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On the partial boundary value condition basing on the diffusion
coefficient

Qitong Ou?
#School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, Fujian 361024, China

Abstract. The paper follows with interest in a nonlinear parabolic equation coming from the electrorheo-
logical fluid

N
up = div(a(x)|VuP®2Vu) + Z W

i=1

with a(x) being positive in Q). We study the well-posedness problem of the equation under the condition
bi(-,x,t) = 0 on the partial boundary dQ \ L, for every i = 1,2,--- ,N, where I;

= {x € dQ : a(x) > 0}.
The stability of the weak solutions is obtained only basing on a partial boundary value condition u(x, t) =
0,(x,t) € X1 x(0,T).

1. Introduction

In recent years, the initial-boundary value problem of the electrorheological fluid equation [1, 21, 24]
uy — div((VulPY72Vu) = 0, (x,t) € Qr = Q x (0,T),

1)
has been studied widely, one can refer to [2, 3, 26] and the references therein. Here QQ C RY is a bounded
domain with suitably smooth boundary dQ, 1 < p(x) € C}(Q), and

+ _ - —mi .
p —mgx;ﬂ(x), p m(_;np(x)

Of course, if p(x) = p, equation (1) becomes

uy = div(\Vul~Vu) = 0, (x,t) € Qr,

(2)
which emerges in the non-Newtonian fluids mechanics theory and is called the evolutionary p— Laplacian
equation [2, 16, 22, 27, 28].
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In this paper, we generalize equation (1) to the following type

al ob;(u, x, t)
uy = div@(VuP 2 Vu) + ) T, () € Qr, (3)

i=1

where the nonnegative function a(x) € C! (Q) and a(x) > 0in Q, bi(s, x, t) € CY(R X ET) is bounded when |s| is
bounded, i =1,2,---,N. In order to study the well-posedness of weak solutions to equation (3), the initial
value

u(x,0) = up(x), x € Q 4)

is always indispensable. Since a(x) may be degenerate on the boundary dQ), the Dirichlet boundary value
condition

u(x,t) = 0, (x,) € 9Q x (0, T) )

may be overdetermined.
To see that, we can review some backgrounds. Firstly, we consider a linear degenerate equation

du_

5~ diva()Vu) — (D +c(x,hu = g(x, 1), (x,1) € Qr, (6)
where a(x), fi(x), c(x, t) and g(x, t) are smooth functions, D; = &ix,-’ a(x) = 0. We can rewrite it as
(;—l; —a(x)Au — (ay,(x) + fi(x))Diu + c(x, yu = g(x, t), (x,t) € Qr. (7)

According to Fichera-Oleinik theory [9, 23], besides the initial value condition (4), only a partial boundary
value condition
u(x,t) =0,(x,t) € £, x(0,T) (8)
matches up with equation (7), where
Ly, = {x € dQ: fi(x)ni(x) < 0} U {x € dQ : a(x) > 0}
and 77 = {n;} is the inner normal vector of Q. In particular, if fj(x)n;(x) > 0 and a(x) = 0 for all x € JQ), then
I, =0.

This implies that, to obtain the well-posedness of the solutions to equation (7), the boundary value condition
is dispensable in this case.
Secondly, we consider the equation

ou

ot
where 8 > 0, d(x) = dist(x, JQ) is the distance function from the boundary. If f(x,t,u) is a Lipchitz function,
then the stability of solutions to (9) was proved without any boundary value conditions [31]. Thus, the
boundary value condition (5) may be replaced by the degeneracy of d*. However, if f(x,t, u) is not a Lipchitz
function, the situation may change. In fact, Jiff Benedikt et.al [4, 5] had shown that the uniqueness of the
solution to the following equation

div(d|VulP>Vu) + f(x,t,u), (x,t) € Qr, 9)

Uy = div(IVul’”_ZVu) + q(x)lul“’lu, (x,t) € Qr (10)

is not true, where 0 < o < 1, g(x) > 0 and g(xp) > 0 for some x( € Q.

