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Available at: http://www.pmf.ni.ac.rs/filomat

Identifying continuous Gabor frames on locally compact Abelian
groups

Zohre Hamidia, Fahimeh Arabyani-Neyshaburib, Rajab A. Kamyabi-Golc, Mohammad H. Sattaria

aDepartment of Pure Mathematics, Azarbaijan Shahid Madani University, P.O.Box 53714-161, Tabriz, Iran.
bDepartment of Mathematical sciences, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran.

cDepartment of Mathematical sciences, Faculty of Math, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic
Structures (CEAAS), P.O.Box 1159-91775, Mashhad, Iran.

Abstract. In this paper, we establish some necessary and sufficient conditions for constructing continuous
Gabor frames in L2(G), where G is a second countable locally compact abelian (LCA) group. More precisely,
we reformulate the generalized Zak transform defined by A. Weil on LCA groups and later proposed by
Gröchenig in the case of integer-oversampled lattices, however our approach is regarding the assumption
that both translation and modulation groups are closed subgroups. Moreover, we discuss the possibility of
such a generalization and apply several examples to demonstrate the necessity of standing conditions in
the results. Finally, by using the generalized Zak transform and fiberization technique, we characterize the
continuous Gabor frames of L2(G) in terms of a family of frames in l2(Ĥ⊥) for a closed co-compact subgroup
H of G.

1. Introduction

The Zak transform is one of the fundamental tools in both pure and applied mathematics, and was
originally introduced by Gelfand [10] due to some problems in differential equations. This transform
was studied by Weil on locally compact abelian(LCA) groups [21] and by Zak in solid state physics [22].
Later on, it has been considered by many of authors for identifying and characterizing Gabor frames in
L2(G) [2, 4, 6, 11]. Most studies in this field are associated with a discrete, co-compact (uniform lattice)
subgroup. In particular, Gröchenig [11] presented some new aspects of Zak transform to analyze uniform
lattice Gabor systems on LCA groups. In recent years this aspect has been extended to closed subgroups for
the characterization of continuous Gabor frames. Indeed, by considering a closed subgroup H of an LCA
group G and applying the Zak transform associated with H some equivalent conditions for the existence of
continuous Gabor frames in the form of {EγTλ1}λ∈H,γ∈H⊥ have been obtained [2, 16].

The main purpose of this paper is to achieve some characterization results regarding continuous Gabor
frames as {EγTλ1}λ∈Λ,γ∈Γ in L2(G), for closed subgroups Λ ⊆ G and Γ ⊆ Ĝ, in which Γ is not necessarily the
annihilator ofΛ. To this end, we extend and reformulate the idea of integer oversampling for uniform lattices
[11]. However, our formulation relies on the assumption that both the translation and modulation groups
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are only closed subgroups and remove some other limited conditions. Moreover, we discuss the existing
conditions for such a generalization. Finally, by using the generalized Zak transform and fiberization
method, we give some characterizations of continuous Gabor frames in L2(G) in term of a family of frames
in l2(Ĥ⊥) for a closed co-compact subgroup H of G.

This paper is organized as follows. In Section 2, we present some basic facts about locally compact
abelian groups and the required definitions of continuous frame theory. Then we provide a sufficient
condition for the existence of continuous Gabor frames in L2(G). In section 3, we extend the idea of
integer oversampling. Moreover, we present some existing conditions for this generalization. Applying
the generalized Zak transform, we obtain some equivalent conditions for a Gabor system to be a frame
family, orthonormal basis, minimal system or a complete family in L2(G). Finally, in section 4, we use
the fiberization method to build a relationship between continuous Gabor frames in L2(G) and a family of
frames in l2(Ĥ⊥) for a closed co-compact subgroup H of G.

2. Notations and preliminaries

Let G be a second countable locally compact abelian (LCA) group. It is known that such a group
carries a translation invariant regular Borel measure so called Haar measure and is denoted by µG, which
is unique up to a positive constant. We will use the addition as the group operation and equip discrete
groups with the counting measure. Let Ĝ denote the dual group of G, then the Pontryagin duality theorem

states that the character group of Ĝ is topologically isomorphic with G, i.e., ̂̂G � G. The Fourier transform
F : L1(G) −→ C0(Ĝ) is defined by

F f (ξ) = f̂ (ξ) =
∫

G
f (x)ξ(x) dµG(x) (ξ ∈ Ĝ).

We can recover a function from its Fourier transform, by the Fourier inversion Theorem. Let f ∈ L1(G) such
that f̂ ∈ L1(Ĝ), then

F
−1 f̂ (x) = f (x) =

∫
Ĝ

f̂ (ξ)ξ(x) dµĜ(ξ) (a.e x ∈ G).

The Fourier transform can be extended from L1(G)∩ L2(G) to an isometric isomorphism between L2(G) and
L2(Ĝ), which is known as the Plancherel transform. See [9, 14, 15].

