(µi j(s))

|xi(s)|2ds.

By Remark 1, we have

1
1 + σ0

∫ T

0
|xi(s)|2ds ≤

∫ T

0

1
1 − δ′i j(µi j(s))

|xi(s)|2ds

≤
1

1 − σ1

∫ T

0
|xi(s)|2ds.

(3.10)

Substituting (3.10) into (3.9), we get

a−i ∥Aixi∥
2
≤

a+i
∑n

j=1 c+i j
√

1 − σ1
·

( ∫ T

0
|(Aixi)(t)|2dt

)1/2
·

( ∫ T

0
|xi(t)|2dt

)1/2
+
√

T
( n∑

j=1

[
b+i jp j + d+i jq j

]
+ I+i
)
·

( ∫ T

0
|(Aixi)(t)|2dt

)1/2
+

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
eik((Aixi)(tk)).

(3.11)
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Since
∑n

j=1 |c
+
i j |

2

1−σ1
< 1, it follows from the third part of Lemma 4 that

( ∫ T

0
|xi(t)|2dt

)1/2
=
( ∫ T

0
|(A−1

i Ai)(xi(t))|2dt
)1/2

≤

( 1

1 −
∑n

j=1 |c
+
i j |

2

1−σ1

·

∫ T

0
|(Aixi)(t)|2dt

)1/2
=
( 1

1 −
∑n

j=1 |c
+
i j |

2

1−σ1

)1/2( ∫ T

0
|(Aixi)(t)|2dt

)1/2
.

(3.12)

Substituting (3.12) into (3.11), we obtain

a−i ∥Aixi∥
2
2 ≤

a+i
∑n

j=1 c+i j√
(1 − σ1) −

∑n
j=1 |c+i j|

2
· ∥Aixi∥

2
2 +
√

T
( n∑

j=1

[
b+i jp j + d+i jq j

]
+ I+i
)
· ∥Aixi∥2

+

q∑
k=1

[
(Aixi)(tk) +

1
2

eik((Aixi)(tk))
]
eik((Aixi)(tk)),

which together with [H3] implies that there exists a positive constant Ni, i = 1, 2, ...,n, such that

∥Aixi∥2 ≤ Ni, i = 1, 2, ...,n. (3.13)

Clearly, Ni(i = 1, 2, ...,n) is independent with λ.

Substituting (3.13) into (3.4), we can have∫ T

0
|(Aixi)′(t)|dt ≤

a+i
√

T(1 − σ1)√
(1 − σ1) −

∑n
j=1 |c+i j|

2
· ∥Aixi∥2

+ T
n∑

j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik

≤
a+i Ni

√
T(1 − σ1)√

(1 − σ1) −
∑n

j=1 |c+i j|
2
+ T

n∑
j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik.

(3.14)

By using the second part of Lemma 4, we can have∫ T

0
|x′i (t)|dt =

∫ T

0
|(A−1

i Ai)x′i (t)|dt

≤
1

1 −
∑n

j=1 |c
+
i j |

1−σ1

∫ T

0
|(Aixi)′(t)|dt

≤
1

1 −
∑n

j=1 |c
+
i j |

1−σ1

·

[ a+i Ni
√

T(1 − σ1)√
(1 − σ1) −

∑n
j=1 |c+i j|

2

+ T
n∑

j=1

(
b+i jp j + d+i jq j

)
+ TI+i +

q∑
k=1

eik

]
.

(3.15)
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Since

|xi(t)| ≤ |xi(ξ)| +
∫ T

0
|x′i (t)|dt, ∀t ∈ [0,T], i = 1, 2, ...,n,

then it follows from (3.3) and (3.15) that there exists constants Ki(i = 1, 2, ...,n) such that

|xi(t)| ≤ Ki, t ∈ [0,T], i = 1, 2, ...,n, (3.16)

and clearly, Ki(1, 2, ...,n) is independent of λ. Therefore, the proof is completed.

Theorem 3.2. Assume that all the conditions in Theorem 3.1 hold, then system (1.1) has at least one T-periodic
solution.