From the above brief reviews, we can say that how to give a suitable boundary condition matching a
nonlinear parabolic equation is a difficult but very important problem, one can refer to [2, 7, 8, 10-14, 17, 19]
and [29]-[35] et. al. for more information. In this paper, we will give the explicit formula X, and obtain the
stability of the solutions based on the partial boundary value condition (8), provided that b;(-,x,t) = 0 on
the boundary.
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2. The basic concepts and the main results

Let us introduce the basic functional spaces with variable exponents, for more details, see [9, 15, 36]
et.al.
1. LF®(Q) space.

rYQ) = {u tu is a measurable real — valued function, f [u(x)PWdx < oo} ,
Q

it is equipped with the following Luxemburg’s norm

X X
WMMQVJM{A>O\f) O ) 1 s1}

The space (U’(")(Q), ILII Lp(x)(g)) is a separable, uniformly convex Banach space.
2. WPO(Q) space.

WOQ) = {u € F9(Q) : [Vul € PD(Q)},
it is endowed with the following norm
lullwroer = etllppeo iy + IVttllppo iy, Y € WHPO(Q).
We use Wé’p ®(Q) to denote the closure of C(QQ) in WP(Q).

Lemma 2.1. (i) The space (U’(" Q)11 W(Q)) (W1 POQ), | - [y, ﬂ(x)(Q)) and Wl’p (x)(Q) are reflexive Banach spaces.
(ii) p(x)-Holder’s inequality. Let q1(x) and qa(x) be real functions with —— o (x) = 1and g1(x) > 1. Then, the
conjugate space of L(Q) is LEM(Q). If u € L1™(Q) and v € L2W(Q), then

f uvdx
Q

(ii)

< 2||u”L‘71(X)(())||v||L'12(X)(Q)~

If lullpo ) = 1, then f P @dx = 1.
If oy > 1, then [l ) < f POy <l .

If oy < 1, then [l ) < f P <l .
In [36], Zhikov showed that

Wo"(Q) # fo € W™ (Q) | 0l = 0)
= W@ (Q).
Hence, the property of the space is different from the case when p is a constant. This fact implies that the
general methods used in studying the well-posedness of weak solutions to the evolutionary p—Laplacian

equation can not be used directly. However, if the exponent p(x) satisfies the logarithmic Holder continuity
condition, i.e.

p(x) —p)l < w(x—yl),Vx,y€Q, x—yl< %, h_%} w(s) ln(é) =c< oo,
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then

WP Q) = WIPO(Q).
Moreover, for any u € WLP@(Q)), if u, is the mollified function of 1, then by [19], we know that

Vel < cllVullpo q)-

Now, we introduce the basic definitions and main results of this paper.

Definition 2.2. A function u(x, t) is said to be a weak solution of equation (3) with the initial value (4), if

u € L¥(Qr), a(x) Vul™ € L'(Qr), us € L*(Qr), (1)

and for any function @ € L*(0, T; Wé’p ") NL2Qn,

ff {ut(p +a(x)|VulPY2Vu - Vo + Zb (u,x,1) - @y, |dxdt = 0. (12)
Qr
Moreover,
limf | u(x,t) — up(x) | dx = 0. (13)
t—0 Q

Definition 2.3. A function u(x, t) is said to be a weak solution of equation (3) with (4) and (5), if u satisfies Definition
2.2 and the partial boundary condition (8) in the sense of the trace.

When foa_ﬂ(*il)*l dx < ¢, we can show that f er |[Vuldxdt < c. Then we can define the trace of u on the

boundary dQ, so the partial boundary condition (8) is feasible.
The main results of the paper are the following stability theorems, in which the exponent p(x) is required
to satisfy the logarithmic Holder continuity condition unexceptionally.

Theorem 2.4. Let
Y1 ={x€dQ:a(x) >0},

u(x, t), v(x, t) be two solutions of equation (3) with the initial values uy(x), vo(x) respectively, and with the same partial
boundary value condition

u(x, t) =o(x,t) =0, (x,t) € 1 X (0, T). (14)
If for large enough n,

nl = ( f |Va(x)|”(")dx) <c (15)

Q\Q,

1bi(u, ,£) = bi(o, %, B)] < ca(@) 0 |u —ol, (16)
then

f lu(x, t) — v(x, t)|dx < f |u(x, 0) — v(x, 0)|dx. (17)

Q Q

Here, Q, = {x € Q : a(x) > 1}
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Theorem 2.5. Let u(x, t) and v(x, t) be two weak solutions of equation (3) with the different initial values uy(x), vo(x)
respectively, and with the same partial boundary value condition

u(x, t) =o(x,t) =0, (x,t) € Z1 X (0, T). (18)
If
Va(x) =0, x € X, = dQ\ L4, (19)

and for small A > 0,
f a(x) PO\ VaPWdx < ¢, (20)
O\Q,
and bj(s, x, t) satisfies
Ibi(, x, 1) — bi(v, x, B < ca(x)7® u — v, (21)
then
hfwmemmwsjﬁmm—mmw. @)
Q Q

Here Q) ={x € Q:a(x) > A}.

