

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Orlicz mixed projection body

Chang-Jian Zhao^a

^a Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

Abstract. In the paper, our main aim is to generalize the mixed projection body $\Pi(K_1, \ldots, K_{n-1})$ of (n-1) convex bodies K_1, \ldots, K_{n-1} to the Orlicz space. Under the framework of Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric operation call it *Orlicz mixed projection body* $\Pi_{\varphi}(K_1, \ldots, K_n)$ of n convex bodies K_1, \ldots, K_n . The new affine geometric quantity in special case yields the classical mixed projection body $\Pi(K_1, \ldots, K_{n-1})$ and Orlicz projection body $\Pi_{\varphi}K$ of convex body K, respectively. The related concept of L_p -mixed projection body of K_1, \ldots, K_n is also derived. An Orlicz Alesandrov-Fenchel inequality for the Orlicz mixed projection body is established, which in special case yields a new L_p -projection Alesandrov-Fenchel inequality. As an application, we establish a polar Orlicz Alesandrov-Fenchel inequality for the polar of Orlicz mixed projection body.

1. Introduction

If K is a nonempty closed (not necessarily bounded) convex set in \mathbb{R}^n , then (see e.g. [6])

$$h(K, x) = \max\{x \cdot y : y \in K\},\$$

for $x \in \mathbb{R}^n$, defines the support function h(K, x) of K, where $x \cdot y$ denotes the usual inner product of x and y in \mathbb{R}^n . A nonempty closed convex set is uniquely determined by its support function.

Associated with convex bodies (compact convex subsets with nonempty interiors) $K_1, ..., K_n$ is a Borel measure, $S(K_1, ..., K_{n-1}; \cdot)$, on S^{n-1} , called the mixed surface area measure of $K_1, ..., K_{n-1}$, which has the property that for each compact convex subset K_n (see e.g [23]),

$$V(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} h(K_n,u) dS(K_1,\ldots,K_{n-1};u).$$
 (1.1)

In fact, the measure $S(K_1,...,K_{n-1};\cdot)$, can be defined by the property that (1.1) holds for all K_n , and $V(K_1,...,K_n)$ denotes the mixed volume of convex bodies $K_1,...,K_n$. An important generalization of the Minkowski inequality is the Aleksandrov-Fenchel inequality:

Received: 11 September 2022; Revised: 05 February 2023; Accepted: 08 February 2023

Communicated by Dragan S. Djordjević

Research supported by Research is supported by National Natural Science Foundation of China (11371334.109721205). *Email address:* chjzhao@163.com; chjzhao@cjlu.edu.cn (Chang-Jian Zhao)

²⁰²⁰ Mathematics Subject Classification. Primary 46E30; Secondary 52A30.

 $[\]textit{Keywords}$. mixed volume; projection body; mixed projection body; \textit{L}_p -projection body; Orlicz mixed projection body; Jensen's inequality; Alesandrov-Fenchel inequality for mixed projection bodies.

The Alesandrov-Fenchel inequality for mixed volumes. If $K_1, ..., K_n$ are convex bodies and $1 \le r < n$, then (see e.g. [14])

$$V(K_1, \dots, K_n) \ge \prod_{i=1}^r V(K_j, \dots, K_j, K_{r+1}, \dots, K_n)^{1/r}.$$
 (1.2)

Unfortunately, the equality conditions of this inequality are, in general, unknown.

If $K_1, ..., K_r$ are compact convex subsets and $\lambda_1, ..., \lambda_r \ge 0$, then the projection body of the Minkowski linear combination

$$\lambda_1 K_1 + \cdots + \lambda_r K_r$$

(compact convex subset) can be written as a symmetric homogeneous polynomial of degree (n-1) in the λ_i (see [14]).

$$\mathbf{\Pi}(\lambda_1 K_1 + \dots + \lambda_r K_r) = \sum_{i=1}^r \lambda_{i_1} \dots \lambda_{i_{n-1}} \mathbf{\Pi}_{i_1 \dots i_{n-1}},$$
(1.3)

where the sum is a Minkowski sum of positive integers not exceeding r. The convex body $\Pi_{i_1\cdots i_{n-1}}$ is uniquely determined by (1.3). It is called the *mixed projection body* of $K_{i_1}, \ldots, K_{i_{n-1}}$ and is written as $\Pi(K_1, \ldots, K_{n-1})$, and (see [15])

$$h(\mathbf{\Pi}(K_1,\ldots,K_{n-1}),x)=\frac{1}{2}\int_{S^{n-1}}|x\cdot u|dS(K_1,\ldots,K_{n-1};u),$$
(1.4)

for $x \in S^{n-1}$. One of the fundamental inequalities for the for mixed projection bodies is the following projection Alesandrov-Fenchel inequality:

The Alesandrov-Fenchel inequality for mixed projection bodies. *If* $K_1, ..., K_{n-1}$ *are compact convex subsets and* $1 \le r < n$, *then* (see [14])

$$V(\mathbf{\Pi}(K_1,\ldots,K_{n-1})) \ge \prod_{j=1}^r V(\mathbf{\Pi}(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}.$$
 (1.5)

The study of projection bodies or zonoids in \mathbb{R}^n had a long and complicated history. A extensive article that detail this is by Bolker [4]. After the appearance of Bolker's article, projection bodies have received considerable attention. Many recent excellent results have been discovered by Goodey and Weil [9], Martini [21] and Schneider and Weil [24]. The definition and elementary properties of mixed projection bodies can be found in [5]. The support functions and brightness functions of mixed projection bodies were studied by Chakerian [7]. In 1988, a fascinating paper of Alexander [2] demonstrates a close relationship between the study of projection bodies and work on Hilbert's fourth Problem. Also, Lutwak had studied in systematize the the mixed projection bodies and their polars and obtained a number of elegant results [14], [15], [16], [17], [18] and [19]. Recent research on this subject can be found in the literature [1], [3], [11], [12], [13], [22], [25], [26], [27], [28], [29], [30], [31], [32] and [33].

