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Abstract. In this note, we give a definition of suitable sets for rectifiable spaces. We show that every T0

countable rectifiable space has a suitable set.

1. Introduction

Recall that a paratopological group is a group with a topology such that the multiplication on the group
is jointly continuous. A topological group is a paratopological group such that the inverse mapping of G
into itself associating x−1 with x ∈ G is continuous [3]. In [6], M.M. Choban introduced the notion of
rectifiable spaces. A topological space X is said to be a rectifiable space provided that there are a surjective
homeomorphism φ : X ×X→ X ×X and an element e ∈ X such that π1 ◦φ = π1 and φ(x, x) = (x, e) for each
x ∈ X, where π1 : X × X → X is the projection to the first coordinate ([6] and [10]). We call the mapping
φ a rectification of X, the element e is a right unit element [10]. It is clear that every topological group G
is rectifiable by means of the mapping φ(x, y) = (x, xy−1). Thus rectifiable spaces are generalizations of
topological groups. V.V. Uspenskii pointed out that there exists a rectifiable space which is not a topological
group [22].

Every T0 first-countable topological group is metrizable ([3], Theorem 3.3.12). In 1996, A.S. Gul’ko
proved that every T0 first-countable rectifiable space is metrizable ([10], Theorem 3.2). In 2008, A.V.
Arhangel’skii proved that for any Hausdorff topological group G, any remainder bG\G of G in a Hausdorff
compactification bG of G is either pseudocompact or Lindelöf ([1], Theorem 2.4). In 2010, A.V. Arhangel’skii
and M.M. Choban proved that for any Hausdorff compactification bG of an arbitrary Tychonoff rectifiable
space G, the remainder bG\G is either pseudocompact or Lindelöf ([2], Theorem 3.1). In 2011, F.C Lin and
R.X. Shen discussed cardinal invariants, and generalized metric properties on paratopological groups and
rectifiable spaces [15]. In 2012, F.C. Lin, C. Liu and S. Lin proved that a locally compact rectifiable space
with the Souslin property is σ-compact ([14], Theorem 4.3). In 2012, L.-X. Peng and S.-J. Guo proved that
every rectifiable p-space with a countable Souslin number is Lindelöf [18]. In 2015, F.C. Lin, J. Zhang and
K.X. Zhang proved that each locally compact Hausdorff rectifiable space is paracompact [17]. In 2015,
L.-X. Peng and D.-Z. Kong proved that the family of (topological) cofinalities of elements of a rectifiable
GO-space has at most one infinite element [19].
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Hoffmann and Morris introduced the notion of a suitable set for topological groups and proved that
every locally compact Hausdorff topological group has a suitable set [12]. Recall that a subset S of a
topological group G is said to be a suitable set if (a) it has the discrete topology, (b) it is a closed subset of
G\{1} and (c) the subgroup generated by S is dense in G ([8] and [12]), where 1 is the identity of G. In [8], it
was proved that every metrizable topological group and every countable Hausdorff topological group has
a suitable set. In [11], Guran studied suitable sets for paratopological groups. Later, F.C. Lin, A. Ravsky
and T.T. Shi discussed when paratopological groups of different classes have suitable sets [13].

The notion of a gyrogroup was introduced by A.A. Ungar [20] in 2002 as a generalization of a group.
In 2017, W. Atiponrat [4] introduced the concept of topological gyrogroups, which is a generalization of
a topological group. Namely, a topological gyrogroup G is a gyrogroup (G,⊕) endowed with a topology
such that the multiplication map ⊕ : G × G → G is jointly continuous and the inverse map ⊖ : G → G is
continuous. Z.Y. Cai, S. Lin and W. He proved that every topological gyrogroup is a rectifiable space ([5], in
the proof of Theorem 2.3). Thus every topological group is a topological gyrogroup and every topological
gyrogroup is a rectifiable space. In 2020, F.C. Lin, T.T. Shi and M. Bao proved that each countable Hausdorff
topological gyrogroup has a suitable set ([16], Theorem 3.3).