The mathematical theory for Gabor analysis in L2(G) is based on two classes of operators on L2(G). The
translation by λ ∈ G, which is defined as Tλ f (x) = f (x − λ), for all x ∈ G. Also, the modulation by γ ∈ Ĝ, is
defined by Eγ f (x) = γ(x) f (x), x ∈ G. These classes of operators are unitary on L2(G) and satisfy the following
relations;

TλEγ = γ(λ)EγTλ, F Tλ = E−λF and F Eγ = TγF .

For a subgroup Λ of an LCA group G its annihilator defined by

Λ⊥ := {γ ∈ Ĝ;γ(λ) = 1, f or all λ ∈ Λ},

which is a closed subgroup of Ĝ. We denote a closed subgroup Λ of G by Λ ≤ G. It is shown that Λ̂ � Ĝ
Λ⊥

and (̂ G
Λ ) � Λ⊥ [9]. These relations show that for a closed subgroup Λ the quotient G

Λ is compact if and only
if Λ⊥ is discrete. See [9, 14, 19] for more details.

Also, we recall here the Weil’s formula, which presents a relationship between the integrable functions
on G and the quotient G

Λ , for a closed subgroup Λ of G. More precisely, consider the canonical map
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πΛ : G −→ G
Λ , πΛ(x) = x + Λ from G onto G

Λ and let two out of the three Haar measures on G, Λ and G
Λ are

given. Then the third one can be normalized in a unique approach such that∫
G

f (x) dµG(x) =
∫

G
Λ

∫
Λ

f (x + λ) dµΛ(λ) dµ G
Λ

(ẋ), (1)

where f ∈ L1(G) and ẋ := πΛ(x). If (1) holds, then the respective dual measures on Ĝ,Λ⊥ � Ĝ
Λ and Ĝ

Λ⊥ � Λ̂
satisfy∫

Ĝ
f̂ (ξ) dµĜ(ξ) =

∫
Ĝ
Λ⊥

∫
Λ⊥

f̂ (ξ + γ) dµΛ⊥ (γ) dµĜ/Λ⊥ (ξ̇). (2)

In fact, for every two given measures on G, Ĝ, Λ, Λ⊥, and Ĝ
Λ⊥ , so that these two are not the dual measures,

then the other measures can be uniquely determined so that (1) and (2) hold simultaneously. For a closed
subgroup Λ of G, a Borel section or a fundamental domain is a Borel measurable subset X of G such that
every y ∈ G can be uniquely written as y = λ + x, where λ ∈ Λ and x ∈ X. We equip the Borel section X of
G with the restricted Haar measure µG|X. In [6] it is shown that the mapping x 7−→ x + Λ from (X, µG) into
( G
Λ , µ G

Λ
) is measure-preserving, and the mapping Q( f ) = f ′, defined by

f ′(x + Λ) = f (x), x + Λ ∈
G
Λ
, x ∈ X (3)

is an isometry from L2(X, µG) onto L2( G
Λ , µ G

Λ
). Also, if Λ is a discrete subgroup, then µG(X) is finite if and

only if Λ is co-compact, i.e., Λ is a uniform lattice [5]. For more information of harmonic analysis on locally
compact abelian groups, we refer the reader to the classical books [9, 14, 15, 19].

2.1. Frame theory
The major aspect of this paper is related to continuous frames which was introduced in [1]. In what

follows, we give some basic definitions and notations of continuous frames.

Definition 2.1. Let H be a complex Hilbert space, and let (M,
∑

M, µM) be a measure space, where
∑

M denotes the
σ-algebra and µM the non-negative measure. A family of vectors { fk}k∈M is called a frame for H with respect to
(M,
∑

M, µM) whenever:
a) the mapping M −→ C, k 7−→ ⟨ f , fk⟩ is measurable for all f ∈ H ,
b) there exist constants A,B > 0 such that

A ∥ f ∥2≤
∫

M
|⟨ f , fk⟩|2 dµM(k) ≤ B ∥ f ∥2, ( f ∈ H). (4)

The constants A and B in (4) are called frame bounds. If { fk}k∈M is weakly measurable and the upper bound
in inequality (4) holds, then { fk}k∈M is said to be a Bessel family with bound B. A frame { fk}k∈M is said to
be tight if A = B, if furthermore A = B = 1 then { fk}k∈M is called a Parseval frame. Also, a family { fk}k∈M is
called minimal if f j < span{ fk}k, j for all j ∈M.