In the paper, we consider convex function $\varphi: \mathbb{R} \to [0,\infty)$ with $\varphi(0) = 0$. This means that φ must be decreasing on $(-\infty,0]$ and increasing on $[0,\infty)$. We will assume throughout that one of these is happening strictly so; namely, φ is either strictly decreasing on $(-\infty,0]$ or strictly increasing on $[0,\infty)$. Let Φ be the class of convex and strictly increasing functions $\varphi:[0,\infty)\to[0,\infty)$ such that $\varphi(0)=0$, and C be the class of convex and strictly decreasing functions $\varphi:[-\infty,0)\to[0,\infty)$ such that $\varphi(0)=0$.

The *Orlicz mixed projection body* $\Pi_{\varphi}(K_1,...,K_n)$ of n convex bodies $K_1,...,K_n$ is defined as the body whose support function (see Sec. 3 for the definition) is given by

$$h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x)=\inf\left\{\lambda>0:\int_{S^{n-1}}\varphi\left(\frac{x\cdot u}{\lambda h(K_n,u)}\right)dV(K_1,\ldots,K_n;u)\leq 1\right\},\tag{1.6}$$

for $x \in S^{n-1}$, where $dV(K_1, ..., K_n; u)$ denotes mixed volume probability measure of convex bodies $K_1, ..., K_n$, and (see [34])

$$dV(K_1, \dots, K_n; u) = \frac{1}{nV(K_1, \dots, K_n)} h(K_n, u) dS(K_1, \dots, K_{n-1}; u).$$
(1.7)

For convex body K, and $u \in S^{n-1}$, let K^u denote the image of the orthogonal projection of K onto ξ_u , the (n-1)-dimensional subspace of \mathbb{R}^n that is orthogonal to u. If K_1, \ldots, K_{n-1} are convex bodies, then write $v(K_1^u, \ldots, K_{n-1}^u)$ for the mixed volume of the figures K_1^u, \ldots, K_{n-1}^u in the space ξ_u . With $\varphi = \varphi_1(t) = |t|$, it turns out that for $u \in S^{n-1}$

$$h(\Pi_{\varphi_1}(K_1,\ldots,K_n),u)=\frac{c_n}{V(K_1,\ldots,K_n)}v(K_1^u,\ldots,K_{n-1}^u).$$

where c_n denotes a constant depending only n. Further,

$$\Pi_{\varphi_1}(K_1,\ldots,K_n) = \frac{c_n}{V(K_1,\ldots,K_n)} \Pi(K_1,\ldots,K_{n-1}).$$
(1.8)

This shows the classical mixed projection body $\Pi(K_1, ..., K_{n-1})$ is a special case of the Orlicz mixed projection body $\Pi_{\varphi}(K_1, ..., K_n)$.

When $K_1 = \cdots = K_n = K$, it turns out that

$$\Pi_{\varphi}(K,\ldots,K) = \Pi_{\varphi}K,\tag{1.9}$$

where $\Pi_{\varphi}K$ is the Orlicz projection body given by Lutwak, Yang and Zhang [20] as follows

$$h(\mathbf{\Pi}_{\varphi}K, x) = \inf\left\{\lambda > 0 : \int_{\partial K} \varphi\left(\frac{x \cdot v(y)}{\lambda y \cdot v(y)}\right) y \cdot v(y) d\mathcal{H}^{n-1}(y) \le nV(K)\right\},\tag{1.10}$$

for $x \in S^{n-1}$, where v(y) is the outer unit normal of ∂K at $y \in \partial K$, $x \cdot v(y)$ denotes the inner product of x and v(y), and \mathcal{H}^{n-1} is (n-1)-dimensional Hausdorff measure.

When $\varphi = \varphi_p(t) = |t|^p$, and $p \ge 1$,

$$\Pi_{\varphi_p}(K_1,\ldots,K_n) = \frac{c_{n,p}}{V(K_1,\ldots,K_n)^{1/p}} \Pi_p(K_1,\ldots,K_n),$$
(1.11)

where $c_{n,p}$ denotes a constant depending only n and p, and $\Pi_{\varphi_p}(K_1, \ldots, K_n)$ is a new mixed projection body, and call it L_p -mixed projection body of convex bodies K_1, \ldots, K_n , defined as the convex body whose support function is given by

$$h(\mathbf{\Pi}_{\varphi_p}(K_1,\ldots,K_n),x) = \left(\int_{S^{n-1}} |x\cdot u|^p h(K_n,u)^{1-p} dS(K_1,\ldots,K_{n-1};u)\right)^{1/p},$$
(1.12)

for $x \in S^{n-1}$. Putting $K_1 = \cdots = K_n = K$ in (1.12), the L_p -mixed projection body $\Pi_{\varphi_p}(K_1, \ldots, K_n)$ becomes the well-known L_p -projection body $\Pi_p K$ of K, and (see [18])

$$h(\mathbf{\Pi}_{\varphi_p}K,x) = \left(\int_{S^{n-1}} |x\cdot u|^p h(K,u)^{1-p} dS(K;u)\right)^{1/p}.$$

Namely (see [20])

$$h(\Pi_{\varphi_p} K, x) = \left(\int_{\partial K} |x \cdot v(y)|^p |y \cdot v(y)|^{1-p} d\mathcal{H}^{n-1}(y) \right)^{1/p}.$$
 (1.13)

In this Section 4, we establish the following Alesandrov-Fenchel inequality for the Orlicz mixed projection bodies $\Pi_{\varphi}(K_1, ..., K_n)$.

The Orlicz projection Alesandrov-Fenchel inequality. *If* $K_1, ..., K_n \in \mathcal{K}_o^n$, $1 \le r < n$, $\varphi \in \Phi \cup C$, then

$$V(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n)) \ge \left(\frac{2}{nc_{\varphi}V(K_1,\ldots,K_n)}\right)^n \prod_{i=1}^r V(\mathbf{\Pi}(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}, \tag{1.14}$$

where c_{φ} is in as (2.3).

Putting $\varphi(t) = |t|^p$ and $p \ge 1$ in (1.14), a new L_p projection Alesandrov-Fenchel inequality is also derived (see Sec. 4). Obviously, the classical projection Alesandrov-Fenchel inequality (1.5) is also a special case of (1.14).

As an application, we establish the following polar Orlicz Alesandrov-Fenchel inequality for polar of Orlicz mixed projection body.