Proof. Denote

H∗ =
n∑

i=1

Ki + C,

where C > 0 is taken enough large so that

min
1≤i≤n

aiH∗ > min
1≤i≤n

[ n∑
j=1

(
|bi j|p j + |di j|q j

)
+ Ii −

1
T

q∑
k=1

eik

]
. (3.17)

Set
Ω =

{
x|x = (x1(t), ..., xn(t))⊤ ∈ X, ∥x∥ ≤ H∗

}
.

Then, we can see that the condition (1) of Lemma 1 is satisfied.
When x = (x1(t), ..., xn(t))⊤ ∈ ∂Ω ∩Rn, x = (x1, ..., xn)⊤ is a constant in Rn with

|x1| + |x2| + · · · + |xn| = H∗.

Then,

QNx = QN(x1, ..., xn)⊤ =
(
− aixi +

n∑
j=1

[
bi j f j(x j(t))

+ di j1 j(x j(t − τi j(t)))
]
+ Ii −

1
T

q∑
k=1

eik(xi(tk))
)

n×1
.

Thus,

∥QNx∥ = ∥QN(x1, ..., xn)⊤∥

=

n∑
i=1

∣∣∣∣aixi +
1
T

q∑
k=1

eik(xi(tk)) −
n∑

j=1

[
bi j f j(x j(t))

+ di j1 j(x j(t − τi j(t)))
]
− Ii

∣∣∣∣
≥

n∑
i=1

ai|xi| +
1
T

n∑
i=1

q∑
k=1

eik −

n∑
i=1

n∑
j=1

[
|bi j|p j + |di j|q j

]
−

n∑
i=1

|Ii|

≥

n∑
i=1

(
ai|xi| +

1
T

q∑
k=1

eik

)
−

n∑
i=1

n∑
j=1

([
|bi j|p j + |di j|q j

]
+ |Ii|
)
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≥ min
1≤i≤n

n∑
i=1

(
ai|xi| +

1
T

q∑
k=1

eik

)
−max

1≤i≤n

n∑
i=1

n∑
j=1

([
|bi j|p j + |di j|q j

]
+ |Ii|
)
,

which together with (3.17) gives

∥QNx∥ = ∥QN(x1, ..., xn)⊤∥ > 0.

This leads to a contradiction with x = (x1(t), ..., xn(t))⊤ ∈ ∂Ω ∩ Rn. Thus, the condition (2) of Lemma 1 is
satisfied.

Finally, we show that the condition (3) of Lemma 1 is also satisfied.
Define

φ : ker L × [0, 1]→ X,

by

φ(x1, ..., xn, µ) = −µ(x1, ..., xn)⊤ + (1 − µ)QN(x1, ..., xn)⊤.

If (x1, ..., xn)⊤ ∈ ∂Ω ∩ ker L, (x1, ..., xn)⊤ is a constant in Rn with
∑n

i=1 |xi| = H∗, then we can obtain
φ(x1, ..., xn, µ) , (0, 0, ..., 0)⊤. Thus,

deg
(
QN(x1, ..., xn)⊤,Ω ∩ ker L, (0, 0..., 0)⊤

)
= deg

(
(−x1, ...,−xn)⊤,Ω ∩ ker L, (0, 0..., 0)⊤

)
, 0,

which implies that the condition (3) of Lemma 1 is also satisfied. Therefore, by Lemma 1, we can conclude
that system (1.1) has at least one T-periodic solution.

4. Global Exponential Stability

In this section, we will prove that the periodic solution of (1.1) is global exponential asymptotic stable.

Theorem 4.1. Assume that [H1]-[H4] hold, Furthermore, assume that

• [H5] The following inequalities hold:

a−i >
n∑

j=1

2b+i jL1 j +

n∑
j=1

d+i jL2 jτ, i = 1, 2, ...,n,

where L1 j and L2 j are defined in [H2], τ+i j = max
t∈[0,T]

τi j(t), τ = max
1≤i, j≤n

{τ+i j}, i, j = 1, 2, ...,n.

• [H6] eik(xi(tk)) = −γikxi(tk), 0 < γik < 2, i = 1, 2, ...,n, k ∈ Z.