In this note, we give a definition of suitable sets for rectifiable spaces (see Definition 2.9) and prove that
every T0 countable rectifiable space has a suitable set.

The set of all positive integers is denoted byN and ω isN ∪ {0}. In notation and terminology we will
follow [9]. Every regular space satisfies T1 and T3.

2. Main results

Lemma 2.1. ([7], [10], [21]) A topological space G is rectifiable if and only if there are two continuous mappings
p : G2

→ G, q : G2
→ G such that for any x ∈ G, y ∈ G and some e ∈ G the next identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y, q(x, x) = e.

Lemma 2.2. A topological space G is rectifiable if and only if there are two continuous open mappings p : G2
→

G, q : G2
→ G such that for any x ∈ G, y ∈ G and some e ∈ G the next identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y, q(x, x) = e.

Proof. The sufficiency follows from Lemma 2.1. To assist the reader, we give an explication for the necessity.
Let φ : G2

→ G2 be a rectification. Let p = π2 ◦ φ−1, q = π2 ◦ φ, where π2 : G2
→ G is the projection to the

second coordinate. Since the mappings φ−1, φ, π2 are open and continuous, the mappings p and q are open
and continuous.

In what follows, in discussing a rectifiable space, we let p and q denote the two continuous open
mappings appearing in Lemma 2.2. If G is a rectifiable space and A,B ⊂ G, then we denote p(A × B) and
q(A × B) by p(A,B) and q(A,B), respectively.

Notation 2.3. If S is a nonempty subset of a rectifiable space G, then let S0 = S, S1 = S∪ {p(a, b), q(a, b) : a, b ∈
S0}, Sn+1 = {p(a, b), q(a, b) : a, b ∈ Sn} for every n ≥ 1. Denote ⟨S⟩ =

⋃
{Sn : n ∈ ω}. If S = {a1, ..., am} for some

m ∈N, then denote Sn by {a1, ..., am}n.

Proposition 2.4. If S is a nonempty subset of a rectifiable space G, then Sn ⊂ Sn+1 for every n ∈ ω and p(⟨S⟩, ⟨S⟩) ⊂
⟨S⟩, q(⟨S⟩, ⟨S⟩) ⊂ ⟨S⟩, e ∈ S1 ⊂ ⟨S⟩.

Proof. It is obvious S0 ⊂ S1. Since q(x, x) = e for every x ∈ S0, we have e ∈ S1. Let n ∈ N. Since q(x, x) = e
for every x ∈ Sn−1, the point e = q(x, x) ∈ Sn. Assume Si ⊂ Si+1 for each i < n. Since e ∈ Sn and p(x, e) = x
for every x ∈ Sn, we have x = p(x, e) ∈ Sn+1 for every x ∈ Sn. Then Sn ⊂ Sn+1. If a, b ∈ ⟨S⟩, then there exist
n,m ∈ ω, such that a ∈ Sn, b ∈ Sm. We assume that n ≤ m. Then a, b ∈ Sm. Thus p(a, b) ∈ Sm+1 ⊂ ⟨S⟩ and
q(a, b) ∈ Sm+1 ⊂ ⟨S⟩. Thus p(⟨S⟩, ⟨S⟩) ⊂ ⟨S⟩ and q(⟨S⟩, ⟨S⟩) ⊂ ⟨S⟩.
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Lemma 2.5. ([18], Lemma 2.6) Let G be a rectifiable space. If A ⊂ G and V is an open neighborhood of the right
neutral element e of G, then A ⊂ p(A,V).

Lemma 2.6. Let G be a rectifiable space. If S is an open subspace of G, then ⟨S⟩ is clopen in G.