The Orlicz polar projection Alesandrov-Fenchel inequality. *If* $K_1, ..., K_n \in \mathcal{K}_o^n$, $1 \le r < n$ and $\varphi \in \Phi \cup C$, then

$$V(\mathbf{\Pi}_{\varphi}^{*}(K_{1},\ldots,K_{n})) \leq \left(\frac{2V(K_{1},\ldots,K_{n})}{nc_{\varphi}}\right)^{n} \cdot \prod_{j=1}^{r} V(\mathbf{\Pi}^{*}(K_{j},\ldots,K_{j},K_{r+1},\ldots,K_{n-1}))^{1/r}, \tag{1.15}$$

where $\Pi^*(K_1,...,K_{n-1})$ denotes the polar of mixed projection body $\Pi(K_1,...,K_{n-1})$ and $\Pi^*_{\varphi}(K_1,...,K_n)$ the polar of Orlicz mixed body $\Pi_{\varphi}(K_1,...,K_n)$ (see Section 2).

2. Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space \mathbb{R}^n . We write \mathcal{K}^n for the set of convex bodies (compact convex subsets with nonempty interiors) of \mathbb{R}^n . We write \mathcal{K}^n_o for the set of convex bodies that contain the origin in their interiors. We reserve the letter $u \in S^{n-1}$ for unit vectors, and the letter B for the unit ball centered at the origin. For a compact set K, we write V(K) for the (n-dimensional) Lebesgue measure of K and call this the volume of K. Support function is homogeneous of degree 1, that is,

$$h(K, rx) = rh(K, x), \tag{2.1}$$

for all $x \in \mathbb{R}^n$ and $r \ge 0$.

2.1 Basics regarding convex bodies

For $\phi \in GL(n)$ write ϕ^t for the transpose of ϕ and ϕ^{-t} for the inverse of the transpose of ϕ . Write $|\phi|$ for the absolute value of the determinant of ϕ . Observe that from the definition of the support function it follows immediately that for $\phi \in GL(n)$ the support function of the image $\phi K = \{\phi y : y \in K\}$ is given by

$$h(\phi K, x) = h(K, \phi^t x), \tag{2.2}$$

Let d denote the Hausdorff metric on \mathcal{K}^n , i.e., for $K, L \in \mathcal{K}^n$,

$$d(K,L) = |h(K,u) - h(L,u)|_{\infty},$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$. Define c_{ω} by

$$c_{\varphi} = \min\{c > 0 : \max\{\varphi(c), \varphi(-c)\} \le 1\}$$
 (2.3)

We say that the sequence $\{\varphi_i\}$, where the $\varphi_i \in \Phi \cup C$, is such that $\varphi_i \to \varphi_0 \in \Phi \cup C$ provided

$$|\varphi_i - \varphi_0|_I := \max_{t \in I} |\varphi_i(t) - \varphi_0(t)| \to 0,$$
 (2.4)

for every compact interval $I \subset \mathbb{R}$.

The classical Aleksandrov-Fenchel-Jessen surface area measure, $S(K, \cdot)$, of the convex body K can be defined as the unique Borel measure on S^{n-1} such that

$$\int_{S^{n-1}} f(u)dS(K, u) = \int_{\partial K} f(v_K(y))d\mathcal{H}^{n-1}(y),$$
(2.5)

for each continuous $f: S^{n-1} \to \mathbb{R}$. Hence, for $K \in \mathcal{K}_o^n$

$$V(K) = \frac{1}{n} \int_{S^{n-1}} h(K, u) dS(K, u) = \frac{1}{n} \int_{\partial K} y \cdot v_K(y) d\mathcal{H}^{n-1}(y).$$
 (2.6)

If $K \in \mathcal{K}_o^n$, then the polar body K^* is defined by

$$K^* = \{x \in \mathbb{R}^n : x \cdot y \le 1 \text{ for all } y \in K\}.$$

It is easy to verify that

$$(K^*)^* = K.$$

Let $\rho(K,\cdot) = \mathbb{R}^n \setminus \{0\} \to [0,\infty)$ denote radial function of $K \in \mathcal{K}_0^n$, i.e.

$$\rho(K, x) = \max\{\lambda > 0 : \lambda x \in K\}.$$

It is easily verified that

$$h(K^*, x) = 1/\rho(K, x)$$
 and $\rho(K^*, x) = 1/h(K, x)$. (2.7)

2.2 Mixed volumes

If $K_i \in \mathcal{K}^n$ (i = 1, 2, ..., r) and λ_i (i = 1, 2, ..., r) are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^{r} \lambda_i K_i$ is a homogeneous polynomial in λ_i given by (see e.g. [14])

$$V(\lambda_1 K_1 + \dots + \lambda_n K_n) = \sum_{i_1,\dots,i_n} \lambda_{i_1} \dots \lambda_{i_n} V_{i_1\dots i_n}, \qquad (2.8)$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V_{i_1...i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n} and is uniquely determined by (2.8), it is called the mixed volume of K_i, \ldots, K_{i_n} , and is written as $V(K_1, \ldots, K_n)$. Associated with $K_1, \ldots, K_n \in \mathcal{K}^n$ is a Borel measure $S(K_1, \ldots, K_{n-1}; \cdot)$ on S^{n-1} , called the mixed surface area measure of K_1, \ldots, K_{n-1} , which has the property that for each $K \in \mathcal{K}^n$ (see e.g. [8], p.353),

$$V(K_1, \dots, K_n) = \frac{1}{n} \int_{S^{n-1}} h(K, u) dS(K_1, \dots, K_{n-1}; u).$$
 (2.9)

In fact, the measure $S(K_1, ..., K_{n-1}; \cdot)$ can be defined by the propter that (2.9) holds for all $K \in \mathcal{K}^n$. Let $K_1 = ... = K_{n-i-1} = K$ and $K_{n-i} = ... = K_{n-1} = L$, then the mixed surface area measure $S(K_1, ..., K_{n-1}; \cdot)$ is written as $S_i(K, L; \cdot)$. When L = B, $S_i(K, L; \cdot)$ is written as $S_i(K, \cdot)$ and called as ith mixed surface area measure. A fundamental inequality for mixed volume $V(K_1, ..., K_n)$ is the following Alesandrov-Fenchel inequality: If $K_1, ..., K_{n-1}$ are convex bodies and $1 \le r < n$, then

$$V(K_1, \dots, K_n) \ge \prod_{j=1}^r V(K_j, \dots, K_j, K_{r+1}, \dots, K_n)^{1/r}.$$
 (2.10)

Let $K_1 = ... = K_{n-i} = K$ and $K_{n-i+1} = ... = K_n = L$, then the mixed volume $V(K_1, ..., K_n)$ is written as $V_i(K, L)$. When i = 1, $V_i(K, L)$ becomes the classical mixed volume $V_1(K, L)$ of K and K, and

$$V_1(K,L) = \frac{1}{n} \lim_{\varepsilon \to 0^+} \frac{V(K+\varepsilon L) - V(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} h(L,u) dS(K,u). \tag{2.11}$$

A fundamental inequality for mixed volume $V_1(K, L)$ is the following Minkowski inequality: For $K, L \in \mathcal{K}^n$,

$$V_1(K,L)^n \ge V(K)^{n-1}V(L),$$
 (2.12)

with equality if and only if *K* and *L* are homothetic.

