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Abstract. It is well knowledge that the purpose of inequality is to develop various approaches to math-
ematical problem solving. In order to prove the originality and existence of mathematical techniques,
it is now necessary to seek exact inequalities. In the present research, we propose some novel weighted
fractional Ostrowski-type inequalities for functions which are differentiable and satisfy quasi-geometrically
convex using a new identity. Moreover, outcomes for functions with a bounded first derivative are proved.

Finally, some examples are given to illustrate the investigated results. The obtained results generalize and
refine previously known results.

1. Introduction

Integral inequalities are regarded as a terrific tool for developing both qualitative and quantitative
aspects in mathematics. This is because integral inequalities may be used to analyse functions. Because of
the increasing demand for productive uses of these inequalities, interest has been continually growing, and
this is done in order to satisfy those demands. Many researchers had looked at these inequalities, and those
researchers had employed a variety of methods in order to investigate and give their findings regarding
these inequalities [1]- [30].

In the past twenty years, the discipline of fractional calculus theory has seen a rise in both its popularity
and its significance. This may be attributed to the fact that the theory has various appealing applica-
tions and a wide appeal in the fields of physics, engineering, chemistry, and biology, such as viscosity,
electromagnetism, rheology, selective transport, electrical networks, and fluid flow. Numerous research
have recently begun to concentrate their attention on discrete versions of this fractional calculus, making
use of the benefits offered by the time scale theory as well as the references that are included within it.
The fundamental idea that forms the basis for the context of this application of fractional calculus can be
characterized in two different ways. The first method is known as the Riemann-Liouville method. This
method involves changing the integral operator with a single integral by repeating it n! times and then
utilizing the well-known Cauchy formula, which transforms n! into the Gamma function. This method was
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developed by Riemann and Liouville. The Griinwald-Letnikov method is the second one, and it requires
first iterating the derivative n times and then fractionalizing the binomial coefficients using the Gamma
function. This method was developed by Griinwald and Letnikov. The fractional derivatives that were
derived through the use of this calculus appeared to be difficult to understand and lost several of the most
important qualities that are normally associated with derivatives, such as the product rule and the chain
rule. On the other hand, the behavior of these fractional operators’ semigroup characteristics is appropriate
in several other contexts. We refer the interested reader to [10, 11, 16, 33, 35, 36].

Assumed that a real function called x has been defined on a nonempty interval of a real line called R.
It is claimed that the function x is convex on I if and only if inequality

x(on+ (1= o)p) < ox(m) + (1 — o)x(w)

holds for all n, u € I and g € [0, 1]. The concept of a quasi-convex function is a generalization of the concept
of a convex function. To be more specific, we say that a function x : [x,y] € R — R has been called
quasi-convex on [x, y] if the following conditions are met:

x(on + (1 = o)p) < max{x(n), x(w)}

for all n,u € [x,y] and p € [0,1]. Clearly, any convex function is a quasi-convex function. Furthermore,
there exist quasi-convex functions which are not convex (see [12]).

It is important to keep in mind that Niculescu first described and thought about a class of mappings
that he called a GA-convex mappings, as follows:

Definition 1.1. [31, 32] Suppose that function x : I C (0, ) — R is called GA-convex, if

x (1) < ox(m) + (1 = 9)x()
foralln,u €landp€[0,1].
In 2013, Imdat Iscan introduced the concept of the quasi-geometrically convex functions:

Definition 1.2. [11] Suppose that function x : I C (0, 00) — R is called quasi-geometrically convex on I if

x (121 ¢) < max [x(n), x(w)]
foralln,puelandpe0,1].

In a significant number of real-world issues, it is essential to constrain one quantity using another
quantity. Inequalities from classical mathematics, such as Ostrowski’s inequality, are extremely helpful for
achieving this goal. The Ostrowski’s inequality was introduced by Alexander Ostrowski in [34], and with
the passing of the years, generalizations on the same, involving derivatives of the function under study,
have taken place.

Theorem 1.3. Let x : [, x2] € R — R be continuous on [n, u] and differentiable function on (n, 1), whose
derivative " : (1], ) = R is bounded on (n, 1), i.e., |x’ (t)] < M. Then the following inequality holds:

2
1 (- 5F)
<2+ 2 M, M
A g |

for all x € [n, u]. The constant  is the best possible constant.

1 H
K- — f X (@) de

n

The inequality (1) can be written in equivalent form as follows:

2 2
X(x)_%fy)((’f)d’[ <M [(x_n) ) }
vy

S p-7 2
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For the most recent outcomes, improvements, parallels, generalizations, and novelties pertaining to Os-
trowski’s type inequalities, see [3-5, 13, 17, 21-23].

