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Gradient Ricci-harmonic solitons on doubly warped product manifolds
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Abstract. We give necessary and sufficient conditions for doubly warped product manifolds to be gradient
Ricci-harmonic solitons. We also give a physical application for this kind of solitons.

1. Introduction

The notion of gradient Ricci-harmonic soliton is defined by Miiller in [25]. Let (M, g) and (N, g) be
(pseudo)-Riemannian manifolds, # : M — R a smooth function and ¢ : (M, g) — (N,7) a smooth map.

((M, 9),(N,g),¢,h, /\) is called a gradient Ricci-harmonic soliton (briefly GRHS), if it satisfies the coupled
elliptic system

{ Ric + Hessh —aVp ® Vo = Ag, (1)
Tyb — g(Vb, Vh) = 0,

where a is a positive constant, A € IR, Ric is the Ricci curvature of (M, g) and 7,¢ = tr, (qub) is the tension
field of ¢. GRHS is called shrinking, steady or expanding depending on whether A > 0, A =0or A <0,
respectively. If h occurs as a constant, GRHS is called trivial. The case « is a constant and ¢ is a smooth
function was first studied by List in [22]. It is clear that the concept of gradient Ricci-harmonic soliton is a
generalization of the concept of gradient Ricci soliton [23]. For some research about gradient Ricci solitons
see ([10], [11], [12] and [31]). The map ¢ is called a harmonic map flow. A gradient Ricci soliton is a
Ricci-harmonic soliton, if ¢ is a constant map [15]. If & is constant and ¢ is harmonic, then (1) defines a
harmonic-Einstein metric, which is a natural generalization of Einstein metric [15].

In [25], Miiller defined the notion of the Ricci-harmonic soliton. Complete non-compact gradient
shrinking Ricci-harmonic solitons were considered by Yang and Shen in [35]. A classification of compact
gradient Ricci harmonic solitons was given in [15] by Guo, Philipowski and Thalmaier. In [29], a lower
diameter bound for compact domain manifolds of shrinking Ricci-harmonic solitons was studied by Tadano.
In [30], Tadano studied gradient shrinking almost Ricci-harmonic solitons on a compact domain. In [36],
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Zhu studied on the relation between Ricci-harmonic solitons and Ricci solitons. In [34], Wu and Zhang
studied the shrinking gradient Ricci-harmonic soliton and obtained a logarithmic Sobolev inequality. In [4],
Abolarinwa obtained necessary and sufficient conditions for a gradient shrinking almost Ricci-harmonic
soliton on a compact domain to be almost harmonic-Einstein. In [5], Abolarinwa, Oladejo and Salawu
introduced some entropy formulas and gave a classification of gradient almost soliton for Ricci-harmonic
flow. In [6], Batista, Adriano and Tokura considered gradient Ricci-harmonic soliton with the structure
of warped product manifolds. In [3], the notion of rigidity for harmonic-Ricci solitons was given by
Anselli and some characterizations of rigidity were obtained. In [19], the first author considered gradient
Ricci-harmonic solitons with the structure of multiply warped product manifolds and gave some physical
applications. For more information on solitons with the structure of warped product manifolds and their
generalizations, see also ([8], [14], [18], [20], [21] and [26]). By a motivation from the above studies, in
the present paper, with the structure of doubly warped product manifolds, we consider gradient Ricci-
harmonic solitons. We obtain some characterizations for this kind of solitons. We also give a physical
application.

2. Gradient Ricci-harmonic solitons

In this section, we consider gradient Ricci-harmonic solitons with the structure of doubly warped
product (briefly DWP).

The notion of warped product was defined by Bishop and O’Neill in [9]. Warped products are important
in a variety of physical applications, including general relativity, string theory and supergravity theories.
As a generalization of the notion of warped product, the notion of doubly warped product was defined by
Unal in [33].

