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Abstract. In the present paper, firstly we obtain the general expression of canal hypersurfaces in Euclidean
n-space and deal with canal hypersurfaces in Euclidean 4-space E*. We compute Gauss map, Gaussian
curvature and mean curvature of canal hypersurfaces in E* and obtain an important relation between the
mean and Gaussian curvatures as 3Hp = Kp® — 2. We prove that, the flat canal hypersurfaces in Euclidean
4-space are only circular hypercylinders or circular hypercones and minimal canal hypersurfaces are only

generalized catenoids. Also, we state the expression of tubular hypersurfaces in Euclidean spaces and give
some results about Weingarten tubular hypersurfaces in E*.

1. Introduction

A canal surface is formed by the envelope of the spheres whose centers lie on a curve and radius vary
depending on this curve [5]. In this sense, let A := a(u) = (a(u), b(u), c(u)) be a regular space curve and p(u)
be a C!-function with p > 0 and | p'l < ||&|l. The envelope of the one parameter family of spheres

(x = a(w)® = p(u)* =0 1)

is called a canal surface and A its directrix in Euclidean 3-space. Also, the parametric representation of canal
surfaces can be given by

. M4 2 _ ()2
X = x(11,0) = ) — p(u)p(u) ) P(u) [la(u)ll P(u)

||0'€(u)||2 Tl (e1(u) cos(v) + ex(u) sin(v)), (2)

where {e1, e;} is an orthonormal base orthogonal to tangent vector ¢. In case of a constant radius function
p(u), the envelope is called tubular or pipe surface (see [7]). Canal surfaces (especially tubular surfaces) have

been applied to many fields, such as the solid and the surface modeling for CAD/CAM, construction of
blending surfaces, shape re-construction and so on.
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In this context, canal and tubular (hyper)surfaces have been studied by many mathematicians in different
spaces. For instance, the notion of special conformally flat spaces which generalizes that of subprojective
spaces has been introduced in [2] and the authors have proved that every canal hypersurface of a Euclidean
space is a special conformally flat space and it is a subprojective space if and only if it is a surface of
revolution. In [8], a relationship between the caustics of a submanifold of general dimension and of a canal
hypersurface of the submanifold in Euclidean space has been investigated and as a consequence, it has been
seen that these caustics are same. Analytic and algebraic properties of canal surfaces have been studied in
[20]. In [1], the authors have shown that canal surfaces and tube surfaces can be obtained by the quaternion
product and by the matrix representation and also in [16], it is shown that any canal surface to a rational
spine curve and a rational radius function possesses rational parametrizations. The principal curvatures
and principal curvature lines on canal surfaces have been determined in [4] and by means of a connection
of the differential equations for these curvature lines and real Riccati equations, it has been established that
canal surfaces have at most two isolated periodic principal lines. Some interesting and important relations
about the Gaussian curvature, the mean curvature and the second Gaussian curvature have been found
and based on these relations, some canal surfaces have been characterized in [12]. Classification of cyclic
surfaces which is formed by movement of a circle of variable or constant radius under any law in a three
dimensional space and geometrical research of canal surfaces have been given in [13].

Furthermore, for different studies of canal and tubular surfaces in different spaces such as Minkowskian,
Galilean and pseudo-Galilean, we refer to [9], [10], [11], [14], [15], [18], [19], etc.

In the second section of this paper, we obtain the general expression of canal hypersurfaces in Euclidean
n-space. In the third section, after recalling some basic notions about hypersurfaces and stating the ex-
pression of canal hypersurfaces in 4-dimensional Euclidean space, we obtain the Gaussian curvature and
the mean curvature of canal hypersurfaces in E* and give an important relation between these curvatures.
Moreover, we study on tubular hypersurfaces in this section.