For a Bessel family { fk}k∈M of H , the synthesis operator T : L2(M, µM) −→ H is defined by T{ck}k∈M =∫
M ck fkdµM(k), in which the integral is defined in the weak sense and is a bounded linear operator. Its

adjoint operator T∗ : H −→ L2(M, µM) the analysis operator, is obtained by T∗ f = {⟨ f , fk⟩}k∈M. The frame
operator S : H −→ H is defined as S = TT∗. We remark that the frame operator is the unique operator
satisfying ⟨S f , 1⟩ =

∫
M⟨ f , fk⟩⟨ fk, 1⟩ dµM(k), ( f , 1 ∈ H) and is well-defined, bounded and self-adjoint for any

Bessel system { fk}k∈M. Also, it is invertible if and only if { fk}k∈M is a frame [1, 18]. Also, for more information
in regard to continuous frame theory on LCA groups, see [3, 7, 16, 17, 20].

Let P be a countable or an uncountable index set, 1p ∈ L2(G) for all p ∈ P and H be a closed co-compact
subgroup of G. The translation invariant system generated by {1p}p∈P with translation along the closed
co-compact subgroup H is as {Th1p}h∈H,p∈P. Also for a topological space T, let the BT denote Borel algebra of
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T. Then, consider the following standing assumptions of [16, 17];

(I) (P,
∑

P, µP) is a σ-finite measure space,

(II) the mapping p 7−→ 1p, (P,
∑

P) −→ (L2(G),BL2(G)) is measurable,

(III) the mapping (p, x) 7−→ 1p(x), (P × G,
∑

P

⊗
BG) −→ (C,BC) is measurable.

The family {1p}p∈P is called admissible or when 1p is clear from the context, it is simply stated that
the measure space P is admissible. The nature of these assumptions are presented in [17]. Every closed
subgroup P j of G with the Haar measure is admissible if p 7−→ 1p is continuous.

A Gabor system in L2(G) with the window function 1 ∈ L2(G) is a family of functions of the form
{EγTλ1}λ∈Λ,γ∈Γ, where Γ ⊆ Ĝ and Λ ⊆ G. In the following, we derive some sufficient conditions for
{EγTλ1}λ∈Λ,γ∈Γ to constitute a frame for L2(G) that is a generalization of a known result, see for example
Theorem 11.4 of [13] and Corollary 3.5 of [7]. The proof of this result is straightforward and so will be
omitted.

Proposition 2.2. Let (Λ, µΛ) ⊆ G be an admissible measure space, Γ ≤ Ĝ be a closed and co-compact subgroup and
1 ∈ L2(G). If for all α ∈ Γ⊥ we have supp1

⋂
suppTα1 = ∅, up to a set of measure zero in G and there exist constants

A,B > 0 such that

A ≤
∫
Λ

|Tλ1(x)|2 dµΛ(λ) ≤ B, a.e. (x ∈ G). (5)

Then {EγTλ1}λ∈Λ,γ∈Γ is a frame for L2(G).

Also, the converse of the above result was proven by M. S. Jakobsen et.al., see Corollary 5.6 of [16].

3. Generalized Zak transform

In this section, we address the generalized Zak transform in relation to the continuous Gabor systems
on LCA groups. We extend the idea of integer oversampling, proposed in [11], from several aspects. In fact,
we deal with closed subgroups instead of uniform lattices and remove some other limited assumptions.
Especially, we discuss a new aspect with regards to the existence conditions and provide equivalent
conditions for a continuous Gabor system to be a frame family, orthonormal basis, complete and minimal
family.

Definition 3.1. Let Λ be a closed subgroup of G. The Zak transform of a function f ∈ L2(G) with respect to Λ is the
mapping ZΛ f , defined on G × Ĝ as

ZΛ f (x, ξ) =
∫
Λ

f (x + λ)ξ(λ) dµΛ(λ).

It is known that, the continuous Zak transform can be extended to a unitary operator from L2(G) onto
L2(MΛ), where MΛ := G

Λ ×
Ĝ
Λ⊥ . The next lemma states the basic properties of continuous Zak transform. See

[2, 11].

Lemma 3.2. Let Λ be a closed subgroup of G and f ∈ L2(G). Then

(I) Quasi-periodicity: ZΛ f
(
x + λ, γ + ω

)
= ω(λ)ZΛ f (x, ω), for all λ ∈ Λ, γ ∈ Λ⊥, x ∈ G and ω ∈ Ĝ

(II) Diagonalization: if
(
γ, λ
)
∈ Λ⊥ × Λ, then EγTλ f ∈ L2(G), and ZΛEγTλ f = Eλ,γZΛ f , where Eλ,γ(x, ω) =

γ(x)ω(λ) for all (x, ω) ∈ G × Ĝ.
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Now, let G be an LCA group, Λ ≤ G and Γ ≤ Ĝ be closed subgroups. Also, let there exist a closed
subgroup H ≤ Λ so that H⊥ ≤ Γ. In case Λ,Γ and H are uniform lattices so that the quotients ΛH and Γ

H⊥ are
finite, Gröchenig [11] briefly presented the idea of studying the Gabor system {EγTλ1}γ∈Γ,λ∈Λ in regard to the
Zak transform on H. In what follows, motivated by that idea, we considerΛ,Γ and H closed subgroups and
let the quotients ΛH and Γ