Let (M3, g1) and (Ma, g2) be (pseudo)-Riemannian manifolds, respectively and f; : M; — (0,00) and
fo 1 My — (0, ) be positive smooth functions. The doubly warped product manifold (briefly DWPM)
(M, g) is the product manifold M =, M; Xz M, endowed with the metric tensor

9=Fn® 9 )

The functions fi and f, are called warping functions of the doubly warped product manifold [33].
Throughout this work, we use the following notations:

Notation 2.1. Let M =4, My Xy, M, be a DWPM endowed with the metric tensor g = f791 & fg>.
1) The manifolds My and My have dimensions my and m,, where m = my + my.
2) We denote the Ricci curvatures of M, My and My by Ric, Ricy, and Ricyy,, respectively.
3) We denote the Hessian operators on M, My and M, by Hess, Hessyy, and Hessyy,, respectively.
4) We denote the Laplacians on M, My and M, by A, Ay, and Ay, , respectively.
5) We denote the gradients on M, My and My by V, Vi, and Vyy,, respectively.

Let M =, M X, M be a DWPM endowed with the metric tensor g = f7¢1® 292, where f : My — (0, o)
and f, : M, — (0, o) are positive smooth functions. Let ¢ : M — R be a harmonic map flow and denote
the components of the ¢ and 1 on M; (for i = 1,2) by ¢, and hyy,, respectively. That is, ¢y, : M; — R and
hyt, : M; — R. So firstly, we have:

Theorem 2.2. (M =4, My X5, My, g,h, ¢, A) is a GRHS if and only if the functions fi, f»,h, ¢, A satisfy:
(1) If ¢ = dp, and h = hyy,, then

RI‘CM1 - %I‘I@SSM1 (fl) + I‘I(*;’SSM1 hM1 - %VM1 QDM] ® VM] ¢M1
(12, £l
= | A+ (m = D)5 + Fhwfo| 1, 3)

Awlﬁi)Ml =0in Ml,

where Ay, = Ay, — 91 (Vany, V1), w1 = hay, — malog (f1) and
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M, is Einstein with Ricpy, = 192, where

Vi fil;
= Afl + %Alel +(mp—1) || Mf;”Ml - %VMthl (fl) + %ﬁll
2 2 2

when Hessp, (f2) = P1go-
(2) If ¢ = dm, and h = hpy,, then

RiCMl - %Hesle (fl) - J%lequl ® VM1¢M1

||VM2f2||i/12

= [Af7 +(m1—1) . _VMthz(fZ) + szszz} 71,
Aqule =0in Ml,

where Ay, = Ay, + 91 (Vany, Vn,w2) , wa = mplog (f) and
M, is Einstein with Ricpy, = Uag2, where

f [V fill,

= Aff + P SAm fi + (mp = 1) ——— Iz (f fl)ﬁlf

when h = hyy, = f, and Hessy, (f2) = p192.
(3) If ¢ = dm, and h = hpy,, then My is Einstein with Ricy, = ysgi, where

j{leszz +(m —1) ——— 7

when h = hy, = f1 and Hessy, (f1) = Pagr and

2
. sl (o

+ z—l)ﬂz,

RiCMz - n;l HBSSM2 (fZ) - %VMZ(PMZ ® VM2¢M2

|| f||
= (A2 T = Vi ()92
w3¢M2 =0in My,

where Ay, = Ay, + 92 (Vian,, YV, w3) , ws = milog (f2).
(4) If ¢ = dm, and h = hy,, then My is Einstein with Ricyp, = pagi, where

Vi, f
pa =S ]{f A fo + (m = 1)% : J{—vathz (f)+ ffﬁz,

when Hessyy, (f1) = Pagr and
RiCM2 — %I‘IGSSM2 (fz) + f12H€SSM2hM2 f4 VM2¢M2 ® VM2¢M2

| M1f1||
= |AfE+(m—1) — f_zzAM1f1 72,
w4¢M2 = 0 n Mz,

where Ay, = Ay, — 92 (Vany, YV, Wa) , Wa = hag, — malog (f2).