We will now give definitions of the right-hand side and left-hand side Hadamard fractional integrals
which are used throughout this paper.

Definition 1.4. Let x € L[, ul. The right-hand side and left-hand side Hadamard fractional integrals ]f]+ fand ];_ f
of order ¢ > 0 with u > n > 0 are defined by

N fxl T de
LX) =55 e x(0) o, X
and

c _ 1 H Q c-1 dQ
Faw=g5 [ (03 x0F, r<n

respectively, and Gamma function I'(c) is represented as I'(c) = fooo e Ppldp (see [16]).

In this article, we establish a new identity and then utilize it to derive new weighted inequalities of
the Ostrowski type for quasi-geometrically convex functions. We do this by using the novel identity that
we just constructed. Next, we will discuss more findings for functions that have a first derivative that is
constrained inside a certain range. Furthermore, a few examples are provided to highlight the findings of
the investigation. The results are a generalization and improvement of earlier findings.

2. Main results

Lemma 2.1. Let x : ] € (0,00) — Rbeadifferentiable functionon J° and n, p € J° withn < p. If w : [n, u] = (0, o)
is a continuous, positive, and geometrically symmetric to \qu and x" € L[n, u]. Then we have o € [0,1] and ¢ > 0,

Jr-wx() + Joox(p) - [Je- o) + Jr.o(w)] x(x)

In (& o In(% o
! l(’(c))) I ”1(9)’('(*‘@"1_%9‘%{, pa(0) (%' )dg, @
where
1
pi(o) := f (1 - p) w(ux"P)dp 3)
0
and

1
P i= [ (1= p ot )p. @
4
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Proof. We apply part-by-part integration and change of variable (u = ufx!~?) to obtain

1 1 1
1(1,01—0 — _ )¢l pN1-p 11,0410
fo Pr(OX (1ox ) fo ( f (1 - P loufx )dp)x(ux g

o=1

1
! )( f 1- p)g‘lw(ypxl“’)dp) x(ufx'7?)
4

1 fl -1 1- 1-
= —m +— [ = et
In (2 In(5) Jo @ T R R

0=0

1 1
— ( f (1- p)g_lw(y‘)xl_p)dp)X(X)+ f (1 = 0 w0t )do
0 0

ln(g) ln(%)

T (ln<;))€+1 (f:l (ln %)Qil w(“)%) x(x) + W fxy (ln g)rl a)(u))((u)d%

] et +

(in(5))™
(%))

Now, multiplying (5) by ~—+5—, we get

I')
In(& <t 1
(n£(23 0 (@)X (uox'0)do = J.wx(u) = ([0 (W) X(@). ©

Similar work give

(Jwx(w). 5)

YO (12 wm) 0 - —E g% wxa. )

(n(z)™ (in(3)

, We obtain

1
fo p2(0)X' (n°x'~%)do =

1o (1n(3))"
Multiplying (7) by T

X c+1
(in(3))
I'(c)
By taking the difference between (6) and (8), we get

(n(%) (n(z)™

I'(c) I'(c)

&

<)

1
fo pa(OX (%30 do = (J-w(n)) x(x) — J5- wx(n): (8)

1
fo PO (15

= Jr-ox() + Jpox(p) - [Je-o) + Lo@] x@), ©)

1
fo pr(oY (uox' g -

which is the desired result. O

Theorem 2.2. Let the conditions of Lemma 2.1 hold and let |x’| is quasi-geometrically convex then the following
inequality for fractional integrals holds:

(n(4)™

T(c+2)

()"

I'c+2)

- wx(m) + Joox(u) = [Jo- () + T o) x()] < max {[x' @)1, [ (W]} el a0

max {|[ @)1, |’ )|} lwllp e (10)
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Proof. We have the following by deduction from the Lemma 2.1, the property of the modulus, and the fact

that [x’| is quasi-geometrically convex:

JE-wxtn) + F wx(p) = |l + o] x|

(n(()"

(o)™ ) )
*TTo I'(c) e )d0+ () X' (nx g)|d0
o+l
= (ln%) max w(upxl‘%dP' do
In{7 i 1] 1
+ ( nl(";)g)))_ maX{ ! X,(TT)‘} L ]é; 1- p)c—lw(npxl—p)dp‘ d@
1 u c+1
< {( nl(“zg))) maX{ ' }||C‘)||[x,u],oo
In{3 - 1] ol
+( nﬁzg)? — max{l)('( }||a)||m,x]/oo] f (1- P)g_ldpldg
In(& ¢+l In (2 c+1
= (;(ix_z)z)_ max {|X'(X)| ’ )}} ”a)”[x,y],oo + % max {|X’(x)| , } ||w||[”’x]/oo. (11)