3. The existence

At the beginning of this section, we would like to point out that the conditions in the following Theorem
3.1 are not optimal, we only supply an existence result to assure the completeness of the paper.

p(x)-2

Theorem 3.1. Ifp~ > 2 and fQ a~"7 (x)dx < c, there are constants B, c such that

Ibi(s, x, ) < clsI™*,  Ibis(s, x, D] < clsl’,

bix, (s, %, )| < cls"*F, (23)
and ug satisfies
up € L(Q),  a(x)[Vuol”" € LY(Q), (24)

then there exists a solution of equation (3) with initial value condition (4), where b;s = %, biy, = %, i=1,2,---,N.

Proof. Letu.o € Cy(€2) and a(x) |Vu£,o|p+ € L}(Q) be uniformly bounded, and u, o converges to 1 in Wé’p+ (Q).
By considering the following approximate problem

. 2 p)-2 al obi(ue, x,t)
ug — div((a(x) + e)(|Vue|" + &) 2 Vu,) - Z oy - 0, (x,t) € Qr, (25)
i=1 !
u:(x,t) =0, (x,t) € QA% (0,7T), (26)
u:(x,0) = ue0(x), x € Q. (27)

It is well-known that the above problem has a unique weak solution ([20, 26])

u € L5Qn) [ |L'O, T WY (@), el <. (28)
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Multiplying (23) by u, and integrating it over Qr, it 's easy to prove that

ff (a(x) + &)|Vu PPdxdt < c.

Multiplying (25) by u,; and integrating it over Qr, then

ff (ugr)*dxdt = ff div((a(x) + €)(\Vu > + e)mxifVug) - Ugpdxdt
T Qr

+ff ugt—&bi(g;x't)dxdt.

1d |Vu{(x,t)|2+£
24t J,

Noticing that

p)-2
s 2 ds.

(Vi + &)F Vi, - Vit =
Thus,
fj; div((a(x) + e)(|Vue|* + s)%Vug)ustdxdt
v
=- f f (@(x) + &) (Ve + &) 5 Vau, - Vit

2, .
1 H d (Vi (x )" +& )2
== @(x) + &)= f s 7 dsdxdt.

By (23) and (28),

ff ugtabi(uwx, t)dxdt
QT axl‘
N [ [y e e
Qr Qr
<L f f (ugr)?dxdt + ¢ f f || |V | dxdt
4 Qr Qr
1

+—f (uer)*dxdt + cf | PPHY dxdt
4 Qr Qr
1

(x)-2

By Holder’s inequality, (28) and fQ a7 (¥)dx < ¢ yield

f f 1| Ve, |? dxdt
Qr

<c f Vi |2 dxdt = ¢ f (@(x) + )7 - (a(x) + &) 7 Vi, P dxdt
Qr Qr

< c( f (a(x) + e)‘mﬁ-zdxdt)m : ( f @(x) + &) [Vu @ dxdt)
Qr Qr

<c.

m

<= f (ue)?dxdt + ¢ f [ |Vu£|2dxdt+1 f (1) >dxdt + c.
4 Qr Qr 4 Qr

5984

(29)

(30)

(31)

(32)

(33)



Q. Ou / Filomat 37:18 (2023), 5979-5992 5985

px)-2 p)-2

Here m = max 5 o OF min, 5 e according to (iii) of Lemma 2.1, m; = max, g5 r% or min 5 ’% has
the same meaning.
Combining (30)-(33), we have
4 (Ve
ff (ugr)*dxdt + f (a(x) + S)E f s 2 dsdxdt <c,
Qr Qr 0
by which implies that
ff (uer)?dxdt < ¢ + cf(a(x) + ¢) |Vu€,0|p(x) dx <c. (34)
Qr Q

By choosing a subsequence, letting ¢ — 0, we may obtain u, — u a.e. in Qr,where u satisfies (12).
Meanwhile, we can show (13) in a similar way as that of the usual evolutionary p—Laplacian equation ( see
Ref. [22]). Then u is the solution of equation (3) with the initial value (4) in the sense of Definition 2.2. [J

Lemma 3.2. Assume that fQ AT dx < c, let u(x, t) be the solution of equation (3) with the initial value (4). Then
f [Vuldx < c. (35)
0

__1
Proof. Since |.a "™-dx < ¢, we have
Q

f |Vu|dx = f . |Vu|dx + f . |Vu| dx
Q {xeQ;aP™-1|Vy|<1} {x€QaP®-1 | Vy|>1}

<fa_ﬂ<xl)1dx+fa|Vu|”(x)dx
0 Q

<c.