2. Expression of Canal Hypersurfaces in Euclidean n-Space

Let a center curve a : I € R — E" be a curve with non-zero curvature and arc-length parametrization.
Then, the parametrization of the envelope of hypersphere defining the canal hypersurface X in E" can be
given by

n

X(vll U2,V3, ...y vn—l) - 0((1)1) = Z ﬂj(vl, U2, 03, ..., vn—l)Fi(vl)/ i€ {1/ 21 31 [y n} s (3)
i=1

where F;(v1) are Frenet vectors of a(v1) and a; are differentiable functions of vy, vo, v3, ..., V;—1 on the interval
I. Furthermore, since X(v1, vy, V3, ..., Un-1) lies on the hypersphere, we have

<X(v1/ vZ/ U3, cees vn—l) - a(vl)/ X(vl/ UZ/ v3/ b4 vn—l) - a(vl)> = pz(vl) (4)

which leads to from (3) that

Y. (@01, 02,03, .., v,0)) = p*(01) (5)
i=1

and

=

ﬂi(vl, U2, 03, ..., Un_l)(ﬂi(vl, U2,V3, ..., vn—l))m = P(vl)P,(vl)- (6)

i=1

Here, p(v1) is the radius function of hypersurface X and we note that, throughout this study, we state p’(v1) =

d 9a;(v1,02,03,...,U— 0Xi(V1,02,03,., 05— .
Z(ZJT)’ (ai(vlr V2,03, ..., UVI*l))Uz = e vzal;? : ])/ (Xi(vli Uy, U3, ..., Ul’l*l))‘l),' = —,(1)1 Uf;s? v ]), 1€ {1,2, R 1}

We know that [3], the Frenet n-frame F;(v1) of the curve a(v) satisfy the relations
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Fj (1) = k1 (v1)Fa(v1),
Fi(v1) = —ki-1(v1)Fi-1(v1) + ki(v1)Fira(v1), i€{2,3,..,n -1}, @

Fp(v1) = —kn-1(v1)Fu-1(v1),

where k; are the i-th curvatures of the curve a(vq).
So, differentiating (3) with respect to v; and using the Frenet formula (7), we get

n
(X(v1, 2,03, 00y V1)), = F1(v1) + Z(ﬂi(vb V2,03, ..., Un=1)), Fi(01)
P

+ a1(v1, V2, V3, ..., Vp—1)k1 (V1)F2(v1)

n-1
+ Z a;(v1, V2,03, ..., V1) (=ki1(v1)Fiz1(v1) + ki(v1)Fis1(v1))
P
+ ai’l(vll 02/ U3, sy Un—l)(_kn—l (Ul)Fn—l(Ul))- (8)

Furthermore, X(v1, V2, U3, ..., Up—1) — a(v1) is a normal vector to the canal hypersurfaces, which implies that
(X(Ul, U2, V3, ..., Un—l) - 0((1)1), (X(Ul, Up, U3, ..., Un—l))v,-) = 0, i€ {1,2, 3, v, 1= 1} . (9)
Then, taking i = 1 in (9), from (3), (5), (6) and (8) we obtain

a1(v1,v2, V3, ..., Vn-1) = —p(v1)p’ (V1),

Y @1, 02,3, i) = P01~ (' (01)). (10
=
From (10), let us take
12(V1, V2, V3, ooy Un1) = £p(01) 41 = (0 (1)) kE[_: cos(xy),
001, V2, V31 oy U-1) = £p(01) VI = (PO SIN(V1-1) k_::i cos(xy), (1)

a}’l(vl/ U2, U3, ey vn—l) = i‘D(vl) V 1 - (P’(Ul))z Sin(vn—l)/

wherei € {3,4...,.n —1}.
So, from (3) and (11), we have

Theorem 2.1. The canal hypersurface in Euclidean n-space is expressed as
X(v1, 02,03, ..., Vp-1) = a(v1) — p(v1)p’ (v1)F1(v1)
n-1
(kH COS(vk)) F>(v1)
=2

’ 1 n—
=POONTZ OO Y (s T coston) Bwn) | (2

-3 k=n+2—i

+sin(v,-1)Fy(v1)
3. Canal Hypersurfaces in E*

In this section, we study canal hypersurfaces in Euclidean 4-space E* by giving their expressions with
the aid of (12).
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Since we will deal with canal hypersurface in E* and give some important characterizations about them,
let we recall some fundamental notions for hypersurfaces in E*.