Proof. Since S is open, it follows from Lemma 2.2 that p(S,S) and q(S,S) are open subspaces of G. Thus
S1 = S ∪ {p(a, b), q(a, b) : a, b ∈ S} = S ∪ p(S,S) ∪ q(S,S) is open in G. Let n ∈ N. Assume that Si is open for
each i ≤ n. By Proposition 2.4, e ∈ S1 ⊂ Sn ⊂ ⟨S⟩, where e is the right neutral element of G. By Lemma 2.2,
the mappings p and q are open. Then Sn+1 = {p(a, b), q(a, b) : a, b ∈ Sn} = p(Sn,Sn) ∪ q(Sn,Sn) is open in G.
Thus ⟨S⟩ is open and e ∈ ⟨S⟩. By Lemma 2.5, ⟨S⟩ ⊂ p(⟨S⟩, ⟨S⟩). By Proposition 2.4, p(⟨S⟩, ⟨S⟩) ⊂ ⟨S⟩. Thus
⟨S⟩ = ⟨S⟩. Then ⟨S⟩ is clopen in G.

Lemma 2.7. Let G be a rectifiable space and S ⊂ G. If n ∈ N and x ∈ Sn, then there exist an open continuous
mapping lx : G2n

→ G and ai ∈ S for each i ≤ 2n such that lx(a1, ..., a2n ) = x with the following property:
If Ox is an open neighborhood of x, then there exists an open neighborhood Wi of ai for each i ≤ 2n such that
lx(
∏

1≤i≤2n
Wi) ⊂ Ox ∩ ⟨

⋃
{Wi : i ≤ 2n

}⟩.

Proof. We prove it by induction. If x ∈ S1, then x ∈ S or there exist a, b ∈ S such that x = p(a, b) or x = q(a, b).
Case 1. x ∈ S. Then denote lx : G × G → G be the usual projection to the first coordinate. Thus lx is an

open continuous mapping. If Ox is any open neighborhood of the point x, then we let Wi = Ox for i = 1, 2.
Then lx(W1 ×W2) =W1. Since by Proposition 2.4 W1 ⊂ ⟨W1⟩, we have lx(W1 ×W2) ⊂ Ox ∩ ⟨W1 ∪W2⟩.

Case 2. Now we assume x = p(a, b) or x = q(a, b) for some points a, b ∈ S. We just prove the case of
x = p(a, b), the proof of the other case is similar. Since x ∈ Ox and Ox is open, there exist open sets Oa, Ob of
G such that a ∈ Oa, b ∈ Ob and x ∈ p(Oa × Ob) = p(Oa,Ob) ⊂ Ox. If lx = p, then the mapping lx is open and
continuous such that x ∈ lx(Oa ×Ob) ⊂ Ox ∩ ⟨Oa ∪Ob⟩.

Let n ∈ N. Assume that the result holds for each i ≤ n. Now let x ∈ Sn+1. By the definition of Sn+1,
there exist b, d ∈ Sn such that x = p(b, d) or x = q(b, d). Without loss of generality, we assume that x = p(b, d).
Since b, d ∈ Sn, by assumption there exist open continuous mappings lb : G2n

→ G, ld : G2n
→ G and points

b1, ..., b2n ∈ S, d1, ..., d2n ∈ S such that b = lb(b1, ..., b2n ), d = ld(d1, ..., d2n ) and the property of this result holds.
For each i ≤ 2n+1,

let ai =

bi, i ≤ 2n;

di−2n , 2n < i ≤ 2n+1.

Then x = p(b, d) = p(lb(b1, ..., b2n ), ld(d1, ..., d2n )). Let lx : G2n+1
→ G be a mapping from G2n+1

to G such that
lx(y1, ..., y2n+1 )= p(lb(y1, ..., y2n ), ld(y2n+1, ..., y2n+1 )) for each (y1, ..., y2n+1 ) ∈ G2n+1

. Since the mappings p, lb and ld
are open and continuous, the mapping lx : G2n+1

→ G is open and continuous such that lx(a1, ..., a2n+1 ) = x
and {a1, ..., a2n+1 } ⊂ S.