The proof has been completed. [

Example 2.3. Let us consider x : (0, 0) — Rdefined by x (x) = x+ 1 . It is clear that the function ) X (x)| = |1 - xl2|

is quasi-geometrically convex on about [%, 2]. The function w : [%, 2] — [0, o0) defined by

{ L xe[%,l),

x, x€[1,2],

w(x) =

is geometrically symmetric about 1. We observed that for ¢ = , we get that

]ifwx(n) +Jrwx(w)

! 12 2 do
-0 f (In20)* wx(©?2 T f (ln@) (0

:ﬁf (ln(ZQ))_é%(0+5)§+%%)f;(ln%)_%%}(ml@)d_;
* T )f (In(20))"2 @( Q)dg‘ﬂ%%) 12(1n§)_%0(@+%)%@ (\/z_nerf<\/1\r/‘_?) In(2))
. 2(1 5 (erfi(VIn(16)) — erfi (/In(@))) - 2 yIn2) + 2 y/In(4))
W= .
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We also observe that

15w + 5. w(w)] x(x)

F( )f (In(20)) 260(0)? rQ )f( ) (Q)d—;)l(x+§)
[T()f(l( ))20+T) ( Q)ZZZ_Q](“%)
[F( )f (In(20))2 dg+ﬁflz(ln§)_%dg](x+%)

= 40 (VIn@) - e (V@) + e (V@) 1+ ).

Hence for x € [%,2], we get

P () = T wx(m) + [ wx(u) - [JE o) + J5 o] x()

_ 4(Varerf(yin@) + VIn(2)

\r
. 2(1 5 (erfi(VIn(16)) - erfi (yIn(@))) - 2 yIn(2) + 2 y/In(4))
\n
- [4erf< \/ln(2)) —erfi ( \/ln(Z)) + erfi ( \/ln(4))] (x + %)
Now

() In (2 h

(P(x) = Il:.l(ixz)z) maX{|Xl(x)|/IX/(H))}”w”[x,y],oo + (I{I(i 7_2)2)
In2)*
x max ¥ il = % max |1 = |, 2} ollzie
(In2x)} 1

- max{[1 = 2,3} Il < ol

3
, —} + (In2)* max{‘l - l
ré) 2

3}] 12

Corollary 2.4. Letting x = +fnu in Theorem 2.2, we get the following:

FW_wx(n) + ]ngx(H)

c+1
) ||a)||[r7,y],°° (ln %)
3 []C\/,Tyfw(’?) + ]W+a}(u)] x( W)‘ < 21T (¢ + 2)

X (max {|)(' ( \/W)' , |X’(#)|} + max {|XI ( W)| ’

Clf). a3
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Figure 1: The graph of validates the inequality proved in Theorem (2.2) over the interval [1,2]

Corollary 2.5. Choosing w(u) = hﬁ in Theorem 2.2 , we get
n

(in(5)) +(in (3))

(n(4)™
x(@)| < m

Jox(m) + Joox(u) -

(n(3)™

I'c+2)

x max {[x' (),

X (Wl + max (X', Y M)} (14)

Moreover, if we take x = +/n, we obtain

, (nf)
Jox(m) + Joox(u) - m)(( Vi)

(nf)

S—
2T(c +2)

max ([’ ()1, [x' ()]} + max {lx' @1, [x ()]}

Corollary 2.6. Let ¢ = 1 in Theorem 2.2, then

0 u
‘f w)x(w)du — (f a)(u)du) x(x)
n n

max {lx’ (1, [ ()]} ool a0 + max {lx’ (1, [x' 0]} lwllip w0 (15)

- 2 2
Moreover, for x = \/W we get
! Ink z
[ wtntoriu - ( [ w(u)du)x(W) < @nwumm
1 n
X (max{ X’(W) , )('(y)|} + max{ X'(W) , X'(n)(}). (16)

Theorem 2.7. Let the conditions of Lemma 2.1 hold and let |x’|" is quasi-geometrically convex, q > 1 and % + % =1,
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then

Jo-wx() + Jewox(@) = [l + @] x)

(m(2)”

< —— K@)
(cp+1DrI(c+1)