H⊥ to be countable. So, in this case we can choose λi ∈ Λ so thatΛ = ∪∞i=1 (λi +H) and
each coset of ΛH contains only one λi. Moreover, there exist γ j ∈ Γ so that Γ = ∪∞j=1

(
γ j +H⊥

)
and each coset

of Γ
H⊥ contains only one γ j. Then the frame operator of the Gabor system {EγTλ1}γ∈Γ,λ∈Λ, for a well-fitted

window function 1 (e.g., 1 ∈ Cc(G)), can be written as follows

S f =

∫
Γ

∫
Λ

⟨ f ,EγTλ1⟩EγTλ1 dµΛ(λ) dµΓ(γ)

=

∞∑
i=1

∞∑
j=1

∫
H⊥

∫
H
⟨ f ,EωThTλi Eγ j1⟩EωThTλi Eγ j1 dµH(h) dµH⊥ (ω)

=

∞∑
i=1

∞∑
j=1

∫
H⊥

∫
H
⟨ f ,EωTh1i j⟩EωTh1i j dµH(h) dµH⊥ (ω)

for all f ∈ L2(G) where

1i j = Tλi Eγ j1. (6)

Thus

ZHS f =

∞∑
i=1

∞∑
j=1

∫
H⊥

∫
H
⟨ZH f ,ZH

(
EωTh1i j

)
⟩ZH

(
EωTh1i j

)
dµH(h) dµH⊥ (ω)

=

∞∑
i=1

∞∑
j=1

∫
H⊥

∫
H
⟨ZH f ,Eω,hZH1i j⟩Eω,hZH1i j dµH(h) dµH⊥ (ω)

=

∞∑
i=1

∞∑
j=1

∫
H⊥

∫
H

̂(
ZH f .ZH1i j

)
(h, ω)Eω,hZH1i j dµH(h) dµH⊥ (ω)

=

∞∑
i=1

∞∑
j=1

ZH f .ZH1i j.ZH1i j

=

 ∞∑
i=1

∞∑
j=1

| ZH1i j |
2

ZH f .

The forthcoming theorem, which collects the above computations, shows that the Zak transform on H
diagonalize the Gabor frame operator of {EγTλ1}λ∈Λ,γ∈Γ. Specifically, the spectrum of the Gabor frame
operator equals the range of

∑
∞

i=1
∑
∞

j=1 | ZH1i j |
2.

Theorem 3.3. Let 1, Λ, Γ and S be as the above and there exists a closed subgroup H of G so that

H ≤ Λ, and H⊥ ≤ Γ. (7)

Moreover, assume that ΛH and Γ
H⊥ are countable. Then, we obtain ZHSZ−1

H F =
(∑
∞

i=1
∑
∞

j=1 | ZH1i j |
2
)

F, for all
F ∈ L2(MH).

As a special case of Theorem 3.3 we record the following corollaries.

Corollary 3.4. Let G be an LCA group, 1 ∈ L2(G), H,Λ ≤ G and Γ ≤ Ĝ be closed subgroups. Then,



Z. Hamidi et al. / Filomat 37:18 (2023), 6011–6020 6016

(I) ZH

(
EγTλ1

)
(x, ω) = γ(λ)Eλ,γ(x, ω)ZH1(x, γ + ω), for all λ ∈ Λ, γ ∈ Γ and a.e. (x, ω) ∈ G × Ĝ.

(II) If the closed subgroup H of G satisfies (7), then ZH

(
EγTλ1

)
= Eλ,γZH1, for all λ ∈ Γ⊥ and γ ∈ Λ⊥.

Proof. To show (i), suppose that 1 ∈ L2(G) then

ZH

(
EγTλ1

)
(x, ω) =

∫
H

EγTλ1(x + h)ω(h) dµH(h)

=

∫
H
1(x + h − λ)γ(x)γ(h)ω(h) dµH(h)

=

∫
H
1(x + h)(γ + ω)(h)(γ + ω)(λ)γ(x) dµH(h)

= (γ + ω)(λ)γ(x)ZH1(x, γ + ω)
= γ(λ)Eλ,γ(x, ω)ZH1(x, γ + ω),

for all λ ∈ Λ, γ ∈ Γ, x ∈ G andω ∈ Ĝ. The proof of (ii) is similar, we only note that in the above computations,
we have γ(λ) = γ(h) = 1, for all h ∈ H, λ ∈ Γ⊥, γ ∈ Λ⊥, by using the assumption.