Let Ox be any open neighborhood of x. Since the mapping p is continuous, there exist open neighbor-
hoods Ob and Od of b and d, respectively, such that p(Ob,Od) ⊂ Ox. Since lb(b1, ..., b2n ) = b and b ∈ Ob, there
exists an open neighborhood Wi of bi for each 1 ≤ i ≤ 2n such that lb(

∏
1≤i≤2n

Wi) ⊂ Ob ∩ ⟨
⋃
{Wi : 1 ≤ i ≤ 2n

}⟩.

Since ld(d1, ..., d2n ) = d and d ∈ Od, there exists an open neighborhood Wi+2n of di for each 1 ≤ i ≤ 2n such
that ld(

∏
1+2n≤i≤2n+1

Wi) ⊂ Od ∩ ⟨
⋃
{Wi+2n : 1 ≤ i ≤ 2n

}⟩.

Since the mapping lx satisfies lx(y1, ..., y2n+1 ) = p(lb(y1, ..., y2n ), ld(y2n+1, ..., y2n+1 )) for each (y1, ..., y2n+1 ) ∈
G2n+1

, we have lx(
∏

1≤i≤2n+1
Wi) = p(lb(

∏
1≤i≤2n

Wi), ld(
∏

1+2n≤i≤2n+1
Wi)). Since lb(

∏
1≤i≤2n

Wi) ⊂ Ob ∩ ⟨
⋃
{Wi : 1 ≤ i ≤

2n
}⟩ and ld(

∏
1+2n≤i≤2n+1

Wi) ⊂ Od ∩ ⟨
⋃
{Wi+2n : 1 ≤ i ≤ 2n

}⟩ and p(Ob,Od) ⊂ Ox, we have lx(
∏

1≤i≤2n+1
Wi) =

p(lb(
∏

1≤i≤2n
Wi), ld(

∏
1+2n≤i≤2n+1

Wi)) ⊂ Ox ∩ ⟨
⋃
{Wi : 1 ≤ i ≤ 2n+1

}⟩.

Lemma 2.8. Let G be a rectifiable space and S ⊂ G. If n ∈ N and x ∈ Sn, then there exist a1, ..., a2n ∈ S such that
x ∈ {a1, ..., a2n }n.
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Proof. Case 1. n = 1. If x ∈ S, then x ∈ {x, x}1 = {x} ∪ {p(x, x), e}. Now we assume that x ∈ S1\S. Then there
exist a, b ∈ S such that x = p(a, b) or x = q(a, b). Then x ∈ {a, b}1.

Case 2. Let m ∈ N. Suppose that for every n ≤ m and every x ∈ Sn, there exists {a1, ..., a2n } ⊂ S such that
x ∈ {a1, ..., a2n }n.

Case 3. Now we assume that x ∈ Sm+1. Then there exist b, d ∈ Sm such that x = p(b, d) or x =
q(b, d). Without loss of generality, we assume x = p(b, d). By induction, there exist {b1, ..., b2m } ⊂ S and
{d1, ..., d2m } ⊂ S such that b ∈ {b1, ..., b2m }m and d ∈ {d1, ..., d2m }m. Since x = p(b, d), the point x ∈ {b, d}1. Hence
x ∈ {b1, ..., b2m , d1, ..., d2m }m+1 and {b1, ..., b2m , d1, ..., d2m } ⊂ S.

Definition 2.9. A subset S of a rectifiable space G is said to be a suitable set for G if (a) it has the discrete
topology, (b) it is a closed subset of G\{e} and (c) the set ⟨S⟩ is dense in G, where e is the right neutral element
of G.

Proposition 2.10. If G is a rectifiable space and has a suitable set S, then G is a T1-space or G = ⟨S⟩ is a two-point
set.