In(2 ah 1
+ %uwumm (max{ly @I, @), a7
(cp+1rT(c+1)

Proof. By using the modulus properties, Lemma 2.1, Holder’s inequality, and the fact that |x’| is geometri-
cally convex, we get

ool .0 (max {Jx” )17,

Je-wx(m) + Jwox() = [l + @] x)

L) ([ wara) ([
L [porad ([

1

%
X (uexo)|" d@)

(n(%)

I'(c)

%
x'(n@xl-@ﬂ"d@) <

1
q

(1- p)g‘lw(upxl‘P)dp‘ d@)P (max {lx ()17,

c+1
I'(c) (fo |

Y oll)) <

1
f (1-p)dp
4

X w|')

1 ;
f 1- p)glw(npxl”)dp‘ d@)
0

(n(4)™

llewllgx, 00
I-'(C) [YH]

x (max {lx' (I,

Al

@)’ +

P\
d@] (max {lx' (17,

I'(c)
1| 1 ) PNy -
— = / q ’ q
X lwllpn,1,00 [f(; j;(l p)dp d@] (max{l)( @1, [y () })
) o
C(p+ 1T+ 1) ool 0 (max {1 I, |’ ()] })
In(z ¢+l )
%uwum,ﬂw (max{ivcr, [eal')". as)
(cp+1)T(c+1)

The proof is completed. [

Example 2.8. Let us consider y : (0, 00) — Rdefined by x (x) = x+1 . Itis clear that the function | X (x)|§ = }1 - %)E
is quasi-geometrically convex on about [%, 2]. The function w : [%, 2] — [0, 00) defined by

1 1
3 XE[E,:[),

x, x€]1,2],

w(x) =
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is geometrically symmetric about 1. We observed that for ¢ = 1, we get that

Jo-wx(n) + Jo.ox(p)

1 20 9\7: do
1 2 —_— 1 — —_—
r( )f (In(20))" wx(@) . +r( 0 (n@) wx(0) :

1 1 1\de 1 1( z)*z( 1)1@
_F(l)ﬁ(ln(zg)) (0+@)0+F(1) ! "% 0\?" %)%

e )f (In(2e) Q( 0)? I )f ( ) ( )dgg Wz_nerf(\/f) in(2)
. 2(5 V3 (erfi(Vin(16)) — erfi(Vin@))) - 2In(2) + 2In(®))
\/E .

We also observe that

1) + I ()] x(x)

~|rd )f (In(20))" Zw(@)? T )f E )_l s ]
[r()f(l( ))20+m (n@) ‘;20](“91()
[F( )f (In(20)) 2 d0+ﬁflz(ln§)_%dg](x+%)

= 40 (VIn@) - e (V@) + e (V@) 1+ ).

Hence for x € [%,2], we get

P () = T wx(m) + [wx(u) - [JL o) + 5 o] x()
(\/2_nerf( Vin@) + In@))

\/E
. 2(1 5 (erfi(VIn(16)) — erfi (yIn(@))) - 2 yIn(2) + 2 y/In(2))

\/;
- [terf (V@) - rfi (VIn@) + erf (Vin®)] 1+ 1)
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Now for x € [%,Z],p =3,q=3

()" l

(max {l)(’(x)lq , X'(H)P})q ol 1,00

P (x) = n
I+cp)rT(c+1)

(in ()™

1+ gp)tl’ T'(c+2)

3 2
2)2 3 3))\3
B A O (R IS
= max 2| \2 W|[x,2],00

KO Il o

(max {lx' @)1,

(3
+ (lnli)f [max{‘l - % f ,32}]3 eollp )00
()'re

2 % 3 3 % % % %
< (h: x) max?|1 — 12 ’ ,(é)z +(lrlli max '1 - 12 ,3% ”w”[%,Z],oo (19)
(3)'r® oo (3) 1) '

Figure 2: The graph of validates the inequality proved in Theorem (2.7) over the interval [1,2]

Corollary 2.9. If we take x = +/qpt in Theorem 2.7, we get the following:

I ,HF(UX(T]) + C\/WJUX(#) - [ i/@,a)(n) +J¢ mﬁw(”)])(( W)‘
1 u ¢+l }
(n ) q,!x’(u))q})]

< il
+ (max {

IIaJII[W],00 ((max {‘X’ ( \/1]_,,1)

T2t (cp + 1)PT(c + 1)

q
7

X (vin) X'(W)V});). (20)



H. Kalsoom, M. Amer Latif / Filomat 37:18 (2023), 5921-5942 5931

Corollary 2.10. Suppose that w(u) = ( ] in Theorem 2.7, we get the following:

()"

(cp+1)iT(c+1)

Jox(m) + Joox(u) —

() .
T ‘@, X @
}) + —_ 1)%91"(g ) (max{lX )", |x (r))( }) 1)

x (max {lx' @), [x’
Moreover, if we take x = M, we obtain

%1ng+n(

(in5)

%(Wﬁv/'

<

= XD+ o+ X)) = x (VAR)

(e il
4(cp+1)»
’ q ’ }
+ (max{|;( (W)| , |X (77)|q})]) (22)
Corollary 2.11. Let ¢ = 1 be in Theorem 2.7, we get the following:

l £\
‘f} w)x(w)du — (fy a)(u)du) x| < (ln(x))
n 1

(p+1)

i

Tl oo (max {lx’ I, [’

2
In(*
+ Mllwll[moo (max{icar,
(p+1)r

yal)) . @3

Moreover, considering x = \[ni, we get

(inty

Ap+1)

')
Qf) (24)

<

U:‘ w(u))((u)du_(j: w(u)du)X(W) el 00 ((maX{IX,(W)r,

’ q ’
+ (max {| X ( \/@) ,
Corollary 2.12. Let w(u) = ( ] be in Corollary 2.11, we get the following inequality:

(in %))

0n”@+)

1 i
- f i = x| <

n vn

(max {0l [ @)’

(n(3))
(n&)p+1)

Theorem 2.13. Using assumptions of Lemma 2.1 and let |x’|" is quasi-geometrically convex, where q > 1, then

(n(5)

= T +2)

(n(z)™

T'(c+2)

(max {lx @)1, [x' @ 'D? (25)

)

yal))'. e

Je-woxtn) + Joax(u) = [l + Ja()] x()| < lleolle o0 (max {l’ GO, |

ool 100 (max {IX @)1,
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Proof. By using the modulus properties, Lemma 2.1, power mean inequality, and the fact that [y’ is
geometrically convex, we get

J5-wx(m) + Ij;wx(y) ~ [z wm + I o) X(x)|

1 -4
s(nr(g) ([ <@>|d@) ([
c+1 1

f (0] o) ( f |

1-

1
q
’ gxlfg)‘q dQ)

1- 0)|‘7 d@)

'_J
—~
n
~
—

==

)3

(max{|x'(x>r', /

1 z <t - 1
+ (nl(“;]g) (f ‘PZ(Q)MQ) (max |X @I, )
In (%))
B (nlgzg) (f |P1(Q)|dg) max |X @), })
F(g) (f ‘P2(0)|d0) max |X @I, })

s%ll !l )0 ( fo ( f@ 1-pr 1dp)d@)(ma><{|x(x>lq

in(x)" Yt
N g(g) ||w||m,x],«»(fo (f@ (1—p)g-ldp)do)(max{IX’<x>|qf ’
_(n(1)” (n(3)"

= Tt 1l (max {lx' I, [x'w|'})" + Ttz el (max {lx' @)1, |x

)y
i

W

The proof is completed. [

Example 2.14. Let us consider x : (0, 0) — R defined by x (x) = x+ L. Itis clear that the function ’)( (x)| = |1 -4
is quasi-geometrically convex on about [1 ] The function w : [1 ] [0, oo) defined by

l, 1/1 ,
a)(x)z{ x xe[z )
x, x€[1,2],

is geometrically symmetric about 1. We observed that for ¢ = 3, we get that

Jowx(n) + Jox(w)
1 (2 o do 1 (% 2\ do
= — 1 2 — R In= —
0 f im0 + f (n3) r0?

1 L1 1\do 1 1( 2)*1( 1)d@
—— | eyt clor-]|B s — [ (nZ] {o+-|Z
F(%)f;(n( 2 @(Q+9)0+F(%)j: ") o\ e

2
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do do _ (\/Z_nerf( M)"' \/M)

e )f (n2e) 2 Q(Q Z))E I )f ( ) ( ) NG
. 2(3 V5 (erfi(VIn(16)) - erfi ({/In(@))) - 2 yIn2) + 2 y/In(4))
N= .