It o = (uq, up, uz, uy), T = (v1,v2,03,04) and W = (w1, wy, w3, wy) are three vectors in E, then the inner
product and vector product are defined by

— =
<Ll, ZJ>=M12}1+M202+M3'U3+M4U4

and

o S
U X o Xw

det

€1

231

(41

w1

€2
Up
(%)
[£%]

€3
Us
03
w3

respectively. Also, the norm of the vector 7 is ||_u)|| = 4 /<7,7>

If

W.UcE — F*

(13)
€4
u
o | (14)
Wy

(15)

(vlr U2, U3) — \y(vll U2, U3) = (\pl (vl/ U2, U3), \IJZ(vll U2, 03)1 \I]3('U1, ) 7.)3), \p4(v1/ U2, U3))

isa hypersurface in E*, then the unit normal vector field, the matrix forms of the first and second fundamental

¥, xW¥,, xW¥,,

forms are
Ny
[ 911
(7] =] 9=
| 931
and
[ B
[hij] = | h21
| B3t

g12
g2
g32

his
hy
h3;

N Wy, x Wy, X Wy,

713 |

923

933 |

hiz |

has

h33 ]

7

(16)

(17)

(18)

2
respectively. Here gij = (W, W, ), hij = (Wy,, Nu), W, = 2m2td = Z¥0ut) 4 je (2,3}, Also,

al),'l)]'

the shape operator of the hypersurface (15) is

S = [gij] ' [hijl, (19)

where [gij]_l is the inverse matrix of the matrix [g;;].
With the aid of (16)-(19), the Gaussian and mean curvatures of a hypersurface in E* are given by
K = det(s) = Sl 20)
= de =
det[gij]

and

3H = tr(S), (21)

respectively [6].
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From (12), the canal hypersurface C in E* can be written as

C(v1,v2,v3) = a(v1) — pp'F1(v1) £ p /1 — p’? [cos v, cos v3F,(v1) + sin vy cos v3F3(v1) + sinvsFa(v)], (22)

where vy € [0,]]and vy, v3 € [0, 27). Also, fromnow onwestatea = a(v1), p = p(v1), Fi = Fi(v1),i € {1,2,3,4},

dp(
p= Zvl) and we will consider the ”"+” as ”+”.

Flrstly, from (7) and (22) the derlvatlves of the canal hypersurface (22) are obtained as

Cy, _C F1+C F2+C F3+C Fy, (23)

Cy, = —p+/1 — p’?sinvy cos v3Fs + p 4J1 — p’? cos v, cos v3F3, (24)

Cypy, = —p /1 — p?2cosvysinvsFy — p 4f1 — p’2sinvy sinvaFs + p /1 — p’?2 cos vs3Fy, (25)
where

Cy, =1-p” —kip/1-p2cosvycosvs - pp”,

= —kipp’ —kap+/1 — p'?sinv, cos vz + (p V1-p?- )cos U2 COS V3,
= p+/1 — p’? (kz cos v; cos v3 — k3 sinvs) + (p V1-p?%- pp P
Cy =ksp+/1—pZsinv; cosvs + (p \1-p? - pp r )sm V3.

From (16) and (23)-(25), the unit normal vector field of C in E* is

N = —p'F1 + /1= p’2cos vy cos v3Fy + /1 — p’2sin v, cos v3F3 + 4|1 — p’2 sinv3Fy. (26)

Also, the coefficients of the first fundamental form of C are given by

(1 _ p/z) 0 + ( kap (1 - p’z) sin v, cos v3 + kipp’ /1 - p?2 )2

+p’ (p’2 + pp” = 1)cos vy cosv;

) sin v, Ccos v3,

- 1 / 12\ 2
g1 = 7 +( —kzp(l—pz)cosvzcosvg+k3p(1—p2)smv3 ] ,

+p’ (p’2 + pp”’ - 1) sin v, COS U3
+ (P' (P'z +pp” - 1) sinvz — ksp (1 - p’z) sin v, cos 1)3) 2