Then there exists a positive constant α such that the periodic solutions of system (1.1) satisfy

n∑
i=1

|xi(t) − x∗i (t)| ≤ e−αt
|xi(0) − x∗i (0)|, t > 0,

where x∗(t) = (x∗1(t), x∗2(t), ..., x∗n(t))⊤.
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Proof. From Theorem 3.1-3.2, we can see that system (1.1) possesses a T-periodic solution x∗(t) = (x∗1(t), x∗2(t), ...,
x∗n(t))⊤.

Suppose that x(t) = (x1(t), x2(t), ..., xn(t))⊤ is an arbitrary solution of system (1.1). Then, it follows from
system (1.1) that

d
dt

(
xi(t) − x∗i (t)

)
= −ai

(
xi(t) − x∗i (t)

)
+

n∑
j=1

[
bi j(t)
(

f j(x j(t)) − f j(x∗j(t))
)

+ di j(t)
(
1 j(x j(t − τi j(t))) − 1 j(x∗j(t − τi j(t)))

)]
,

for i = {1, 2, ...,n}, t > 0, t , tk, k ∈ Z. Then by [H2], we can have

d+

dt

∣∣∣xi(t) − x∗i (t)
∣∣∣ ≤ −a−i

∣∣∣xi(t) − x∗i (t)
∣∣∣

+

n∑
j=1

[
b+i jL1 j

∣∣∣x j(t) − x∗j(t)
∣∣∣

+ d+i jL2 j

∣∣∣x j(t − τi j(t)) − x∗j(t − τi j(t))
∣∣∣],

(4.1)

for i = {1, 2, ...,n}, t > 0, t , tk, k ∈ Z and d+/dt denotes the upper-right derivative. Moreover,

xi(tk + 0) − x∗i (tk + 0) =xi(tk) + ei(xi(tk)) −
[
x∗i (tk) + ei(x∗i (tk))

]
=(1 − γik)

(
xi(tk) − x∗i (tk)

)
,

which together with [H6] yields∣∣∣xi(tk + 0) − x∗i (tk + 0)
∣∣∣ ≤∣∣∣1 − γik

∣∣∣∣∣∣xi(tk) − x∗i (tk)
∣∣∣

≤

∣∣∣xi(tk) − x∗i (tk)
∣∣∣,

for i = {1, 2, ...,n}, k ∈ Z.

Choose the Lyapunov functional in the following form:

V(t) =
n∑

i=1

(∣∣∣xi(t) − x∗i (t)
∣∣∣ + ∫ t

0
b+i j

∣∣∣x j(s) − x∗j(s)
∣∣∣ds

+

∫ t

t−τi j

d+i j

1 − τ′i j(µ(s))

∣∣∣x j(s) − x∗j(s)
∣∣∣ds
)
, t > 0.

Then, combining with (4.1), we can get

d+V(t)
dt

≤

n∑
i=1

{
− a−i
∣∣∣xi(t) − x∗i (t)

∣∣∣ + n∑
j=1

[
b+i jL1 j|x j(t) − x∗j(t)|

+ d+i jL2 j|x j(t − τi j(t)) − x∗j(t − τi j(t))|
]

+

n∑
j=1

b+i jL1 j|x j(t) − x∗j(t)| +
n∑

j=1

d+i jL2 j

1 − τ′i j(µ(t))
|x j(t) − x∗j(t)|
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−

n∑
j=1

d+i jL2 j

1 − τ′i j(µ(t − τi j(t)))
|x j(t − τi j(t)) − x∗j(t − τi j(t))|

· (1 − τ′i j(t))
}

= −

n∑
i=1

[
a−i −

n∑
j=1

2b+i jL1 j −

n∑
j=1

d+i jL2 jτ
]
|xi(t) − x∗i (t)|.