5971

(4)

(7)

(10)

Proof. (1) Let (,M1 Xz, Ma, g, h, ¢, 1) be a GRHS with ¢ = ¢, and h = hy,. From Proposition 2.3.1, Theorem
2.5.2, Proposition 2.6.2 in [32] and the first equation of (1) with ¢ = ¢, and h = hy,, we have the first
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equation of (3) for X, Y € x (M;). Using Proposition 2.5.3 in [32] and the second equation of (1) with ¢ = ¢ay,
and h = hy,, we obtain

All/1 (PM1 = 0/

where Ay, = Ay, — 91 (Vg Vi), w1 = hyy, — malog (f1). Similarly, from Theorem 2.5.2 in [32] and the first
equation of (1) with ¢ = ¢, and h = hyy,, we find

2
V 1
Ricy, (U, V) — %AMl fi+ (my—1) M 72 (U, V) = " Hessy, fo (U, V)
fi fi f
= Af292 (U, V) - Hessh (U, V) (11)

for U,V € x (M3). From the definition of the Hessian of a function, we write

Hessh (U, V) = L9, () g2 (U V). 12)
2

When Hessyy, (f2) = f192, substituting the equation (12) in (11), we obtain M is an Einstein manifold with

2
IV £ m
Ricy, = |Aff + f—;Alel +(my - 1) TMl - %VMthl (f)+ T;ﬁl 9.
2 2 2

For the cases ¢ = ¢pm, and h = hpg,, ¢ = P, and b = hyy,, ¢ = Pum, and h = hyy,, by using the same
method, (2), (3) and (4) are proven. This completes the proof of the theorem. [

2 2
Let (M =/, (]R”“, v‘zg]R) Xp, (]R’"Z, T_Zg]R) 0= 3R+ ff g]R)be aDWPM, where (]R”” , v‘zgm) and (]R’”Z, T‘zgm)
are conformal to m;-dimensional and mm;-dimensional pseudo-Euclidean spaces, respectively and (ggr), ;

= €0;j, € = %1 is the canonical pseudo-Riemannian metric. For an arbitrary choice of non-zero vectors
a=(ay,az,....0m ) and b = (b, +1, byy+2, o Uiy +my, ) , We define the functions

m
E(x1, %2, o0y Xyy) = Z aix;,a; € R
i=1
and

my

C (xm1+1/ xm1+21 sy xm1+mz) = Z bjxj’ b] € R’

j=m1+1
where x = (x1, ..., ;) € R™ and y = (X 41, oo Xy, ) € R™.

Now we consider a GRHS on M =, (IR"”, v‘zg]R) X, (]Rmz, T‘ZgR) with ¢ = ¢, and = hy,. So we can
state the following theorem:

Theorem 2.3. (,R™ X R™, g = fv72gr+f212gr, h = hay, @ = Py, A) is a GRHS with non-constant harmonic
map flow ¢ such that fy = fio&, h=ho&, v =volaredefined in (]le,v‘zgm)andqb =¢o(, f=frol,t=10C
are defined in (]R’”Z, T‘Zg]R) if and only if the functions fi, fo, h, v, ¢, T satisfy the following equalities:

’’

(m1 —2)2— =0, (13)
v
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, 2
[v” = om = ) @] al? + [0z = DEP + oy~ 2 =D fof] (l) L

fi
A2+ (22 _1)p,, (14)
fi
T i 2T a2 _
(mz—Z)T—ﬂﬁz—zmleZ?—f—f(qb) =0, (15)
[n” — (my = 1)(7')* + mm:’é] bl
f
2
/ ff/ ) f 77 ff/ )
_ [{(mz ~1) (71) - %h + }221 }v2 ~(my — 2)%vv luanz = Af2 (16)
and
[qb%z + (mlf%ﬁ —(mp — 2)11')¢'] 16> = 0. (17)
2

Proof. For an arbitrary choice of non-zero vectors a = (a1,az,...,am,) and b = (byy+1, bmy+2, o) iy 4my), We
consider the functions