J12 =g = p2 (klp’ V1 - pZsinv; + k(1 - p’2) cosvs — kz(1 — p’2) COS V3 sin v3) CcoS U3, 27)

g13 = g1 = p? (klp’ \J1 - p'2cosvysinvs + k(1 — p’?) sin vz),
g2 = p*(1 - p'?) cos® vs,

g3 =g =0,

g33 = Pz(l - P'z)/
where Q =p (k1 \1 - p’?cos vy cos vz + p”) -1+ p’2 and it follows that

det[g;;] = p4(1 - p'z)Q2 cos? vs. (28)
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Now, for obtaining the coefficients of the second fundamental form, let we give the second derivatives

Cow, au o  of the canal hypersurface (22):
Cow, =Cp F1+Cpy F2+Cp F3+ Cpr Fa, (29)

Coyv, = Coppy

=kip /1 — p’?sin vy cos v3F;

N ( Ccos v3 (=p’(1 = p?)sinva + p(—ka(1 = p®) cos vy + p'p” sin vz))) F,

Ny

(% (p'(l — p'?) cos vy + p(—ka(1 = p’*)sin v, — p’p”’ cos vz))] F3
— p’
+ksp /1 — p’? cos v, cos v3Fy, (30)

Coyvs = Coy

=kip /1 — p’? cos vy sinvsF;

+ \/S% (—p’(l - p’z) cos vy + plka(1 — p’z) sinvy + p’p”’ cos vz))] F
-p
1 —p'(1 - p'?)sinvy sinv;
= . —ka(1 = p'?) cos vy sinvs F3
VI=p? | TP\ k(1 - p'?)cos vz + p’p” sinvy sinv;
1 p'(1 - p’?)cosvs
" JI=p? ( +p(=k3(1 — p’?) sinvy sinvz — p’p”’ cos v3) Fy, (31)

Copv, = =P /1 — p’?2 cos vy cos v3F, — p4[/1 — p’? sinv; cos v3F3, (32)

Cuyoy = Cugy = poJ1 — p?2sinvy sinvsFy — p 4/1 — p’? cos vp sin vzF3 (33)
and

Cuyy = —p A1 — p’2cos vy cos v3Fy — p+J1 — p?sinvy cosvaFs — p /1 — p’?sinvsFy, (34)
where

p’(=2ki(1 = p’?) cos vz cos vz — 3p” |1 - p?)
Cony = = N ( (k1)?p" V1 = p2 = kj(1 = p’?) cos v cos v3 )

+hkq (ko (1 — ’2) sinv, +2p’p” cosvy) cosvs — p’”’ /1 — p’?

—(1-p?) ki(1 =2p") 1 = p’2 = 2kpp’(1 — p’?) sin vy cos V3 )
PO\ 4071 = 3p"2) cos vy cos v3
2 _ 4 (1= p"2*((k1)* + (k2)?) cos v cos vz
VIV (23 . +k,p’(1 - p’2)2 + k(1 = p’?)? sin v, cos v3
p +2kip”(1 - p’z)% + (p”2 +p'p"”" (1= p'?)) cos vy cos v3
+ka(1 = p"?)(=ks(1 = p'?) sinvz — 2p’p”’ sin v, cos v3)
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1-p?) 2p"(1 = p'?)(ka cos vy cos v — k3 sin v3)
P\ +p”(1 = 3p’2) sin, cos v3
. . 1- p’z)z((ké + k3) sin v — k} cos v2) cos v3
wor T o +k, (1 = p'?)? sinvs + 2kzp’p”’ (=1 + p'?) sinvs
Pl —kop' (-1 +p’?) (k1 V1 —p?+2p" cosv, cos 1)3)
+sinv; cos v3 (p’p"’(l -p?)+ p"z)