2.3 Mixed projection body

The projection body ΠK of a convex body $K \in \mathcal{K}^n$, is defined as the convex body whose support function is given by (see [14])

$$h(\Pi K, u) = v(K^u), \ u \in S^{n-1},$$
 (2.13)

where $v(K^u)$ denote the (n-1)-dimensional volume of $K|\xi_u$.

If $K_1, ..., K_{n-1} \in \mathcal{K}^n$, then the mixed projection body of $K_1, ..., K_{n-1}$ is denoted by $\Pi(K_1, ..., K_{n-1})$, and whose support function is given, for $u \in S^{n-1}$, by (see [14])

$$h(\Pi(K_1,\ldots,K_{n-1}),u)=v(K_1^u,\ldots,K_{n-1}^u).$$
(2.14)

Thus

$$h(\mathbf{\Pi}(K_1, \dots, K_{n-1}), u) = nV(K_1, \dots, K_{n-1}, \bar{u}). \tag{2.15}$$

where \bar{u} denotes the closed line segment connecting -u and u.

If $K_1, \ldots, K_{n-1} \in \mathcal{K}^n$ and $\phi \in SL(n)$, then

$$\Pi(\phi K_1, \dots, \phi K_{n-1}) = \phi^{-t} \Pi(K_1, \dots, K_{n-1}). \tag{2.16}$$

The mixed projection operator is monotone nondecreasing with respect to set inclusion; i.e., if K_i , L_i $(i = 1, 2, ..., n - 1) \in \mathcal{K}^n$ and $K_i \subset L_i$, then

$$\Pi(K_1,\ldots,K_{n-1})\subset\Pi(K_1,\ldots,K_{n-1}).$$
 (2.17)

An important fact is the following:

$$h(\mathbf{\Pi}(K_1,\ldots,K_{n-1}),u)=\frac{1}{n}\int_{S^{n-1}}|u\cdot v|dS(K_1,\ldots,K_{n-1};v). \tag{2.18}$$

For the polar of mixed projection body $\Pi(K_1,...,K_{n-1})$ we will simply write $\Pi^*(K_1,...,K_{n-1})$ not $(\Pi(K_1,...,K_{n-1}))^*$. An important inequality on the polar of mixed projection body is the following polar Aleksandrov-Fenchel inequality for the polar of mixed projection body.

The polar Alesandrov-Fenchel inequality. If $K_1, \ldots, K_{n-1} \in \mathcal{K}_0^n$ and $1 \le r < n$, then

$$V(\mathbf{\Pi}^*(K_1,\ldots,K_{n-1})) \le \prod_{j=1}^r V(\mathbf{\Pi}^*(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}, \tag{2.19}$$

with equality if K_1, \ldots, K_{n-1} are homothetic (see [11]).

3. Orlicz mixed projection body

We first give the definition of Orlicz mixed projection body of (n + 1) convex bodies as follows.

Definition 3.1 Let $K_1, ..., K_n \in \mathcal{K}^n$ and $\varphi \in \Phi \cup C$, the Orlicz mixed projection body of $K_1, ..., K_n$, denoted by $\Pi_{\varphi}(K_1, ..., K_n)$, defined by

$$h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x):=\inf\left\{\lambda>0:\int_{S^{n-1}}\varphi\left(\frac{x\cdot u}{\lambda h(K_n,u)}\right)dV(K_1,\ldots,K_n;u)\leq 1\right\}.$$
 (3.1)

Since $\varphi \in \Phi \cup C$, it follows that the function:

$$\lambda \to \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda h(K_n, u)}\right) dV(K_1, \dots, K_n; u)$$

is also strictly decreasing in $(0, \infty)$. This yields that

Lemma 3.2 If $K_1, \ldots, K_n \in \mathcal{K}_o^n$, $\varphi \in \Phi \cup C$ and $x_o \in \mathbb{R}^n/\{0\}$, then

$$\int_{S^{n-1}} \varphi\left(\frac{x_o \cdot u}{\lambda_o h(K_n, u)}\right) dV(K_1, \dots, K_n; u) = 1$$

if and only if

$$h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x_o)=\lambda_o.$$

In the following, we show that the Orlicz mixed projection body $\Pi_{\varphi}(K_1, ..., K_n)$ is indeed a convex body containing the origin in its interior.

Lemma 3.3 *If* $K_1, ..., K_n \in \mathcal{K}_o^n$, and $\varphi \in \Phi \cup C$, then the function $h(\Pi_{\varphi}(K_1, ..., K_n), x)$ is homogeneous of degree one, sub-additive and positive.

Proof First, for any $\gamma > 0$, and noticing that $dV(K_1, \dots, K_n; u)$ is a probability measure on S^{n-1} , we obtain

$$h(\mathbf{\Pi}_{\varphi}(K_{1},\ldots,K_{n}),\gamma x) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{\gamma(x \cdot u)}{\lambda h(K_{n},u)}\right) dV(K_{1},\ldots,K_{n};u) \leq 1\right\}$$

$$= \gamma \inf\left\{\mu > 0: \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\mu h(K_{n},u)}\right) dV(K_{1},\ldots,K_{n};u) \leq 1\right\}$$

$$= \gamma h(\mathbf{\Pi}_{\varphi}(K_{1},\ldots,K_{n}),x),$$

where $\mu = \frac{\lambda}{\nu}$.

Next, we prove that $h(\Pi_{\varphi}(K_1,...,K_n),x)$ is sub-additive.