Corollary 3.5. Let 1,Λ, Γ, and H satisfy in conditions of Theorem 3.3, and take the sequence {1i j}
∞

i, j=1 as in (6). Then,
the following statements hold:
(I) {EγTλ1}λ∈Λ,γ∈Γ is a frame for L2(G) if and only if there exist constants A, B so that A ≤

(∑
∞

i=1
∑
∞

j=1 | ZH1i j(x, ω) |2
)
≤

B, for a.e. (x, ω) ∈ G × Ĝ.
(II) {EγTλ1}λ∈Λ,γ∈Γ is a Parseval frame for L2(G) if and only if

∑
∞

i=1
∑
∞

j=1 | ZH1i j(x, ω) |2= 1, for a.e. (x, ω) ∈ G × Ĝ.
(III) {EγTλ1}λ∈Λ,γ∈Γ is an orthonormal basis for L2(G) if and only if ∥1∥L2(G) = 1 and

∑
∞

i=1
∑
∞

j=1 | ZH1i j(x, ω) |2= 1,

for a.e. (x, ω) ∈ G × Ĝ.

Note that Corollary 3.5 and the following Proposition generalize Theorem 11.31 [13] to LCA groups.

Proposition 3.6. Let 1 ∈ L2(G), and H be a closed subgroup of G. Then, the following statements hold:
(I) {EγTλ1}λ∈H,γ∈H⊥ is a complete system in L2(G) if and only if ZH1 , 0, a.e..

(II) If H is a uniform lattice, then {EγTλ1}λ∈H,γ∈H⊥ is a minimal system in L2(G) if and only if
1

ZH1
∈ L2(MH).

Proof. (I); Let ZH1 , 0 a.e., to show the Gabor system {EγTλ1}λ∈H,γ∈H⊥ is complete in L2(G), it is sufficient to
prove {Eλ,γZH1}λ∈H,γ∈H⊥ is complete in L2(MH), by the unitarity of ZH and Lemma 3.2 (II). To this end, let
Φ ∈ L2(MH) such that ⟨Φ,Eλ,γZH1⟩L2(MH) = 0, for all λ ∈ H, γ ∈ H⊥. So we can write∫

G
H

∫
Ĝ

H⊥

Φ(α, β)ZH1(α, β)Eλ,γ(α, β) dµ G
H

(α̇) dµ Ĝ
H⊥

(β̇) = ⟨Φ,Eλ,γZH1⟩L2(MH) = 0,

for all λ ∈ H, γ ∈ H⊥. Since ϕ.ZH1 ∈ L1(MH) and the functions in L1(MH) are uniquely determined by
their Fourier coefficients. Thus, we have Φ.ZH1 = 0, a.e., and by the assumption Φ = 0 a.e., proving the
claim. For the converse, suppose the Gabor system {EγTλ1}λ∈H,γ∈H⊥ is a complete family in L2(G). Then
{Eλ,γZH1}λ∈H,γ∈H⊥ is also complete in L2(MH). On the contrary, let ∆1 = {(α, β) ∈ MH : ZH1(α, β) = 0}
has a positive measure. Put Φ = χ∆1 , that χ∆1 is the characteristic function on ∆1. Then we obtain
⟨Φ,Eλ,γZH1⟩L2(MH) = 0, for all λ ∈ H, γ ∈ H⊥, which is a contradiction. So, ZH1 , 0 a.e..

The proof of (II) is obtained by an adaptive approach of Theorem 11.31 [13].

Remark 3.7. It is worth of note that for the closed subgroups Λ,Γ and H which satisfy (7) we have Γ⊥ × Λ⊥ ⊆
H × H⊥ ⊆ Λ × Γ. So, if ZH , 0 a.e. then the Gabor system {EγTλ1}λ∈Λ,γ∈Γ is complete in L2(G). However, as the
following examples show, the Gabor system {EγTλ1}λ∈Γ⊥,γ∈Λ⊥ is not necessarily complete. Moreover, in the case of

1

ZH1
∈ L2(MH) the Gabor system {EγTλ1}λ∈Λ,γ∈Γ is not minimal, in general.
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Example 3.8. (I) Consider the Gaussian function ϕ(x) = e−πx2 . It has already been proven in [12] that the Gabor
system {EmαTnβϕ}m,n∈Z in L2(R) is complete for αβ ≤ 1 and incomplete for αβ > 1. Moreover, ZαZϕ , 0 a.e. on
[0, α) ×

[
0, 1

α

)
, for all non-zero α ∈ R. Let H = 4Z, Λ = 2Z and Γ = 1

8Z, then the closed subgroups H, Λ and Γ
satisfy (7). So, the Gabor system {EγTλϕ}λ∈H,γ∈H⊥ is complete, and so ZHϕ , 0, a.e., by Proposition 3.6. Although,
the Gabor system {EγTλϕ}γ∈Λ⊥,λ∈Γ⊥ is incomplete.

(II) Fix 0 < α < 1, set 1(x) = |x|α for x ∈
[
−

1
2 ,

1
2

]
. It is known that the system {TnEm1}n,m∈Z is a Schauder basis

for L2(R) (but not Riesz basis for L2(R)), [8]. So this system is minimal and complete. Take Λ = 1
2Z, Γ = 1

4Z and
H = Z, then the closed subgroups H,Λ and Γ satisfy (7). We observe that the Gabor system {EγTλ1}λ∈Λ,γ∈Γ is not
minimal, also the Gabor system {EγTλ1}γ∈Λ⊥,λ∈Γ⊥ is not complete in L2(R).