Lemma (3.2) is proved. O

By (35), the trace of u(x, t) on the boundary dQ can be defined in the traditional way.
Since fo a5 (x)dx < c implies j;) A dx < ¢, we have

Theorem 3.3. If the conditions of Theorem 3.1 are true, then there is a solution of equation (3) with the usual
initial-boundary conditions (4),(5)(or(8)).

From the proof of Theorem 3.1, one can see that the condition fQ a‘p(xzj(x)dx < c and the assumption
of (23) are only used to prove u; € L*(Qr). If one relaxes the regularity of u;, p~ > 2 can be generalized to
p~ > 1. Also, one can relaxes the condition fQ a‘w (x)dx < ¢, for instance, we have the following theorem.

Theorem 3.4. If p~ > 2, uy(x) satisfies (24), and

Ibis(s, %, D] < car®d, |bi, (s, %, )| < card, (36)

then there is a solution of equation (3) with initial value (4).
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4. The proof of Theorem 2.4

For any given positive integer #, let g,(s) be an odd function, and

1, s|> 1,
gn(s>={ s> 5

ns, 0<s<;.
Clearly,
21_1;1;10 gn(s) = sgn(s),s € (=00, +00),
and

lim sg,,(s) = 0. (37)

Denoting that X1 = {x € dJQ : a(x) > 0} and X, = {x € JQ : a(x) = 0}. Let ¢(x) be a CY(Q) function
satisfying
O hera= 0, 6() lucgps,> 0, (38)

and
Q,={xeQ:px) > %}. (39)

Theorem 4.1. Let u(x,t), v(x, t) be two solutions of equation (3) with the initial values uy(x), vo(x) respectively, and
with the same partial boundary value condition

u(x,t) =o(x,t) =0,(x,t) € 1 X (0, T). (40)

If for sufficiently large n,

1

n( f a(x)|V¢(x)|p(x)dx)p+ <, 41)
Q\Q,

and there exist functions gi(x, t) such that

|bi(u, x, t) = bi(v, x, )| < cgi(x, t)lu — o], fg gi(x, H®a(x) 7 dx < oo, (42)
then

L lu(x, t) — v(x, t)|dx < fQ |to(x) — vo(x)|dx.

Proof. Let u(x,t) and v(x, t) be two weak solutions of equation (1) with the initial values ug(x) and vp(x)
respectively, and with the partial boundary value condition (40).
Let

1, if xeQ,,
Pulx) = { no(),  ifxeQ\Q,, (43)
and X[.s be the characteristic function of [t,s) C [0,T). Then, since u and v satisfy the partial boundary
value condition (40), one can choose x[rsPngn (4 — v) as the test function, and
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S 8 _
[ [ oot

+ f S f a()(IVulPO 2 Vu — Vo2 Vo) - V(u — 0)g/,(u — v)d,,(x)dxdt
T Q

S
+ f f a()(IVulPO2 Vu — Vo2 Vo)g, (u — v)V,dxdt
T Q

N s
+Z} f fQ (B30, %, ) — bi(0, %, D111 — 0)(tt — 0)sspul®) + (1t — 0)cby Mt
=0.
As usual,

f f a()(IVulP2 Vu — Vo2 Vo) - V(u — )g.,(u — v)d,(x)dxdt > 0.
T Q

Since u; € L2(Qr), by Lebesgue’s dominated convergence theorem, one has
S —
lim f f Gn(x)gn(u — U)wdxdt
n—eo ). Q t