~

(1 - p)(2p"ks(1 — p’?) sinvy cos vz + p”’(1 — 3p’%) sinvs)
4 1 [ ks(1 — p"?)%(—ky cos v2 cos v3 + k3 sin v3) ]

VIV T (g 23 —(1 - p")((1 = ™)k}, sin vy cos vz + 2k3p’p”)
+(p//2 _ p/pm(l _ pIZ)) sin U3

Thus, from (18), (26) and (29)-(34), the coefficients of the second fundamental form are given by

((k2)2 cos? v3 — koks cos v, sin(2v3) + (k3)? (cos2 v3 sin® v, + sin? 03)) (1-p?)?
= | +k)?(1 - p'?) ((1 - p’?) cos® vy cos? vs + p'z) +p'"?
+2k1 /1 = p2(kop’(1 — p’?) sin v, + p”’ cO8 v2) COS V3
+ky mcos vy cosvz + p”,

hip=hn=p (—klp’ V1 —p2sinvy + (1 — p’?)(ks cos vy sin vz — ky cos v3)) CoSs V3,

(35)
hiz=hn=p (—klp’ \1—p?cosvysinvs —k3(1 - p’z)sin vz),

hy = —p(1 — p’?) cos® vs,

hos = h3; =0,

hys = —p(1 - p’?)

and it implies

cos? v3. (36)

(1= p?)(ki 1= pZcos vz cos v3 +p”) ]

det[h;j] = p*(1 - p’?) [ (k)*(1 = p’) cos® vz cos® v3
+2k1p” 4/1 — p’2cos vy cos vs + p’?

So, from (20), (28) and (36), we have

Theorem 3.1. The Gaussian curvature of the canal hypersurface (22) in Euclidean 4-space is

k 21_ 7”2 2 2 72
((1—p’2)(k1 ’—1—p’2cosv2cosv3+p”)—p( (k1)%(1 = p’?) cos? vy cos® v3 + p ))

+2k1p”" 4/1 = p’? cos v, cos v3

p? (p (k1 \/1 = p’?cos vy cos vz + p”) -1+ p’2)2

Theorem 3.2. The canal hypersurface (22) in Euclidean 4-space is flat if and only if it is a circular hypercylinder or
circular hypercone.

(37)

Proof. If the canal hypersurface (22) in Euclidean 4-space is flat, then from (37) it must be

ki \J1-p2(1 - p’2 —2pp”") cos vy cos vz — p(kl)z(l - p’z)cos2 vy cos® v3 + (1 — p’2 -pp")p” =0. (38)
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2 2

Since the set {1, cos v, cos v3, cos” v, cos” vz} is linearly independent, we have

k1= p%(1 - p” = 2pp”) = 0,

p(k1)*(1 - p?) =0, (39)
(1 _ p/2 _ pp//)p// =0.

From the second equation of (39), since p # 0 and 1 — p’* # 0, we have k; = 0 and so, (22) is a hypersurface
of revolution. Also, in this case, the first equation of (39) holds, too. If we use k; = 0 in (37), we have
p/I
K= . (40)
pZ(l _ pIZ _ ppu)
Since the hypersurface is flat, (40) implies p” = 0, thatis, p(v1) = av1 +b,a,b € R, a # +1. From this, the third
equation of (39) holds, too. Therefore, (22) is a circular hypercylinder when a = 0, or a circular hypercone
whena #0,a # +1.
Conversely, if k; = 0 and p(vq) = avy + b (i.e., if (22) is a circular hypercylinder or a circular hypercone),
then we have K = 0 and this completes the proof. [

Also, after finding the inverse of the matrix of the first fundamental form and using this and (35) in (19),
the shape operator of the canal hypersurface (22) is obtained by

Siu Sz Si3

S=|Sn S» S»n |, (41)
S31 S» Sz

where

G -1 ( (1-p" (k1 V1 - p'2cosvycosvs + p”) ]
11 02 ) ’