Proof. Since S is a suitable set for X, it follows that (a) S has the discrete topology, (b) S is a closed subset of
G\{e} and (c) the set ⟨S⟩ is dense in G, where e is the right neutral element of G. Since S is a discrete subspace
of G and S ∪ {e} is closed in G, {x} ⊂ {x, e} for every x ∈ S. If there exists some x ∈ S such that {x} = {x}, then
G is a T1-space following from that every rectifiable space is homogeneous. Now we assume that {x} , {x}
for every x ∈ S and {e} , {e}. Then {e} = {x, e} for every x ∈ S. Let x0 ∈ S. Then {x0} = {x0, e} and {e} = {x, e}
for every x ∈ S. Thus x = x0 or x = e for every x ∈ S. Since {e} = {x0, e} and the mapping p is continuous,
p(e, x0) ∈ p({e} × {x0}) ⊂ p({e} × {e}) ⊂ {p(e, e)} = {e}. Similarly, q(e, x0) ∈ {e}. Since the mapping p is continuous
and e, x0 ∈ {e}, we have p(x0, e) ∈ {e} and q(x0, e) ∈ {e}. We also know that p(x0, e) = x0. Then ⟨S⟩ ⊂ {x0, e} = {e}.
Thus G = ⟨S⟩ is a two-point set.

Theorem 2.11. If G is a non-T1 rectifiable space with at least three elements, then G does not have a suitable set.

Proof. Suppose G has a suitable set S. By Proposition 2.10, G is a T1-space or G = ⟨S⟩ is a two-point set.
Since |G| ≥ 3, it follows from Proposition 2.10 that the space G is a T1-space. A contradiction.

Corollary 2.12. If G is rectifiable space such that |G| ≥ 3 and has a suitable set, then G is a regular space.

Proof. By Corollary 2.2 in [10], every rectifiable space is a T3-space. Since |G| ≥ 3 and the rectifiable space G
has a suitable set, it follows from Theorem 2.11 that G is a T1-space. Thus G is a regular space.

Recall that a topological space is said to be 0-dimensional if it has a basis of clopen subsets.

Lemma 2.13. Let G be a non-discrete rectifiable T1-space and let U be a non-empty open subset of G such that
G = ⟨U⟩. Then for every point x ∈ U there exists an open neighborhood Vx of x such that x ∈ Vx ⊂ U and
⟨U\Vx⟩ = G. Further, if G is 0-dimensional, then Vx can be chosen to be clopen in G.

Proof. Let x be any point of U. Since G is a T1-space, the set S = U\{x} is open in G. If x = e, where e is the
right neutral element of G, then q(y, y) = e for any y ∈ S. Thus ⟨S⟩ = ⟨U⟩ = G.

Now we assume that x , e. Since G is non-discrete, the point x is not an isolated point of G. Then
x ∈ S. Since S ⊂ ⟨S⟩ and by Lemma 2.6 ⟨S⟩ is clopen, we have x ∈ S ⊂ ⟨S⟩. Thus ⟨S⟩ = ⟨U⟩ = G. Then
there exists n ∈ N such that x ∈ Sn (see Notation 2.3). Since S is open and the mappings p and q are open,
the set Sn is open. Since x ∈ Sn, it follows from Lemma 2.7 that there exist an open continuous mapping
lx : G2n

→ G and ai ∈ S for each i ≤ 2n such that lx(a1, ..., a2n ) = x. Since G is a T1-space and x < {ai : i ≤ 2n
},

there exists an open set Ox such that x ∈ Ox and Ox ∩ {ai : i ≤ 2n
} = ∅. By Corollary 2.2 in [10], G is a

regular space. Then there exists an open neighborhood V∗x of x such that x ∈ V∗x ⊂ V∗x ⊂ U ∩ Ox ∩ Sn. By
Lemma 2.7, for each i ≤ 2n there exists an open neighborhood Wi of ai such that Wi ⊂ U, Wi ∩ V∗x = ∅
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and x ∈ lx(
∏

1≤i≤2n
Wi) ⊂ V∗x ∩ ⟨

⋃
{Wi : 1 ≤ i ≤ 2n

}⟩. Since the mapping lx is open, the set lx(
∏

1≤i≤2n
Wi)

is open. Then there exists an open neighborhood Vx of x such that x ∈ Vx ⊂ Vx ⊂ lx(
∏

1≤i≤2n
Wi). Then

Vx ⊂ V∗x ∩ ⟨
⋃
{Wi : 1 ≤ i ≤ 2n

}⟩. Since
⋃
{Wi : 1 ≤ i ≤ 2n

} ⊂ G\V∗x ⊂ G\Vx, we have ⟨U\Vx⟩ = ⟨U⟩ = G. The
last statement of the lemma is obvious.