We also observe that

[ a(m + I ()] x@)

[F( )f (In(20))" 2w(@)z+l_(1) 2(1n§)_2a)(@)@}(x+%)
[r()f( neoyt %ot [ o) ] 1
[T(z f( (20)) dé’*m (lng)zdg](x+i)

= o (V@) - e (Vin@) + e (VI -+ 1)

Hence for x € [%,2], we get

Y () 1= Jowx(n) + Jowx(u) = [Ji-o) + Jro@] x()
(\/2_7Zerf( Vin@) + yIn(2))

\r
. 2(1 V3 (erfi (yIn(16)) - erfi ({In(3))) - 2 yin(2) + 2 y/In(4))

Vn
- [4erf( \/M) - erﬁ(\/M) + erﬁ(\/M)] (x + %)

Now for x € [%,Z] and q = 3

In E) b

P ) = F(i’;)l) (max {1 O, [ (") Nl

In(x ¢+l l
i (;1(5_’]'2)2) (max{|;(’(x)|’7, ’ )’q})q “wH[n,x],oo

f )Y
S| (5) H 1l
3

(In2x)} g
T (max{l‘x_z 3}] el
(ln%)% 12 3\ : (ln2x)% 15 3
<[ e -2 ’(Z) AT '1—;‘ 3 lollape 27)
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Figure 3: The graph of validates the inequality proved in Theorem (2.13) over the interval [, 2]

Figure 4: The graphs of error bounds given in Theorem (2.2) , Theorem (2.7) and Theorem (2.13) over the interval [%, 2]

Remark 2.15. The comparison of the error bounds is shown in the figure below

Corollary 2.16. Taking x = /nu in Theorem 2.13, we get the following:

X)) + I ox(u) = [ @) + T Ww(#)]x( \/W)‘

o+l )
< &”w”[mu]m ((max{ X'(H)V})E + (max{x'(@)
_1

21T (¢ + 2)
Corollary 2.17. Letting w(u) = ) in Theorem 2.13, we get the following inequality:
1

(n(8)) + (i (3))

q
7

v (Vi) L)) e

Jo-x(m) + Joox(u) — x(x)

I'c+1)
In (& ¢+l ) (= c+1 l
< —(?((g’;))z) (max {lx'G)I", [ (@'}’ +%(mx{|}mw, o). @9
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Moreover, if we take x = +/n, we obtain

a i
z(lli(—;)tl)( g,w,)c(n)+FW+x(y))—X(W) < 4(1; 0
X((max{')('(@)q’X,(y)lq});+(max{|x'(W)‘7,X,(n)lq})z’). (30)

Corollary 2.18. When we choose ¢ = 1 in Theorem 2.13, we get the following result:

u u
f w(u)x(u)du — (f a)(u)du) x(x)
n n

()

(n(3)

1
q

< @l (max [l @I, [ @) + 5 llalli 00 (max (i @I, [ @f'})" . 31)
Moreover, considering x = Vg, we get
1 1 (111%)2 ) 9, 1
fn o f] ot (V77) Smllwll[n,m,m((maXHX(W) Jrr)))

q
7

x'(ml”’})i). 32)

+ (max {|)(’ ( \/@)

3. Further Results

This section begins with the following results.

Theorem 3.1. Using all conditions of Lemma 2.1 and let there exist constants m < M such that —co < m <
X' (x) <M < +oo forall x € ], then

- m)(in (%)) M- ) (in(3))

2I(c +2) ||ﬂ)||[x,#],m + AC+2) ||a)||[,],x],m, (33)

|A§(n, X, 0,0, )()| <
where

A, %, 1,0, X) 1= Jox() + Jowx(u) = [T ) + T w()] x()

) (M + m) [(m(g))cﬂ ~ (ln(%));ﬂ

2I'(c)

1
| fo (11(0) + pa(@)do, (34)

where p1, py are defined as in (3) and (4), respectively.
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Proof. We get the following result by using the Lemma 2.1,

Jr-wx(m) + Jpax(p) = [Je- o) + J.o(w)] x(x )

() ()™

c+1
— 1 0 Ox 1-0
f pr(o)X’ (uox"C)do - “To f p2(0)x’ (n°x""%)do

ST
1 U c+1 ’
1 n ¢+l .
(h’l(%))ﬁ'l 0y1-0 M+m (M + m) (11'1 (g))g+l .
_ Wf o) [x oy - 2 ]dg+ - fo o
c+1
(M + m) In(% 1
= ﬁ(g) f P20 [X (nx'6) = M; m]d0+ zr((c)(n)) fo p2(0)do.  (35)

From (35), we have

U

1 u c+1 1
A, x, 1,0, X) = Mfo p1(0) [x’(u x'70) - +m]d0

()
1 x c+1 1
G) [ @ [xeexn -2 do o
0

I'(c)

where A°(n, x, u, w, x) is determined as it is in (34). After applying absolute value on both sides of (36) and
making use of the fact that m < x’(x) < M holds for all x € ], we have come at the following conclusion:

A, x, o el
S%[ et - g
+ % X == m‘d@
M- mz)r(:z)(g))gﬂ fg - p)g_la)(ypxl_f’)dp’ do
(M - mz)r(i;(f‘;))m ! fg - p)é-lw(qpxl—p)dp' do
s v _;i C(l_r: (j))m !l 1,00 + M _zn;zg(lj: g))ﬁl lwllfy,e0-  (37)

The proof is completed. [
Corollary 3.2. When we choose x = +/nii in Theorem 3.1, we get the following:

(M~ m)(in )™
‘ < ol (38)

" X + T s ox(u) = [ () +J° +w(#)] 2¢+H1T(c + 2)
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Corollary 3.3. Letting w(u) = @ in Theorem 3.1, we get the following:
1

(n(4) +(n()  @1em|in(£)" - (n()"]

Je-x() + Jox(p) = Teen AW - )
c+1 c+1
L Oom () ()]
B 2l (c+2) - 49
Moreover, if we take x = Vi, we obtain
21T +1) [ i (M- m)(Int)
i (0 + F a0 = (V) € (40)
n
Corollary 3.4. Suppose that ¢ = 1 in Theorem 3.1, we get the following inequality:
# H
du — d
It - ([ wtwrie) o
M +m) |(In(£)) = (in(2))’
oo i) (o) ( | ) + w(#pxl‘P))dp) o
2 0
2
Sl ((m(g))z ol 0 + (1n(%)) ||w||m,x],m). (@)
Moreover, for x = \/W, we get
(M =) (in 2)°
f:’ wu)x(w)du — (LH a)(u)du) X ( W)‘ < %“C‘)”[UWL‘”‘ (42)
Corollary 3.5. Taking w(u) = @ in Corollary 3.4, we get the following inequality:
P e () A G L) XN
In& ) * 4(int) - 4(Int) '
Taking x = +/nu, then
1o (In &) (M — m)
@fn xw)du — )((\/W) < UT (44)

Recalling that a function x : | — R is o-H-Holder (Holder condition, see [8] ), we are now ready to
present our next result.

Ix(m) = x(w)l < Hin — pl”
holds for all 1, 1 € J°, for some H > 0 and ¢ € (0,1].
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Theorem 3.6. Let the conditions of Lemma 2.1 hold and suppose that x’ satisfies o-H-Holder condition for some

H>0and o € (0,1], then
()" o) ]

(45)

E(n,x, 0, x)| <H Crosircr e+ ooy pre ol
where
B (0, %, 1, @, X) = Jo-wx(n) + Joox(u) = [Jo- o) + o] x(x)

@) (i (1) = (in(2)
- 2T(c)

f (p1(0) + p2(0)) do,  (46)

where p1, py are defined as in (3) and (4), respectively.
Proof. Applying Lemma 2.1, we have

Jr-wx(m) + Jpox(p) = [T o) + T o(w)] x(x)

1 ‘u H"‘l In(x ~,+1
= % f p1(o)x’ (uex'~®)do — &
(n(4)™
G
1
% f p2(0) [ X (%x'=0) = X' () + X' ()] do
(n(4)™
- r(g)

(in(3))

1-0y _ 7

f pa(o)x’ (n°x'~%)do
| @ [ (@0 = X (@) + X' ()] do

- (X' (uex'=) = X' () do

X

(W (n(L)™ o ()" o
HOWE) - KO e
0 0

2I'(c) 2I'(c)
From (47), we get

(n(4)™

1o ) PO @)= () do

1
- (nl(—‘(g)) - f p2(0) (X (% ™0) — X' () do,  (48)

where E°(1, x, 4, w, x) is defined as in (46). Applying absolute value on both sides of (48) and o-H-Ho6lder
property of x’, we obtain

In% —
E4(n,x, 1,0, X)| < %fo

E(mxuwx) =

X (uex'=9) — X' (w)| do

(in(3))

I'(c)

+ 010) X ’dQ
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1 u ct+o+1 1 ct+o+1
sH[%nwu[x,yLw&u @l ] f (1~ 0)*dg

I'c+1)

:H[ (n()™" ()™ ] )

(o] + (o]
o+ DI e+ e ) 1@l

The proof is completed. O

Corollary 3.7. If we take x = /i in Theorem 3.6, we get the following inequality:

c 3 (11’1 7E)C+o+1 ||a)||[ e
r7 wx(m +J: g +a))((‘u) B [ C\/W’w(n) + mt*“)(#)]x(\/@)‘ < H2c+<7((]; +0+ 1)F(r;y+ 1)