O ((k1)2(1 — p'?) cos? v cos? v3 + 2k1p”’ /1 — p’2 cos va cos U3 + p’*

Sy = p% (klp’ V1 - p2sinvysecvs + ka(1 — p’2) — k3(1 — p’?) cos v, tan 03),

Qks(1 - p'?)sinv,
Sy = & ] ( . ( ki(1 = p’?) cos v, cos vs )) ,
PR +k1p’ cosvysinvs [—(1 - p’)2 + =
1’ 08V, sin o3 i B g
Sy =Sz =-1

‘D’

S12 =813 =523 =53 =0.
Hence from (21) and (41), we get

Theorem 3.3. The mean curvature of the canal hypersurface (22) in Euclidean 4-space is

( -3p? ((k1)2(1 — p'?)cos? v cos? v3 + 2k1p” A1 — p’2 cos vy cos V3 + p”z) ]

o =2(1-p")? +5p(1 - p’?)(ks mcos vy cosvs + p”) @)

3p (P <k1 y/1— p’? cos vy cos vz + p”) 1+ P’2)2

Theorem 3.4. The canal hypersurface (22) in Euclidean 4-space is minimal if and only if it is a hypersurface of
revolution parametrized by

C(v1,v2,v3) = (V1 — pp’, £p /1 = p’? cOs v COS V3, £p /1 — p’2 sin vy cos vz, £p /1 — p’? sinvy), (43)

where p(v1) is given by f \/L4 =+, +b,a,beR.
1-(¢)°
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Proof. If the canal hypersurface (22) in Euclidean 4-space is minimal, then from (42) it must be
(44)

ki /1= p2(5p(1 = p?) = 6p*p”") cos vz cos v3 — 3p?(k1)*(1 — p’?) cos? v, cos? v3
(45)

+(2- 2p’2 -3pp”)(-1+ p'2 +pp”) =0.
Since the set {1, cos v, cos v3, cos? v, cos? v3) is linearly independent, we have

k11— p2(5p(1 - p'?) —6p*p”) =0,
3p*(k1)*(1 - p'?) =0,
(2-2p"?=3pp”")(~1+p'? + pp”) = 0.
From the second equation of (45), we have k; = 0 and then the first equation of (45) holds, too. If we use
(46)

k1 = 01in (42), we have
2 _2‘0/2 _3pp//

So, if the canal hypersurface (22) in Euclidean 4-space is minimal, then from (46) p(v;) must satisfy the

(47)

H= :
3p(=1+p’2 + pp")

differential equation
2 =20/ (v1)? = 3p(vr)p” (1) = 0.
(48)

Now, let us solve (47).
If we take p’(v1) = f(v1), we get

7 _ /_dfdp_df
S G " ap”

(49)

Using (48) in (47), we have
(50)

af 2
3p%f+2f -2=0.
From (47), p’(v1) = f(v1) # 0 and so we reach that

3f _ d_p
2<1—f2)df‘ p’
(51)

By integrating (50), we have
4
5)3
(52)

f=%+4/1- (
P
where 7 is constant. Since p’ = 5791 = f, from (51) we get

d
[p——
4
Vi-¢)
Since k; = 0, without loss of generality, we can suppose the curve a(vq) as a(v1) = (v1,0,0,0) and F; =
(1,0,0,0), F, =(0,1,0,0), F3 = (0,0,1,0), F4 = (0,0,0,1). Then, (22) can be parametrized by (43) and from
=+v1+b,a,beR.
=401 +b,a,b € R, then we

)

(52), p(v1) satisfies dp .
(o)
Conversely, if (22) is parametrized by (43), where p(v;) satisfies f dp 4
()’
U

have H = 0 and this completes the proof.
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Also, we know that [17], the only minimal hypersurface of revolution (except the hyperplane) in
Euclidean space is the generalized catenoid. Thus, from the last Theorem, we have

Corollary 3.5. The canal hypersurface (22) is minimal if and only if it is a generalized catenoid.