E(X1, X2, ooy Xy ) = A1X1 + A2X2 + oo + Ay Xy
and
C(xm1+1/ X427 eer xm1+mz) = bm1+1xm1+1 + bm1+2xm1+2 +..+ bm1+m2xm1+mz/

where x = (x1, ..., X)) € R™ and y = (X +1, s Xy +m, ) € R™. Assume that h(&), f1 (&) and v (&) (respectively
£2(0), ©(C) and ¢ (C)) are some functions of & (respectively of C), where £ : R™ — R and C : R™ — R. Then,
we have

hx; = h/lli, Uy, = U/ﬂi, ¢Xz = (p/bi’
Py, = h"ai{;l,j, Uy = U/’lliﬂ,j, Pxz; = Q"'bibj, (18)
(fl)x,' = (fl) ai;, (fz)xi = (f2) bi/ T = T,bil

(), = (1) i), (), = ()" Uil Ty = 770

The Ricci curvatures with conformal metrics gy, = v2gRr and gy, = T2gR are given by

Ricy, = % {(m1 — 2)vHessg, (v) + [vAg]Rv —(m;—1) ||V5,]Rv||2] gR} (19)
and

Ricy, = % {(mz — 2)THessg, (1) + [TAg[RT —(my —1) ||V9RT||2] gR} , (20)
respectively [7]. From

(Hessgm (v))i/]’ =v"aa;, Agv=0" llal?, HVWUHZ = )2 |jal?, o
(Hessg]R (T))i,j =1"bibj, AgT=1" IBI7, HvyRT”2 = () |bll?,

we find

(Ricw,); ; = %(ml - 20" (aia]-) (22)
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forVi#j=1,2,..,m and
(RiCMz)i,j = %(mz -2)t” (b,‘bj) (23)
for Vi # j = my +1,m; + 2, ..., my. Similarly, from the equation (21), we obtain
. 1 17 142 ’
(Ricw,);; = = {(m = 200" @) + [v0” llall* = (1 = 1) (') alf* | s} (24)
forVi=1,2,...,m and
M 1 ’” 144 ’
(Rica,);; = = {(m2 = 2wt Bi)? + [o2” 01 = (2 = 1) (@' 0] ) (25)
forVi=my +1,mq1 + 2,...,mp. From the definition of Hessian function, we have
’” 2 U, ’
(Hessp, (h))ij =h"aa; + (Zaia]- = 0jj€i |lall ) Fh (26)
and
77 2 T’ ’
(HESSM2 (fz))ij =/ Z’Jib]' + (Zbib]‘ - 51‘]‘61' ||b|| ) Ffz (27)
Then, the Laplacian of f; with conformal metric g; is
1’ v/ 4
Mo fi = P lE | £ = oy =2 | (28)
and the Laplacian of f, with conformal metric g, is
4 T, ’
Do = P IBIE | £ = 02 =D 5. (29)
Furthermore, we find

Vs fi (1) = v2 ol £,
IVan Al = w210l (f7)

Vae il = 210 (£)" (30)
(Vo ®Var,), = (") biby.
Substituting the equations (22), (29) and (30) for i # jin (7) and Ricy, = psg1, we obtain
[(ml B 2)07"] i = 0. (31)

From the equation (31), if there exist 7, j for i # j such that a;a; # 0, then we obtain (13). Similarly, using the
equations (24), (29) and (30) for i = j in (7) and Ricyy, = pszg1, we find (14).
Furthermore, using the equations (23), (27) and (30) for i # j in (8), we have

[(m2 - 2)%" - mszz - 2m1%% - % (') |bit; = 0. (32)

From the equation (32), if there exist , j for i # j such that b;b; # 0, then we obtain (15). Similarly, replacing
the equations (25), (27), (28) and (30) for i = j in (8), we find (16). Finally, using (29) and (30) in the second
equation of (8), we obtain (17). This completes the proof. 0O
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So we can state the following theorem for ¢ = ¢y, and h = hy, :

Theorem 2.4. (,R™ x5 R™,g = ffv2gr + f212gr,h = ha,, @ = Pmy, A) is @ GRHS  with non-constant
harmonic map flow ¢ such that fi = fio&, v =vo&, h = hoCaredefined in (IR”“, v’zg]R) and ¢ = ¢pol, fr = f0(,
T = T o Care defined in (]Rmz, T‘ng) if and only if the functions fi, fo, h, v, ¢, T satisfy the following equalities:

17

(m ~2)7 =0, (33)