From [H5], we can see that there exists a positive constant α > 0 such that

a−i ≥
n∑

j=1

2b+i jL1 j +

n∑
j=1

d+i jL2 jτ + α, i = 1, 2, ...,n,

then we can have

d+V(t)
dt

≤ −αV(t), t > 0, t , tk. (4.2)

Moreover,

V(tk + 0) =
n∑

i=1

∣∣∣xi(tk + 0) − x∗i (tk + 0)
∣∣∣

≤

n∑
i=1

∣∣∣xi(tk) − x∗i (tk)
∣∣∣ = V(tk), k ∈ Z.

(4.3)

By using the exponential stability theorem [14], (4.2) and (4.3), we have

d+V(t)
dt

≤ −αV(t)→ V(t) ≤ e−αtV(0), ∀t > 0,

Thus, we can obtain

n∑
i=1

|xi(t) − x∗i (t)| ≤ e−αt
|xi(0) − x∗i (0)|, ∀t > 0.

By Definition 2.3, we can conclude that the periodic solution of system (1.1) is globally exponentially stable.
The proof is now completed.

5. Numerical example

In this section, we present an example to demonstrate the results obtained in previous sections.

Example 5.1. Consider the following neutral-type neural networks with impulses and delays:

(Aixi)′(t) = −ai(t)xi(t) +
2∑

j=1

[
bi j(t) f j(x j(t))

+di j(t)1 j(x j(t − τi j(t)))
]
+ Ii(t),

∆xi(tk) = xi(t+k ) − xi(t−k ) = eik(xi(tk)), t = tk = kT,
i = 1, 2, k = 1, 2, ...,

(5.1)
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where

Aixi(t) = xi(t) −
2∑

j=1

ci j(t)xi(t − δi j(t)), i = 1, 2,

I1(t) = 1 + sin(πt), I2(t) = 1 + cos(πt),
ai(t) = 1, bi j(t) = di j(t) = 0.01, f j(u) = 1 j(u) = 0.2 sin(u),

τi j(t) =
1

8π
sin(πt), δi j(t) = 1 −

1
8π

cos(πt),

ci j(t) = 0.01 + 0.01 sin(πT),
e1kx1(tk) = −0.5x1(tk), e2kx2(tk) = −0.4x2(tk).

For i, j = 1, 2, we have,

a+i = a−i = 1, c+i j = 0.02, L1 j = L2 j = 0.2,

δ′i j(t) =
1
8

sin(πt), τ = max
1≤i≤n,1≤ j≤n

{τ+i j} =
1

8π
, b+i j = d+i j = 0.01,

then, we can see that assumptions [H1], [H2] and [H4] hold.
Moreover, by a simple calculation, we have

n∑
j=1

|c+i j| < 1,

∑n
j=1 |c

+
i j|

2

1 − σ1
< 1, σ1 = max

t∈[0,T]
δ′i j(t) =

1
8
,

a−i −
a+i
∑n

j=1 |c
+
i j|√

(1 − σ1) −
∑n

j=1 |c+i j|
2
≈ 0.95722 > 0,

and

a−i −
n∑

j=1

2b+i jL1 j −

n∑
j=1

d+i jL2 jτ ≈ 0.99043 > 0, i = 1, 2.

thus, we can see that assumptions [H3], [H5] and [H6] hold. Therefore, by Theorem 3.1-3.2 and 4.1, we can obtain
system (5.1) has a global exponential stable 2-periodic solution. This fact can be presented in the following Figure 1
and Figure 2 .

Figure 1: Time-domain behavior of the state variable x1 with impulsive effects.
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Figure 2: Time-domain behavior of the state variable x2 with impulsive effects.

6. Conclusion

In the real world, impulsive differential equations are suitable for the mathematical simulation of evo-
lutionary processes in which the parameters undergo relatively long periods of smooth variation followed
by a short-term rapid change in their values. Processes of this type are often investigated in various fields
of science and technology. In this paper, we investigated a generalized neutral-type neural networks with
impulses and delays and the neural network model with impulses shows the neutral character by the
Ai(i = 1, 2, ...,n) operator, which is different from the corresponding ones known in the literature. The ex-
istence and global exponential stability of T-periodic solution have been completely established by means
of the Mawhin’s continuation theorem and by constructing the appropriate Lyapunov functional. These
results extend previous works. Some interesting questions deserve further investigation.
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