Let $h(\Pi_{\varphi}(K_1,\ldots,K_n),x_1)=\lambda_1$ and $h(\Pi_{\varphi}(K_1,\ldots,K_n),x_2)=\lambda_2$, then

$$\int_{S^{n-1}} \varphi\left(\frac{x_1 \cdot u}{\lambda_1 h(K_n, u)}\right) dV(K_1, \dots, K_n; u) = 1,$$
(3.2)

and

$$\int_{S^{n-1}} \varphi\left(\frac{x_2 \cdot u}{\lambda_2 h(K_n, u)}\right) dV(K_1, \dots, K_n; u) = 1.$$
(3.3)

Combining the convexity of the function $s \to \varphi(s/h(K_n, u))$, we obtain

$$1 = \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} \int_{S^{n-1}} \varphi\left(\frac{x_{1} \cdot u}{\lambda_{1} h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u) + \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} \int_{S^{n-1}} \varphi\left(\frac{x_{2} \cdot u}{\lambda_{2} h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

$$\geq \int_{S^{n-1}} \varphi\left(\frac{x_{1} \cdot u + x_{2} \cdot u}{(\lambda_{1} + \lambda_{2}) h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

$$= \int_{S^{n-1}} \varphi\left(\frac{(x_{1} + x_{2}) \cdot u}{(\lambda_{1} + \lambda_{2}) h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

Hence

$$h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x_1+x_2) \leq \lambda_1+\lambda_2$$

= $h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x_1)+h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x_2).$

Moreover, for $x \neq 0$, obviously $h(\Pi_{\varphi}(K_1, ..., K_n), x) > 0$.

This shows also that $h(\Pi_{\varphi}(K_1,...,K_n),x)$ is a support function of a convex body $\Pi_{\varphi}(K_1,...,K_n)$ that contains the origin in its interior.

In the following, we prove that the Orlicz projection operator $\Pi_{\varphi}(K_1,\ldots,K_n):\underbrace{\mathcal{K}^n\times\cdots\times\mathcal{K}^n}_{}\to\mathcal{K}^n$ is

continuous.

Lemma 3.4 If $K_1, ..., K_n \in \mathcal{K}_o^n$, and $\varphi \in \Phi \cup C$, then the Orlicz mixed projection operator $\Pi_{\varphi}(K_1, ..., K_n)$: $\underbrace{\mathcal{K}^n \times \cdots \times \mathcal{K}^n}_{} \to \mathcal{K}^n$ is continuous.

Proof To see this, indeed, let $K_{ij} \in S^n$, $i \in \mathbb{N} \cup \{0\}$, j = 1, ..., n, be such that $K_{ij} \to K_{0j}$ as $i \to \infty$. Noting that

$$h(\mathbf{\Pi}_{\omega}(K_{i1},\ldots,K_{in}),x)$$

$$= \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi \left(\frac{x \cdot u}{\lambda h(K_{in}, u)} \right) dV(K_{i1}, \dots, K_{i(n-1)}; u) \le 1 \right\}$$

$$= \inf \left\{ \lambda > 0 : \frac{1}{nV(K_{i1}, \dots, K_{in})} \int_{S^{n-1}} \varphi \left(\frac{x \cdot u}{\lambda h(K_{in}, u)} \right) h(K_{in}, u) dS(K_{i1}, \dots, K_{i(n-1)}; u) \le 1 \right\}$$

Since the mixed area measures is weakly continuous, i.e.

$$dS(K_{i1},...,K_{i(n-1)};u) \to dS(K_{01},...,K_{0(n-1)};u)$$
 weakly on S^{n-1} .

Since $h(K_{in}, u) \to h(K_{0n}, u)$, uniform on S^{n-1} , and φ is continuous, implies that

$$\varphi\left(\frac{x \cdot u}{\lambda h(K_{in}, u)}\right) \to \varphi\left(\frac{x \cdot u}{\lambda h(K_{0n}, u)}\right).$$

Further

$$\int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda h(K_{in}, u)}\right) dV(K_{i1}, \dots, K_{i(n-1)}; u) \to \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda h(K_{0n}, u)}\right) dV(K_{01}, \dots, K_{0(n-1)}; u).$$

Hence

$$\lim_{i \to \infty} h(\mathbf{\Pi}_{\varphi}(K_{i1}, \dots, K_{in}), x) = \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda h(K_{0n}, u)}\right) dV(K_{01}, \dots, K_{0(n-1)}; u) \le 1 \right\}$$

$$= h(\mathbf{\Pi}_{\varphi}(K_{01}, \dots, K_{0n}), x).$$

This shows that the Orlicz projection operator $\Pi_{\varphi}(K_1, \dots, K_n)$ is continuous. **Lemma 3.5** *If* $K_1, \ldots, K_n \in \mathcal{K}_0^n$, and $\varphi_i \in \Phi \cup C$, then

$$\varphi_i \to \varphi \Rightarrow h(\Pi_{\varphi_i}(K_1, \dots, K_n), x) \to h(\Pi_{\varphi}(K_1, \dots, K_n), x).$$
 (3.4)

Proof Noting that $\varphi_i \to \varphi \in \Phi \cap C$ and $dV(K_1, \dots, K_n; u)$ is a probability measure on S^{n-1} , implies that

$$\varphi_i\left(\frac{x\cdot u}{\lambda h(K_n, u)}\right) \to \varphi\left(\frac{x\cdot u}{\lambda h(K_n, u)}\right) \in \Phi.$$

Further

$$\int_{S^{n-1}} \varphi_i \left(\frac{x \cdot u}{\lambda h(K_n, u)} \right) dV(K_1, \dots, K_n; u) \to \int_{S^{n-1}} \varphi \left(\frac{x \cdot u}{\lambda h(K_n, u)} \right) dV(K_1, \dots, K_n; u).$$

Hence

$$\lim_{i\to\infty}h(\mathbf{\Pi}_{\varphi_i}(K_1,\ldots,K_n),x) = \inf\left\{\lambda>0: \int_{S^{n-1}}\varphi\left(\frac{x\cdot u}{\lambda h(K_n,u)}\right)dV(K_1,\ldots,K_n;u)\leq 1\right\}$$
$$= h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x).$$

Lemma 3.6 If $K_1, ..., K_n \in \mathcal{K}_o^n$, and $\varphi \in \Phi \cup C$, then the Orlicz mixed projection operator $\Pi_{\varphi}(K_1, ..., K_n)$: $\underbrace{\mathcal{K}^n \times \cdots \times \mathcal{K}^n}_{} \to \mathcal{K}^n$ is bounded.