= f [u(x, s) —v(x,s)ldx—f [u(x, t) — v(x, 7)|dx.
Q Q
Obviously, fori=1,2,--- ,N

(x) = 0, if xeQ,,
P () = noy(x), ifxeQ\Q,

By (40), one has

f f a(x)((VulP 2 Vu — Vo2 Vo) g, (u — v)Ve,dxdt
T Q

f f a()(\VulPY2 Vu — Vo2 Vo)g, (u — 0)V,dx
T JO\Q,

S
< f n f a@)(VulP O + VoDV ahg, (u — v)ldxdt
T 0O\Q,

L
e

S 1
<c f n( f u(x)(qul”(x)+|VU|p(x))dx)q ( f a(x)lngl”(x)dx)p dt
T O\Q, O\Q,
: 2 2
<c f [( f a(x)IVulp(")dx) +( f a(x)leI”(")dx) }
T O\Q, Q\Q,

L
e

-ln (f a(x)lnglp(")dx '
O\Q,

1
¥

Scf (f a(x)quI”(x)dx)q
T O\Q,

p(x)
p(x)-17

dt

1
¥

dt+c f ( f a(x)leI”(")dx)q dt,
T O\Q,

g*" = max, g q(x). Thus,

where g(x) =

5987

(44)

(45)

(46)

(47)
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lim ‘ f f a()(IVulP 2 Vu — Vo2 Vo) (u — 0)g, (1 — 0)V,dxdt

* s *
<clim [cf a(x)|Vup® dx) dt + cf (f a(x)lel”(")dx) dt}
n—ee O\Q, T O\Q,
=0. (43)

Moreover, by (42), fQ YN i, t)q(")a(x)_ﬂ*%dx < o0, using Lebesgue’s dominated convergence theorem,
we have

N s
lim Z f f[bi(u, x, t) = bi(v, x, 1)]g;,(u — v)(U — V)x, P, (x)dxdt
i=1 YT Q

n—oo

¢ lim fs f i |g,-(x, t)aﬁa‘ﬁ(u — 0)x, O (X)(u — V) g, (u — v)| dxdt

<
%
< clim Z ( f a(x) (i, PD + oy, I”("))dx)
( f giCx, HWa(x) T |(u - v)g, (e — o)™ dx) dt
s 1
r
< clim ( f a(x)(IVul® + |Vv|”(x))dx)
n—-oo T Q
[f Zgl (x, 1)1 Wa(x)” rog} |(u —0)g,,(u— v)|q dx] dt (49)
Once again, since g;(x,t) > 0, a(x) > 0, by (42),
gi(x,t)=0=a(x),x € Xy,i=1,2,--- ,N,Vt €[0,T], (50)
thus,
lim [b:t, %, ) = bi(0, %, D, g (1 — 0t
N s
= lim f f [bi(u, x,t) = bi(v, x, )] Prx, gn(u — v)dxdt
n—oo Py T Q\Q,Z

N s
< limanf gi(x, Dl = vl ()lgn(u — v)|dxdt
n—oco = r Joo,
_y [ (hmn | gi(x,t>|u—vnqsx,(x)ngn(u—v)|dx)dt
e} n—eo (Q\Qy)
N
zf f 9i(%, DI, (0)llu — vld Lt
i=1

(51)



Q. Ou / Filomat 37:18 (2023), 5979-5992 5989

Let n — oo in (44). Then

f [u(x,s) — v(x,s) dx < f [u(x, T) — v(x, T)| dx. (52)
Q Q

By the arbitrary of 7, we have

f lu(x,s) — v(x,s)| dx < f [to(x) — vo(x)| dx. (53)
Q Q

Theorem 4.1 is proved. O

Proof. [Proof of Theorem 2.4] We only need to choose
P(x) = a(x),

and
gix,t) = a0 ,i=1,2,- N

in Theorem 4.1, the conclusion is clear. [

Certainly, there are many choices of ¢. For example, when x is close to the partial boundary X,
(25(35) = de(x) = diSt(.X, Z‘Z)
Instead of the condition (41), if the conditions (40) , (42) are still true, and

1

n ( f 11(35)1713(),)+ <c, (54)
ON\Q,

then the same conclusion of Theorem 4.1 is true.
Only if we notice that

IVl = [Vd| =1,

then the conclusion follows.