7\ 2
[0 = (m = 1) )] llall® + (mz—l)(?j) 2 Ly g

fZ
f'}{ — (my - ) ffﬂnbn = A2+ ffﬁz, (34)
(m—m%— W&QM; +ﬁﬁ+%w?—%@f=a (35)

[T’c" — (my = 1)(T')? + my Tt % fil'et ]”b”

7\ 2 /
—[{(mz—l)(ﬁ) I ff }vz—(ml—z)f}—?vv’luanz:Aff (36)
and
[ﬁuwm%¢ (my —2)= ¢ ¢]wu—o 37)

Proof. Similar to the proof of Theorem 2.3, the proof is obtained. [J

3. A Physical Application

Doubly warped space-time is a very nice example of Lorentzian DWPM. This space-time is often utilized
to solve Einstein’s field equations precisely. The geometric properties of doubly warped space-times have
been studied by many authors. For example, see ([2], [24], [27], [28]). In this section, we consider gradient
Ricci-harmonic soliton with the structure of doubly warped space-times.

Let (M,, g2) be a my-dimensional Riemannian manifold and I an open, connected interval furnished with
the negative definite metric (—dtz). Let fi : I = (0,00) and f, : M — (0, o) be positive smooth functions.
Doubly warped space-time M =g, I X5 Mj is the product manifold I x M, furnished with the metric tensor

9= f(=dt*) & f{ g, (38)

(see [33]). If f, is a constant, then doubly warped space-time (M, g) turns into a generalized Robertson—
Walker space-time. Furthermore, if f; is a constant, then doubly warped space-time (M, g) becomes a
standard static space-time [1].

Let ¢ : M — R be a harmonic map flow. Then we can give the following corollary:

Corollary 3.1. (M =5, I X5 My, g = f7(—dt*) ® fg2,h, ¢, A) is a GRHS if and only if the functions fi, fo,h, ¢, A
satisfy:
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(1) If ¢ = ¢prand h = hy, then

va \2% lel 2
m2f1 -h'+ 5 (le) [/\fz +(m - 1)—5—2 + /%AszZ
— Pihy + me_]ﬁbI =
and M, is Einstein with Ricy, = p1g2, where
f1 (f{ )2 f1
/\ /l _ (m _ 1) -1 l / ,
fl 2 2 f2 2 f ﬁl
when Hessp, (f2) = 192
(2)If ¢ = ¢y and h = hyy,, then
v f I;
fl + 4 (Ci)[) Af7+(mp—1) MZ s _VMthz(fZ) + szszz
"+ my 2% qbl

and M, is Einstein with Ricym, = p2go, where
f L (m
125 fl f22 1 ( 2 ) f2 fZ fl 181

when h = hyy, = f> and Hessy, (f2) = p192.
(3) If ¢ = pm, and h = hy, then

2 fZ H Zf HM L) // " o_
Afy + 7 SAwmfo+ (M —1) ———— 7 2+ —= 7 +h
and
Ricy ’;’fl] HeSSMz (fZ) ;1( VMz(PMz ® Vqusz
= [Aff (5] - L jf—;f{h;] o,
Awsopt, = 0in M,
where Ay, = Ay, + 92 (Vian,, Vi, w3) , ws = milog (f2).
4) If ¢ = dm, and h = hpy,, then
2
I3 Vaefoll, £ v
Afy + S Ay fo + (1 = 1) ———= = =Vaphy, (f2) + m2— =0
A fi fi fi

and
RiCM2 — %I‘IESSM2 (fz) + _f12I‘I€SS]\AZI/l1\/12 - %Vqusz ® VM2¢M2
=[Aff+<m2—1>(%) le]gz,
Aw4¢Mz =0in Mz,

where Ay, = Ay, — 92 (Vany, Vg, Wa) , Wa = hag, — malog (f2).

Proof. By substituting V;f; = —f], Hesslfl(at, 5 A= —f] a5 g)
Theorem 2.2, we obtain the equations (39)-(46). Th1s completes the proof

5976

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

2
-1, gi(Vif1, Vifi) = —(fl’) in
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