Lemma 2.14. ([9], Theorem 6.2.6 and Corollary 6.2.8) Every countable regular space is 0-dimensional.

Theorem 2.15. Every countable rectifiable T0-space G has a closed discrete subset S such that ⟨S⟩ = G. In particular,
S is a suitable set for G.

Proof. By Corollary 2.2 in [10], every rectifiable space satisfies T3 separation axiom. Since every T0-space
satisfying T3 separation axiom is regular, the rectifiable T0-space G is regular.

If G is discrete or there exists a finite subset F of G such that G = ⟨F⟩ (in this case, G is called finitely
generated), then the claim is trivial. Now we assume that G is neither discrete nor finitely generated.

Let G = {1n : n < ω}. It suffices to find a subset S of G such that ⟨S⟩ = G and, for each n < ω, an open
neighborhood Un of 1n such that Un ∩ S is finite.

For this it will suffice to find for each n < ω a clopen set Vn in G and a finite set An ⊂ G such that the
following conditions hold:

(1) 1n ∈ V0 ∪ V1 ∪ ... ∪ Vn;
(2) G = ⟨G\(V0 ∪ V1 ∪ ... ∪ Vn)⟩;
(3) for n > 0, Vn ⊂ G\(V0 ∪ V1 ∪ ... ∪ Vn−1);
(4) Vi ∩ An = ∅, for i < n;
(5) 1n ∈ ⟨A0 ∪ A1 ∪ ... ∪ An⟩.

That the above suffices is clear by putting Un = V0 ∪V1 ∪ ...∪Vn and S =
⋃

n<ω An. We shall define the sets
An and Vn inductively.

Put A0 = {10}. Since G is a countable regular space, it follows Lemma 2.14 that G is 0-dimensional. By
Lemma 2.13, there exists a clopen neighborhood V0 of 10 such that G = ⟨G\V0⟩.

Now assume that k ∈ ω and there exist finite sets A0,A1, ...,Ak and clopen sets V0,V1, ...,Vk which have
the above properties (1)-(5) for each n ≤ k. If 1k+1 ∈ ⟨A0 ∪ A1 ∪ ... ∪ Ak⟩, put Ak+1 = ∅. Now we assume
1k+1 < ⟨A0 ∪ A1 ∪ ... ∪ Ak⟩. By (2), G = ⟨G\(V0 ∪ V1 ∪ ... ∪ Vk)⟩. If S = G\(V0 ∪ V1 ∪ ... ∪ Vk), then there
exists n ∈ N such that 1k+1 ∈ Sn (see Notation 2.3). By Lemma 2.8, there exist y1, y2, ..., y2n ∈ S such that
1k+1 ∈ {y1, y2, ..., y2n }n. Put Ak+1 = {y1, y2, ..., y2n }. Then Vi ∩ Ak+1 = ∅ for i ≤ k and 1k+1 ∈ ⟨A0 ∪ A1 ∪ ... ∪ Ak⟩.

Now if 1k+1 ∈ V0 ∪ ... ∪ Vk, put Vk+1 = ∅. If 1k+1 < V0 ∪ ... ∪ Vk, then by Lemma 2.13 there exists a
clopen neighborhood Vk+1 of 1k+1 such that Vk+1 ⊂ G\(V0 ∪ ...∪Vk) and G = ⟨G\(V0 ∪V1 ∪ ...∪Vk+1)⟩. Then
conditions (1)-(3) are satisfied in both cases.

By induction, the sets An and Vn can be defined for all n with the required properties, which complete
the proof.
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