5. The proof of Theorem 2.5
Let g,,(s) be defined as before and ¢(x) satisfy (38) and
V(x) = 0,x € Xy (55)

Theorem 5.1. Let u(x, t) and v(x, t) be two weak solutions of equation (3) with the different initial values uo(x), vo(x)
respectively,and with the same partial boundary value condition

u(x, t) =o(x,t) =0,(x,t) € X1 X (0, 7). (56)

If for small A > 0,
\V/ p(x)
f alx)|—| dx<g, (57)
Q\Q, ¢
bi(s, x, t) satisfies
1 (x)
|bi(u, x,t) — bi(v, x, )| < cgi(x, H)|lu — o, f [a(x)‘%gi(x, t)]q dx < oo, (58)
Q

then

fIu(x,t)—v(x,t)ldxsfluo(x)—vo(x)ldx.
Q Q



Q. Ou//Filomat 37:18 (2023), 5979-5992 5990
Proof. For a small positive constant A > 0, let

wo| & if xeQ,,
Pax) = 20 if xeQ\Q,

where ¢ satisfies (38), and Q) = {x € Q : p(x) > A}.
Since u(x, t) and v(x, t) satisfy the partial boundary value condition (55), by a process of limit, we can
choose g,(¢p (1 — v)) as the test function, then

o(u—v)
| onoate-on X

+ f a()(IVulP2 Vu — Vo2 Vo) - ¢, V(u — 0)g,(dpa(u — v))dx
Q

4 f AVl Vit — (Vo2 Vo) - Veba (ot — o), (bt — 0))dx
Q

N
5y fQ (b1, %,1) = bi(0, %,8)) - (1 — 0), g0 (1t — 0))brdx
i=1

N

+ Y, [ 050 =500 o1 1 = 0100 - o)
-1 vQ
=0. (59)
Thus
. o - d
lim lim fQ 31010t~ o) D = Ll (60)
f a(x)(Vul™72 Vi = [Vol'72 Vo) - V(u - 0)g/,(pa(u — 0)pa(x)dx > 0, (61)
Q

Since Vo, = vA_q) when x € Q\ Q,, Vi, = 0 when x € Q, we have

‘ f a()(|VulP 2 Vi — Vo2 Vo) - Vo (u — 0) g, (pa(u — v))dx
Q

f a(x)(IVul™~* Vu — [Vo 972 vo) - E(u —0)g,(pa(u — v))dx
0\Q, A

Vo ,
_(P Qa1 —0)g,,(Pr(u — v))dx
A

po-1 _ _ L
<c f a 7 [(IVulfP™ =2 Vi — Vo972 Vo)|jai
Q\Q,

1
f a(x)(\VulPY72 Vu — |VoP®2 Vo) - =
a\Q, A

V(;P |dx

\Y
||ﬂ(x)?¢||u<x)(0)

pE) N\
dx

pe O\
dx] , (62)

(x)-1
<c ||11JPT(|VL1|”(")_2 Vu — [Vo®-2 Vv)|

p(x)
LP@-T(Q))

* Vo
p(x) p(x)
< C(L\Q/\ a(x)(|VulP'™ + |V )dx) {fo\o,\ a(x)

¢
Vo
SC[L\Q\ a(x) E
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where g(x) = pf}ff_)l, gt = max, g q(x). Then, it follows from (57) that

lim ‘ f a(@)((VulP 2 Vi — Vo2 Vo) - Vo (u — 0)g,(pa(u — v))dx| = 0. (63)
- Q

Since
bi(u, x,t) — bi(v, x, t)| < cgi(x, Hlu — |,

by (55) and the partial boundary value condition (56), there holds

i | [ 00,3, = 0,3, 000 10 = ) =) 0

<tim~ [ Wi, b) = bito,x, Dlga’ (62 (u — )Vl
A-0 A Q\Q,
< cf gi(x, Hlu — vlg,’ (1 — v)|[VpldL
90
=0. (64)

Moreover, by (58), we get

lim lim

n—o00 A—0

fQ (biu, x, 1) = bi(v, X, £)) (U = V), g (P2 (4 = V) (4 = V)P (X)dx

< lm [ |bi(u,x,t) = bi(v, x, )l|(u — )x|gs" (u — V)dx

—00
n Q

<clim f gi(x, Hl(u — v)y,llu — vlg,’ (u — v)dx
n—oo Q

P q
< c lim ( a6 s = 209 = o] dx)q
—00 Q

n

( f a(x)(IVulP® + |Vv|”("))dx)pl
Q
=0. (65)

Now, after letting A — 0,letn — c0in (59). O

Proof. [Proof of Theorem 2.5] Only if we choose ¢(x) = a(x) and gi(x, t) = a(x)ﬁ, by Theorem 5.1, we know
Theorem 2.5 is true. [
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