Proof Choosing *c* such that $h(\Pi(K_1, ..., K_{n-1}), u) \ge c > 0$. Let $x \in S^{n-1}$, and suppose that

$$h(\mathbf{\Pi}_{\omega}(K_1,\ldots,K_n),x)=\lambda_0.$$

From the definition (2.3), we may let $\varphi(c_{\varphi}) = 1$. Hence from the fact that φ in nonnegative and $\varphi(0) = 0$, and (2.5), Lemma 3.2 and Jensen's inequality, we obtain

$$1 = \varphi(c_{\varphi})$$

$$= \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda_{0}h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

$$\geq \varphi\left(\int_{S^{n-1}} \frac{x \cdot u}{\lambda_{0}h(K_{n}, u)} dV(K_{1}, \dots, K_{n}; u)\right)$$

$$= \varphi\left(\frac{1}{n\lambda_{0}V(K_{1}, \dots, K_{n})} \int_{S^{n-1}} x \cdot u dS(K_{1}, \dots, K_{n-1}; u)\right)$$

$$\geq \varphi\left(\frac{2c}{n\lambda_{0}V(K_{1}, \dots, K_{n})}\right).$$

Noticing the fact that φ is increasing on $[0, \infty)$, we have

$$\lambda_0 \ge \frac{2c}{nc_{\varphi}V(K_1, \dots, K_n)}. (3.5)$$

Next, we give the upper estimate. From (2.3), together with the fact that the function $t \to \max\{\varphi(t), \varphi(-t)\}$ is increasing on $[0, \infty)$ and noticing that $dV(K_1, \dots, K_n; u)$ is a probability measure on S^{n-1} , it yields that

$$1 = \max\{\varphi(c_{\varphi}), \varphi(-c_{\varphi})\}\$$

$$= \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda_{0}h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

$$\leq \int_{S^{n-1}} \max\left\{\varphi\left(\frac{|x \cdot u|}{\lambda_{0}h(K_{n}, u)}\right), \varphi\left(\frac{-|x \cdot u|}{\lambda_{0}h(K_{n}, u)}\right)\right\} dV(K_{1}, \dots, K_{n}; u)$$

$$\leq \int_{S^{n-1}} \max\left\{\varphi\left(\frac{1}{\lambda_{0} \min_{u \in S^{n-1}} h(K_{n}, u)}\right), \varphi\left(\frac{-1}{\lambda_{0} \min_{u \in S^{n-1}} h(K_{n}, u)}\right)\right\} dV(K_{1}, \dots, K_{n}; u).$$

Hence

$$\lambda_0 \le \frac{1}{\varphi(c_{\varphi}) \min_{u \in S^{n-1}} h(K_n, u)}.$$
(3.6)

This completes the proof.

We easy find that the volume of Orlicz mixed projection body $\Pi_{\varphi}(K_1,...,K_n)$ is invariant under simultaneous unimodular centro-affine transformation.

Lemma 3.7 *If* $K_1, \ldots, K_n \in \mathcal{K}_o^n$, $\phi \in SL(n)$, then

$$V(\mathbf{\Pi}_{\varphi}(\phi K_1, \dots, \phi K_n)) = V(\mathbf{\Pi}_{\varphi}(K_1, \dots, K_n)). \tag{3.7}$$

Proof For $x \in \mathbb{R}^n$, let \bar{x} denote the closed line segment connecting -x and x. From (2.2) and (3.1), we have, for $\phi \in SL(n)$,

$$h(\mathbf{\Pi}_{\varphi}(\phi K_{1},\ldots,\phi K_{n}),x) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda h(\phi K_{n},u)}\right) dV(\phi K_{1},\ldots,\phi K_{n-1};u) \leq 1\right\}$$

$$= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(\bar{x},u)}{\lambda h(K_{n},\phi^{t}u)}\right) dV(K_{1},\ldots,K_{n-1};\phi^{t}u) \leq 1\right\}$$

$$= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{h(\phi^{-1}\bar{x},\phi^{t}u)}{\lambda h(K_{n},\phi^{t}u)}\right) dV(K_{1},\ldots,K_{n-1};\phi^{t}u) \leq 1\right\}$$

$$= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{\phi^{-1}x \cdot \phi^{t}u}{\lambda h(K_{n},\phi^{t}u)}\right) dV(K_{1},\ldots,K_{n-1};\phi^{t}u) \leq 1\right\}$$

$$= h(\mathbf{\Pi}_{\varphi}(K_{1},\ldots,K_{n}),\phi^{-1}x)$$

$$= h(\phi^{-t}\mathbf{\Pi}_{\varphi}(K_{1},\ldots,K_{n}),x).$$

Hence

$$\Pi_{\varphi}(\phi K_1,\ldots,\phi K_n)=\phi^{-t}\Pi_{\varphi}(K_1,\ldots,K_n).$$

Since $|\det(\phi^{-1})| = 1$, it follows

$$V(\mathbf{\Pi}_{\varphi}(\phi K_1,\ldots,\phi K_n))=V(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n)).$$

This completes the proof.

4. The Orlicz projection Alesandrov-Fenchel inequality

Lemma 4.1 (Jensen's inequality) Let μ be a probability measure on a space X and $g: X \to I \subset \mathbb{R}$ is a μ -integrable function, where I is a possibly infinite interval. If $\psi: I \to \mathbb{R}$ is a convex function, then

$$\int_X \psi(g(x)) d\mu(x) \ge \psi\left(\int_X g(x) d\mu(x)\right).$$

If ψ is strictly convex, equality holds if and only if g(x) is constant for μ -almost all $x \in X$ (see [10, p.165]).

Next, we establish the following Orlicz Alesandrov-Fenchel inequality for the Orlicz mixed projection body $\Pi_{\omega}(K_1, ..., K_n)$.