In I c+1 (X/(Fl) _ X/(T])) 1
+ ( fl) 242[(¢) fo (p1(0) + p2(0)) do.  (50)

Corollary 3.8. Let w(u) = ( ] be in Theorem 3.6, we get the following result:
1

I ¢ x G u c+o+1 x c+o+1
I,ix(n>+f;x<y>—(ln(")) 3 ) AN I U ) i Gl )

x(x)

I'c+1) - c+o+DI'(c+1)
@) (n (1) = (n (2))
M T +2) . 6D
Moreover, if we take x = [N, we obtain
o+1
2@—1r(g +1) (11’1 ) (11’1 H) (X/(.u) - X’(T]))
ey (4 a0 = (V)| < Hgy s+ gy 52)
Corollary 3.9. If we take ¢ = 1 in Theorem 3.6, we get the following inequality:
0 a
[ ( | w(u)du)x(x)
n Y 1
H(ln(g))“” ol + (10 (2)) Il apes
- o+2
’ In(% Z_ In(% 2
+X(|u)(n(X)) 2X(n)(n(ﬂ)) j(;l (fl(a)(r]pxlp)+w(ypx1p))dp)dg (53)

Moreover, for x = W, we get

[ " (ln %)mz lwllig e X'() (ln %)2 - X' (ln %)2
f w(u)x(u)du — (f’; w(”)du))( ( W)‘ <H 20+1(g + 2) * 8

n
1 1
X f ( f (a)(npxl_P)+a)(ypx1_P))dp)dQ. (54)
0 0
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Corollary 3.10. Suppose that w(u) = @ in Corollary 54, we get the following:
[

. i o+2 x 0+2 , u 2 o x 2
L[ ki xc0] < L) )T ) -G
11’11—] n (O'+2)(11‘1 %) 4(11‘1 %)
Moreover, if we take x = /M, we have
' ()™ @@-xm)(int)
inf fn xod = x (V) < Hoe g * T— (56)

Corollary 3.11. Suppose that the function x’ is a L-Lipschitzian function (H = L and ¢ = 1) in Theorem 3.6, we get
the following inequality:

ot -
(c +2)T(c + 1)“0)“[2(41], Cc+2(c+ 1)||a)||[,7,x],

n(2) () | o

(Eg(n, X, U@, )()| < L[

where 2° is defined by (46).

Corollary 3.12. Letting x = /nu in Corollary 3.11 gives the following inequality:

e X+ T e 0 4) = [ O+ I rzu*w(”)] X W)‘

c+2 c+1
(8 (n8)" @ -
nulco T
2+ 2)T(c+1) 25T (C)

m) !
fo (p1(0) + p2(0)) do.  (58)

Corollary 3.13. Taking w(u) = —~ in Corollary 3.11, we get the following inequality:

n(3)
(in(£)) +(n(3))

Jo-x(m) + Joox(u) =

) )7 (2] - )

C+orc+1) T +2)

(59)

Moreover, if we take x = +/qu, we have

21T (¢ + 1) ( )

(n5)

Corollary 3.14. Letting ¢ = 1 in Corollary 3.11, we get the following inequality:

n 1
f wu)x(w)du — (f a)(u)du) x(x)
1 n

/( ) 1 % 2_ /( ) In(% 2 1 1
L Xw(in()) il (n () [ ( f (@ ¥) + (P x*)dp| o (61)

g g (&) (In&) @ -x@m)
X+ WJ((H)) - x(va)| < e Jl 2) 7 8(c+1)

(10(£)) 1l gros + (10 (2))’ Bl

<L
- 3
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Moreover, for x = /f{i, we obtain

u u (ln%)3
‘ [ et [ w(u)du)x(\/_nu)‘SL ol
n 1

) (&) -y (&) : -
L (n5) SX 0 {in) f(fp @ (Vi) ") + e (vag) p))dp)d@ (62)

1
0

1

Corollary 3.15. If we choose w(u) = (D) in Corollary 3.14, we get the following inequality:

B
(n() +(n(z)  x (&) - (n(3))

O 4(int)

n
Lﬂ fn x(wdu — x(x)| £ L (63)
1

In

Moreover, for x = \/np, we get

p)? / / p
L <L(ln 8 ww-xm)(int)
1n%f,1"(”)” x(VIH)| < Loy 16 '
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