3.1. The existence conditions
In what follows, for two given closed subgroupsΛ and Γ, we discuss the existence of a closed subgroup

H which satisfies (7) so that the quotient groups ΛH and Γ
H⊥ are countable. We first note that, for every LCA

group G, the condition Γ⊥ ≤ Λ is necessary for the existence of H. Moreover obviously, for countable groups
it can be considered as a necessary and sufficient condition; especially, for finite group G = ZL = {0, ...,L−1},
L ∈N, it is known that a closed subgroup of G is asΛ = NZ L

N
where N ∈N so that N is a divisor of L. Also,

consider the closed subgroups Γ =MZ L
M

and H = RZ L
R

so that M,R ∈N are some divisors of L. In this case
the condition (7) is equivalent to

N | R | L and M | L/R. (8)

More precisely, (8) is the necessary and sufficient condition for the subgroup H = RZ L
R

of G to satisfy (7).

Lemma 3.9. Assume that H ≤ Λ are closed subgroups of G so that ΛH is finite. Then Λ
H �

H⊥
Λ⊥ .

Proof. Applying Proposition 4.2.24 of [19] and the fact that any finite group is self-dual we obtain ΛH �
(̂
Λ
H

)
�

H⊥
Λ⊥ .

Example 3.10. Suppose that G = Qp, the P–adic numbers group, it is known that every non-trivial closed subgroup
H of Qp is open and compact [9, 14]. Hence, G

H is infinite and discrete, consequently for every two non-trivial closed
subgroupsΛ and H of Qp so that H ≤ Λ, the quotient group ΛH is both discrete and compact and so is finite. Similarly,
Γ

H⊥ is finite, for a subgroup Γ ≤ Ĝ. By Lemma 3.9 we have
Γ

H⊥
�

H
Γ⊥

and so
H
Γ⊥

is finite as well. That means every

non-trivial closed subgroup H of Qp with the property Γ⊥ ≤ H ≤ Λ satisfies the condition (7).

Example 3.11. Consider G = R×Zp, where Zp is the group of P–adic integers, and letΛ,Γ be two non-trivial closed
subgroups of G and Ĝ, respectively. SoΛ = αZ×Λ2, for some α ∈ R andΛ2 is a closed subgroup of Zp. We show that
for every closed subgroup H which satisfies Γ⊥ ≤ H ≤ Λ, the quotients ΛH and Γ

H⊥ are finite. Indeed H ≤ Λ ⪇ R × Zp
implies that H = αmZ × H2, for some m ∈ Z and H2 ≤ Λ2 ≤ Zp. Hence a similar discussion as in Example 3.10
assures that Λ2

H2
is finite and consequently

Λ

H
=

αZ
αmZ

×
Λ2

H2

is a finite group. Moreover, Γ⊥ ≤ H ≤ Zp also follows that H
Γ⊥ is finite and so by Lemma 3.9 Γ

H⊥ is finite, as well.

In the sequel, we show that, Γ⊥ ≤ Λ is not a sufficient condition for the existence of the desired H with
countable quotient groups, in general.

Example 3.12. Let G = Rn and Λ = Γ = R × Zn−1. Then Γ⊥ ≤ Λ and for every closed subgroup H so that
Γ⊥ ≤ H ≤ Λ we can write H = H1 ×H2 where H1 ≤ R and H2 ≤ Zn−1. If H1 , R, then H1 = αZ for some α ∈ R.
Thus both ΛH and Γ

H⊥ are uncountable. Moreover, if H1 = R i.e. H = R ×Zn−1 then Γ
H⊥ is uncountable.
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Suppose G is a compactly generated group of Lie type, that is isomorphic to one of the form G = Rn
×

Zm
×Tr
×F for n,m, r ∈N and a finite abelian group F. Consider closed subgroupsΛ = Λ1×Λ2×Λ3×Λ4 ≤ G

and Γ = Γ1 × Γ2 × Γ3 × Γ4 ≤ Ĝ so that Λ1 = Γ1 = R ×Zn−1, and Γi = Λ
⊥

i , for 2 ≤ i ≤ 4. Then for any closed
subgroup H so that Γ⊥ ≤ H ≤ Λwe have that H = H1×Λ2×Λ3×Λ4 and so H⊥ = H⊥1 ×Γ

⊥

2 ×Γ
⊥

3 ×Γ
⊥

4 by lemma
4.2.8 of [19]. Consider H1 < Λ1 = R ×Zn−1, thus by Example 3.12, Γ1

H⊥1
is uncountable and consequently Γ

H⊥

is uncountable, as well.
In the next result, we investigate some sufficient conditions for the existence of subgroup H which

satisfies (7) so that ΛH and Γ
H⊥ are finite or countable.