Theorem 4.2 (Orlicz projection Alesandrov-Fenchel inequality) *If* $K_1, \ldots, K_n \in \mathcal{K}_o^n$, $1 \le r < n$, $\varphi \in \Phi \cup C$, then

$$V(\Pi_{\varphi}(K_1,\ldots,K_n)) \ge \left(\frac{2}{nc_{\varphi}V(K_1,\ldots,K_n)}\right)^n \prod_{j=1}^r V(\Pi(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}.$$
 (4.1)

Proof For $\varphi \in \Phi$, there must be a real number $0 < c_{\varphi} < \infty$ such that $\varphi(c_{\varphi}) = 1$, and let

$$h(\mathbf{\Pi}_{\varphi}(K_1,\ldots,K_n),x)=\lambda_0. \tag{4.2}$$

From (1.7), Lemma 3.2 and Lemma 4.1, we obtain

$$1 = \varphi(c_{\varphi})$$

$$= \int_{S^{n-1}} \varphi\left(\frac{x \cdot u}{\lambda_{0}h(K_{n}, u)}\right) dV(K_{1}, \dots, K_{n}; u)$$

$$\geq \varphi\left(\int_{S^{n-1}} \frac{x \cdot u}{\lambda_{0}h(K_{n}, u)} dV(K_{1}, \dots, K_{n}; u)\right)$$

$$= \varphi\left(\frac{1}{n\lambda_{0}V(K_{1}, \dots, K_{n})} \int_{S^{n-1}} x \cdot u dS(K_{1}, \dots, K_{n-1}; u)\right).$$

From (1.4) and in view of the monotonicity of the function φ , we obtain

$$\lambda_0 \ge \frac{2}{nc_{\varphi}} \cdot \frac{1}{V(K_1, \dots, K_n)} \cdot h(\mathbf{\Pi}(K_1, \dots, K_{n-1}), x). \tag{4.3}$$

From (2.11), (2.12) and (4.3), we have

$$V(\mathbf{\Pi}_{\varphi}(K_{1},...,K_{n})) \geq \frac{2}{nc_{\varphi}} \cdot \frac{1}{V(K_{1},...,K_{n})} V_{1}(\mathbf{\Pi}_{\varphi}(K_{1},...,K_{n}),\mathbf{\Pi}(K_{1},...,K_{n-1}))$$

$$\geq \frac{2}{nc_{\varphi}} \cdot \frac{1}{V(K_{1},...,K_{n})} V(\mathbf{\Pi}_{\varphi}(K_{1},...,K_{n}))^{(n-1)/n} V(\mathbf{\Pi}(K_{1},...,K_{n-1}))^{1/n}.$$

That is

$$V(\Pi_{\varphi}(K_{1},...,K_{n})) \geq \left(\frac{2}{nc_{\varphi}}\right)^{n} \cdot \frac{1}{V(K_{1},...,K_{n})^{n}} V(\Pi(K_{1},...,K_{n-1}))$$

$$\geq \left(\frac{2}{nc_{\varphi}}\right)^{n} \cdot \frac{1}{V(K_{1},...,K_{n})^{n}} \prod_{j=1}^{r} V(\Pi(K_{j},...,K_{j},K_{r+1},...,K_{n-1}))^{1/r}.$$

On the other hand, the case where $\varphi \in C$ (i.e. $\varphi(-c_{\varphi}) = 1$) is handled the same way and gives the same result.

This completes the proof.

What's interesting is that a new L_p projection Alesandrov-Fenchel inequality is derived as follows: **Corollary 4.3** (L_p projection Alesandrov-Fenchel inequality) If $K_1, \ldots, K_n \in \mathcal{K}_p^n$, $1 \le r < n$, $p \ge 1$, then

$$\frac{V(\mathbf{\Pi}_{\varphi_p}(K_1,\ldots,K_n))}{V(K_1,\ldots,K_n)^{n(1-p)/p}} \ge \left(\frac{2}{nc_{n,p}}\right)^n \prod_{j=1}^r V(\mathbf{\Pi}(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}.$$
(4.4)

Proof This yields immediately from (1.11) and Theorem 4.2 with $\varphi(t) = |t|^p$ and $p \ge 1$. Putting $K_1 = \cdots = K_n = K$ in (4.1), it yields the following an interesting ratio. If $K \in \mathcal{K}_o^n$ and $\varphi \in \Phi \cup C$, then

$$\frac{V(\mathbf{\Pi}_{\varphi}K)}{V(\mathbf{\Pi}K)} \ge \left(\frac{2}{nc_{\varphi}V(K)}\right)^n.$$

From above the ratio and the Petty conjecture inequality ([23, p.415, (7.4.2)]), we get that

$$V(\Pi_{\varphi}K)V(K) \ge \omega_n^2 \left(\frac{2\omega_{n-1}}{nc_{\varphi}\omega_n}\right)^n.$$

As an application, we establish also the following polar Orlicz Alesandrov-Fenchel inequality for the polar of Orlicz mixed projection body.

Theorem 4.4 (Orlicz polar projection Alesandrov-Fenchel inequality) *If* $K_1, ..., K_n \in \mathcal{K}_0^n$, $1 \le r < n$ *and* $\varphi \in \Phi \cup C$, then

$$V(\mathbf{\Pi}_{\varphi}^{*}(K_{1},\ldots,K_{n})) \leq \left(\frac{2V(K_{1},\ldots,K_{n})}{nc_{\varphi}}\right)^{n} \cdot \prod_{j=1}^{r} V(\mathbf{\Pi}^{*}(K_{j},\ldots,K_{j},K_{r+1},\ldots,K_{n-1}))^{1/r}. \tag{4.5}$$

Proof From (2.7) and (4.3), for $x \in S^{n-1}$, we have

$$\rho(\Pi_{\varphi}^{*}(K_{1},\ldots,K_{n}),x) \leq \frac{2V(K_{1},\ldots,K_{n})}{nc_{\varphi}} \cdot \rho(\Pi^{*}(K_{1},\ldots,K_{n-1}),x). \tag{4.6}$$

Hence

$$V(\mathbf{\Pi}_{\varphi}^{*}(K_{1},\ldots,K_{n})) \leq \left(\frac{2V(K_{1},\ldots,K_{n})}{nc_{\varphi}}\right)^{n} \cdot V(\mathbf{\Pi}^{*}(K_{1},\ldots,K_{n-1})). \tag{4.7}$$

From (2.19) and (4.7), we obtain

$$V(\mathbf{\Pi}_{\varphi}^{*}(K_{1},\ldots,K_{n})) \leq \left(\frac{2V(K_{1},\ldots,K_{n})}{nc_{\varphi}}\right)^{n} \cdot \prod_{j=1}^{r} V(\mathbf{\Pi}^{*}(K_{j},\ldots,K_{j},K_{r+1},\ldots,K_{n-1}))^{1/r}.$$

This completes the proof.