Here, from (37) and (42), we can state the following theorem which gives an important relation between
Gaussian and mean curvatures:

Theorem 3.6. The Gaussian curvature K and the mean curvature H of canal hypersurfaces (22) in Euclidean 4-space
satisfy
1 2

H=~(Kp? - ). 53
3K =) (53)

Now, if
Hy Ky, —Hy Ky, =0, i# ] i,j=1,2,3, (54)

holds on a hypersurface, then we call the hypersurface as (H, K);;-Weingarten hypersurface, where X, = g—f}f.

So, from (37) and (42) we have
Theorem 3.7. The canal hypersurface (22) in Euclidean 4-space is (H, K)p3,-Weingarten hypersurface.

Also, from (41) we have

Kp? ( 2kip” A1 — p’? cos v; cOs U3

+(k1)? (1 - p’z) cos? vy cos? vs + p”?
(kp +1)? 2k W(Kp'z -K+ p”) COS U3 COS U3
p2Q2 | +p| +p” (21<p’2 - 2K+ p")
+(kp)? (1 - p’z) cos? vy cos? 3
- (1 - p’z) (Kp’2 — % +ki /1= p?cos v cosvs + p”)

By solving the equation det(S — xI3) = 0 from (55), we obtain the principal curvatures of the canal hyper-
surfaces (22) in E* as follows:

det(S — kI3) = — (55)

Theorem 3.8. The principal curvatures of the canal hypersurfaces (22) in E* are
1
K1 =Ky = _E and K3 = sz. (56)

Here, we know that if p(v1) = A is a constant, then the canal hypersurface is called tubular or pipe
hypersurface and from (12) the tubular hypersurface in E" can be given by

n—1
(kl'[ Cos(xk)) Fa(v1)
=2
n—1
X vy Up1) = +A . n-1 57
e +Z (s1n(vn+1—i) IT cos(xx)|Fi(v1) 7)
-3 k=n+2-i
+sin(vy-1)F,(v1)
So, from (57) the tubular hypersurface in E* is
T(v1,v2,v3) = a(v1) £ A[cos vy cos v3F2(v1) + sin v, cos v3F3(v1) + sinvzFy(v1)]. (58)

v

Here, by taking "+” as ”+” in (58), we get
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Theorem 3.9. The Gaussian and mean curvatures of the tubular hypersurface (58) in Euclidean 4-space are

k1 cos vy cos U3

K= 59
A2(1 — k1A cos v; cos v3) (59)
and
2 — 3k1A cos vy cos v3
H =
3A(=1 + k1A cos v, cos v3) (60)
respectively.

So, from (59) and (60) we get

Theorem 3.10. The tubular hypersurface (58) in Euclidean 4-space is (H, K)12y and (H, K)q3)- Weingarten hyper-
surface.

Also, we know that, a hypersurface is called a linear Weingarten hypersurface, if it satisfies
aH + bK =, (61)
where g, b, c are not all zero constants. Thus, from (53), we have
Theorem 3.11. The tubular hypersurface (58) in Euclidean 4-space is a linear Weingarten hypersurface.

Proof. The equation (53) on the tubular hypersurface (58) implies
-3AH+ A’K =2. (62)

So, from the definition of a linear Weingarten hypersurface, the proof completes. [J

4. Conclusion and Future Work

In this study, firstly we obtain the general expression of canal hypersurfaces in Euclidean n-space and
we deal with canal hypersurfaces in Euclidean 4-space with the aid of this expression. In this sense, we
obtain the Gaussian curvature and the mean curvature of canal hypersurfaces in E* and give an important
relation between the Gaussian and mean curvatures. Also by taking the radius function as a constant, we
state the tubular hypersurfaces in Euclidean spaces and give some results about tubular hypersurfaces in
E*. In this context, we prove that the tubular hypersurfaces are linear Weingarten hypersurfaces in E*.

We hope that, this study will give a new perspective to readers who deal with the canal hypersurfaces
in E* and E". As open problems, this study can be handled in Minkowskian, Galilean and pseudo-Galilean
4-spaces in the near future. Also, some important characterizations for the Laplace-Beltrami operators on
the canal hypersurfaces or different classifications for canal hypersurfaces in different 4-dimensional spaces
can be investigated.
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