Theorem 3.13. LetΛ and Γ be subgroups of G and Ĝ, respectively so that Γ⊥ ≤ Λ. Then the following assertions hold;

(I) If Λ and Γ are discrete subgroups, then for every subgroup H such that Γ⊥ ≤ H ≤ Λ, the quotient groups ΛH
and Γ

H⊥ are finite.

(II) If Λ and Γ are open subgroups, then there exists a closed subgroup H which satisfies (7) so that either ΛH or Γ
H⊥

is countable.

(III) If G is totally-disconnected and Λ, Γ are open subgroups, then there exists a compact subgroup H which
satisfies (7) so that both ΛH and Γ

H⊥ are countable.

Proof. (I) Consider a subgroup H of G such that Γ⊥ ≤ H ≤ Λ. Then, the assumption assures that Λ, Γ and H

are uniform lattices. On the other hand, by Proposition 4.2.24 of [19], we have (̂ H⊥
Λ⊥ ) � ΛH and so the duality

relationships of (̂ G
Λ ) � Λ⊥ and Λ̂ � Ĝ

Λ⊥ imply that ΛH is both compact and discrete. Hence ΛH is finite, similarly
the quotient group Γ

H⊥ is finite.

(II) Since Γ is an open subgroup of Ĝ, the duality relation Γ⊥ � (̂ Ĝ
Γ ) implies that Γ⊥ is compact. So, by

proposition 3.1.5 of [19], there exists a unit neighborhood V of e (the identity of G) such that Γ⊥ + V ⊆ Λ.
If we take H := Γ⊥ + ⟨V⟩, where ⟨V⟩ is the subgroup generated by V, then H satisfies (7) and is open in Λ.
Thus, ΛH is discrete and countable but Γ

H⊥ is not necessarily countable. On the other hand, the structure of
V assure that there exists a compact subgroup N of G such that N ⊆ V, [14]. Set H := Γ⊥ + N. Then H is a
compact subgroup of G and Γ⊥ ≤ H ≤ Λ, i.e., H satisfies (7). Moreover,

Ĝ
H⊥
=

Ĝ
Γ ∩N⊥

� ̂(Γ⊥ +N)

is discrete and so countable. Therefore, ΓH⊥ is also countable, but not necessarily Λ
H .

(III) Using the proof of (II) there exists a unit neighborhood V of e so that Γ⊥ + V ⊆ Λ. The assumption
that G is totally-disconnected deduces that there exists an open compact subgroup K so that K ⊆ V, by
Theorem 7.7 of [14]. Put H := Γ⊥ +K. Then H is a compact open subgroup of G and Γ⊥ ≤ H ≤ Λ. Moreover,
H is open in Λ. Thus ΛH is countable. An analogous discussion shows that Γ

H⊥ is countable as well. This
completes the proof.

4. Fibrization method

The fiberization technique is closely related to Zak transform methods in Gabor analysis. Let H be a
closed and co-compact subgroup of G and Ω ⊂ Ĝ be a Borel section of H⊥ in Ĝ, we use the fiberization
mapping which was introduced in [6] T : L2(G) −→ L2(Ω, l2(H⊥)), as follows

T f (ω) = { f̂ (ω + α)}α∈H⊥ , (ω ∈ Ω).

The fiberization is an isometric isomorphic operation as was shown in [6]. Furthermore the frame property
of translation-invariant and Gabor system can be characterized in terms of fibers.
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Theorem 4.1. [16] Let A and B be two positive constants and let H ≤ G be a closed, co-compact subgroup and let
{1p}p∈P ⊆ L2(G), where (P, µP) is an admissible measure space. Then the following assertions are equivalent.

(I) The family {Th1p}h∈H,p∈P is a frame for L2(G) with bounds A and B.

(II) For almost every ω ∈ Ω, the family {T 1p(ω)}p∈P is a frame for l2(H⊥) with bounds A and B, where Ω is a
Borel section of H⊥ in Ĝ.

The next result shows that the frame property of a Gabor system in L2(G) under certain assumptions is
equivalent with the frame property of a family of associated Zak transforms in l2(Ĥ⊥).

Theorem 4.2. Let 1 ∈ L2(G), Λ and Γ be closed subgroups of G and Ĝ respectively and let H be a closed, co-compact
subgroup of G which satisfies (7). Then there exists a sequence {1ku}k∈ ΛH ,u∈

Γ
Λ⊥

in L2(G) such that following assertions
are equivalent.

(I) {EγTλ1}λ∈Λ,γ∈Γ is a frame for L2(G) with bounds A and B.

(II) {ZH⊥ 1̂ku(ω, .)}k∈ ΛH ,u∈ ΓΛ⊥ is a frame for l2(Ĥ⊥) with bounds A and B, for a.e. ω ∈ Ω, where Ω is a Borel section

of H⊥ in Ĝ.