Corollary 4.5 (L_p polar projection Alesandrov-Fenchel inequality) If $K_1, \ldots, K_n \in \mathcal{K}_0^n$, $1 \le r < n$, $p \ge 1$, then

$$\frac{V(\mathbf{\Pi}_{\varphi_p}^*(K_1,\ldots,K_n))}{V(K_1,\ldots,K_n)^{n(p-1)/p}} \le \left(\frac{2c_{n,p}}{n}\right)^n \prod_{j=1}^r V(\mathbf{\Pi}^*(K_j,\ldots,K_j,K_{r+1},\ldots,K_{n-1}))^{1/r}.$$
(4.8)

Proof From (1.11), (2,7) and in view of the definition of the polar body, we have

$$\Pi_{\varphi_p}^*(K_1,\ldots,K_n) = \frac{V(K_1,\ldots,K_n)^{1/p}}{c_{n,p}} \Pi_p^*(K_1,\ldots,K_n), \tag{4.9}$$

This yields immediately from (4.5) and (4.9) with $\varphi(t) = |t|^p$ and $p \ge 1$. Putting $K_1 = \cdots = K_n = K$ in (4.5), it follows the following an interesting ratio. If $K \in \mathcal{K}_0^n$ and $\varphi \in \Phi \cup C$, then

$$\frac{V(\mathbf{\Pi}_{\varphi}^*K)}{V(\mathbf{\Pi}^*K)} \leq \left(\frac{2V(K)}{nc_{\varphi}}\right)^n.$$

From above the ratio and the well-known Petty conjecture inequality ([23, p.415, (7.4.5)]), we get that

$$\frac{V(\mathbf{\Pi}_{\varphi}^*K)}{V(K)} \le \left(\frac{2\omega_n}{nc_{\varphi}\omega_{n-1}}\right)^n.$$

In fact, the polar projection Alesandrov-Fenchel inequality (2.19) is also a special case of (4.5).

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgments

The author expresses his sincere thanks to the referee for his (her) many very valuable suggestions and comments.

References

- [1] J. Abardia, A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011), 830–846.
- [2] R. Alexander, Zonoid theory and Hilbert's fouth problem, Geom. Dedicata. 28 (1988), 199–211.
- [3] A, Berg, F. E. Schuster, Lutwak-Petty projection inequalities for Minkowski valuations and their dual, J. Math. Anal. Appl. 490 (2020), 1241901.
- [4] E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 1969, 323-345.
- [5] T. Bonnesen., W. Fenchel, Theorie der Konvexen Körper, Springer, Berlin, 1934.
- [6] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
- [7] G. D. Chakerian, Set of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26–37.
- [8] R. J. Gardner, Geometric Tomography, (2rd edition), Cambridge University Press, New York, 2006.
- [9] P. R. Goodey, W. Weil, Zonoids and generalizations. In Handbook of convex Geometry, ed. by Gruder and Wills J.M. North-Holland, Amsterdam. 326 1993, 1297.
- [10] J. Hoffmann-Jørgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall. New York, 1994, pp. 165–243.
- [11] G. Leng, C.-J. Zhao, B. He, X. Li, Inequalities for polars of mixed projection bodies, Sci. China, 47 (2) (2004), 175–180.
- [12] M. Ludwig, *Projection bodies and valuations*, Adv. Math. **172** (2002), 158–168.
- [13] M. Ludwig, *Minkowski valuations*, Trans. Amer. Math. Soc. **357** (2005), 4191–4213.
- [14] E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (2) (1993), 901–916.
- [15] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1) (1985), 91–106.
- [16] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
- [17] E. Lutwak, On quermassintegrals of mixed projection bodies, Geom. Dedicata. 33 (1990), 51–58.
- [18] E. Lutwak, L_p affine isoperimetric inequalities, J. Diff. Geom. 56 (2000), 111–132.
- [19] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60 (3) (1990), 365–391.
- [20] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220–242.
- [21] H. Martini, Zur Bestimmung Konvexer Polytope durch the Inhalte ihrer Projection, Beiträge Zur Algebra und Geometrie. 18 (1984), 75–85.
- [22] C. Saroglon, A. Zvavitch, Iterations of the projection body operator and a remark on Petty's conjectured projection inequality, J. Func. Anal. 272 (2017), 613–630.

- [23] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
- [24] R. Schneider, W. Weil, Zonoids and related topics, Convexity and its Applications, Birkhäuser, Basel, 1983, pp.296-317.
- [25] C. Steineder, Subword complexity and projection bodies, Adv. Math. 217 (2008), 2377–2400.
- [26] Z. Tang, L. Si, Mixed L_p projection inequality, Indagations Math. 32 (2021), 745–758.
- [27] W. Wang, G. Leng, Inequalities of the quarmassintegrals for the L_p-projection body and the L_p-centroid body, Acta Math. Sci. **30B** (2010), 350–368.
- [28] D. Wu, Z.-H. Bu, A variant of the L_p-Shephard problem via (p,q)-projection bodies, J. Math. Anal. Appl. 504 (2021), 125411.
- [29] C.-J. Zhao, On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms, J. Geom. Anal. 26 (2016), 1523–1538.
- [30] C.-J. Zhao, The L_p -mixed geominimal surface areas, Math. Notes. 112 (2022), 1044–1058.
- [31] C.-J. Zhao, On Blaschke–Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms, J. Geom. Anal. 26 (2016), 1523–1538
- [32] C.-J. Zhao, On radial and polar Blaschke-Minkowski Homomorphisms, Proc. Amer. Math. Soc. 141 (2013), 667-676.
- [33] C.-J. Zhao, W. S. Cheung, Orlicz mixed radial Blaschke-Minkowski homomorphisms, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114 (2020): 106.
- [34] C.-J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces. 2018 (2018), Article ID 9752178, 16 pages.