Proof. Since H ≤ Λ, so every λ ∈ Λ can be written uniquely as λ = t+ k where t ∈ H and k ∈ ΛH . Also,Λ⊥ ≤ Γ
implies that every γ ∈ Γ has a unique form such as γ = µ + u where µ ∈ Λ⊥ and u ∈ Γ

Λ⊥ . Thus,

{TλEγ1}λ∈Λ,γ∈Γ = {TtEµ1ku}t∈H,k∈ ΛH ,µ∈Λ
⊥,u∈ Γ

Λ⊥

where G := {1ku} = {TkEu1}k∈ ΛH ,u∈
Γ
Λ⊥

. Therefore, applying the fiberization method along with Theorem 4.1
for co-compact subgroup H of G, the system {TtEµG}t∈H,µ∈Λ⊥ (or equivalently {EγTλ1}λ∈Λ,γ∈Γ) is a frame for
L2(G) if and only if {TEµG(ω)}µ∈Λ⊥ is a frame in l2(H⊥), for a.e ω ∈ Ω where Ω is a Borel section of H⊥ in Ĝ.
On the other hand, we obtain

{TEµG(ω)}µ∈Λ⊥ = {TEµ1ku(ω)}µ∈Λ⊥,k∈ ΛH ,u∈ ΓΛ⊥
= {{Êµ1ku(ω + α)}α∈H⊥ }µ∈Λ⊥,k∈ ΛH ,u∈

Γ
Λ⊥

= {{Tµ1̂ku(ω + α)}α∈H⊥ }µ∈Λ⊥,k∈ ΛH ,u∈
Γ
Λ⊥

= {{1̂ku(ω + α)}α∈H⊥ }k∈ ΛH ,u∈
Γ
Λ⊥
,

where the last equality is due to the assumption (7). Considerψk,u(ω) := {1̂ku(ω+α)}α∈H⊥ for all k ∈ ΛH ,u ∈
Γ
Λ⊥

and a.e ω ∈ Ω. Then the Fourier inversion transform of ψk,u(ω) ∈ l2(H⊥) is as follows

F
−1(ψk,u(ω))(ξ) =

∑
α∈H⊥
1̂ku(ω + α)α(ξ)

= ZH⊥ 1̂ku(ω, ξ)

for all k ∈ Λ
H , u ∈ Γ

Λ⊥ and a.e., ξ ∈ Ĥ⊥ and ω ∈ Ω. Hence, the assertion (I) is equivalent to the system
{ZH⊥ 1̂ku(ω, .)}k∈ ΛH ,u∈ ΓΛ⊥ being a frame for l2(Ĥ⊥), a.e ω ∈ Ω, as required.

In the next corollary, we deduce some connections between the results obtained in [16].

Corollary 4.3. Let 1 ∈ L2(G), Λ be a closed co-compact subgroup of G and Γ be a closed subgroup of Ĝ so that
Γ⊥ ≤ Λ. Then the following assertions are equivalent.

(I) {EγTλ1}λ∈Λ,γ∈Γ is a frame for L2(G) with bounds A and B.
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(II) {1̂(α+γ)}γ∈Γ is a frame for l2(Λ⊥) with bounds A and B, for a.e. α ∈ A, whereA is a Borel section ofΛ⊥ in Ĝ.

(III) A ≤
∫
K

∣∣∣ZΛ⊥ 1̂(α + k, x)
∣∣∣2 dµK (k) ≤ B, for a.e. α ∈ A and x ∈ Λ̂⊥, where A is a Borel section of Λ⊥ in Ĝ,

K ⊂ Γ is a Borel section of Λ⊥ in Γ.

Proof. (I)⇔ (II); We note that (Γ,ΣΓ, µΓ) is an admissible measure space, since Γ is a closed subgroup of Ĝ.
Hence, by Proposition 4.5 in [16], (I) is equivalent to {{1̂(α + γ + y)}y∈Λ⊥ }γ∈Γ = {1̂(α + γ)}γ∈Γ being a frame for
l2(Λ⊥) with bounds A and B, for a.e. α ∈ A, whereA is a Borel section of Λ⊥ in Ĝ.

(I)⇔ (III) Applying the fact thatΛ is co-compact andΛ⊥∩Γ = Λ⊥, it is sufficient to take a Haar measure
µΓ on Γ and a unique Haar measure µ Γ

Λ⊥
on Γ

Λ⊥ so that for all f ∈ L1(Γ) we have∫
Γ

f (x) dµΓ(x) =
∫

Γ
Λ⊥

∑
l∈Λ⊥

f (x + l) dµ Γ
Λ⊥

(ẋ).

In addition, considerK ⊂ Γ a Borel section ofΛ⊥ in Γ and set a measure onK isometric to µΓ/Λ⊥ in the sense
of (3). Then the desired result is obtained by Theorem 4.6 in [16].
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