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Orlicz mixed projection body
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Abstract. In the paper, our main aim is to generalize the mixed projection body II(Ky, ..., K,_1) of (n — 1)
convex bodies Kj, ..., K,_; to the Orlicz space. Under the framework of Orlicz-Brunn-Minkowski theory,
we introduce a new affine geometric operation call it Orlicz mixed projection body I1,(K, ..., K,) of n convex
bodies Kj, ..., K,. The new affine geometric quantity in special case yields the classical mixed projection
body II(K, ..., K,-1) and Orlicz projection body II,K of convex body K, respectively. The related concept
of L,-mixed projection body of n convex bodies IL,(Kj,...,K,) is also derived. An Orlicz Alesandrov-
Fenchel inequality for the Orlicz mixed projection body is established, which in special case yields a new

L,-projection Alesandrov-Fenchel inequality. As an application, we establish a polar Orlicz Alesandrov-
Fenchel inequality for the polar of Orlicz mixed projection body.

1. Introduction

If K is a nonempty closed (not necessarily bounded) convex set in R", then (see e.g. [6])
h(K,x) = max{x-y:yeKj},

for x € R", defines the support function h(K;, x) of K, where x - y denotes the usual inner product of x and y
in R". A nonempty closed convex set is uniquely determined by its support function.

Associated with convex bodies (compact convex subsets with nonempty interiors) Ky, ..., K, is a Borel
measure, S(Ky,...,K,_1;-), on "1, called the mixed surface area measure of Ki,...,K,_;, which has the
property that for each compact convex subset K, (see e.g [23]),

1
V(Kl,...,Kn):;f (K, w)dS(Ks, . .., Kyo1; 10). (1.1)
Sn—l

In fact, the measure S(Kj,...,K;-1;-), can be defined by the property that (1.1) holds for all K,, and
V(Ky,...,K,) denotes the mixed volume of convex bodies Kj, ..., K,. An important generalization of the
Minkowski inequality is the Aleksandrov-Fenchel inequality:
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The Alesandrov-Fenchel inequality for mixed volumes. If Ky, ..., K, are convex bodies and 1 < r < n,
then (see e.g. [14])

r
VK, ... Ky > H VK., KjKps, oo K. 1.2)
j=1

Unfortunately, the equality conditions of this inequality are, in general, unknown.
If Ky, ..., K, are compact convex subsets and Ay,..., A, > 0, then the projection body of the Minkowski
linear combination
MK+ -+ ALK,

(compact convex subset) can be written as a symmetric homogeneous polynomial of degree (n — 1) in the
Ai (see [14]).

ALKy + -+ AK) = Y Ay A T, (1.3)
where the sum is a Minkowski sum of positive integers not exceeding r. The convex body IT;,..;, , is uniquely

determined by (1.3). It is called the mixed projection body of K;,, ..., K;,, and is written as II(Ky, ..., K,-1),
and (see [15])

in—l

1
h(II(Ky, ..., Ky-1),x) = 3 f lx - uldS(Ky, ..., Ky_1;u), (1.4)
Gn-1

for x € §"'. One of the fundamental inequalities for the for mixed projection bodies is the following
projection Alesandrov-Fenchel inequality:

The Alesandrov-Fenchel inequality for mixed projection bodies. If Kj,...,K,_1 are compact convex
subsets and 1 < r < n, then (see [14])

r
V(K . .., Kyt)) = H VIL(K;, ..., Kj, K, -, Ky (1.5)
j=1

The study of projection bodies or zonoids in IR” had a long and complicated history. A extensive article
that detail this is by Bolker [4]. After the appearance of Bolker’s article, projection bodies have received
considerable attention. Many recent excellent results have been discovered by Goodey and Weil [9], Martini
[21] and Schneider and Weil [24]. The definition and elementary properties of mixed projection bodies can
be found in [5]. The support functions and brightness functions of mixed projection bodies were studied by
Chakerian [7]. In 1988, a fascinating paper of Alexander [2] demonstrates a close relationship between the
study of projection bodies and work on Hilbert’s fourth Problem. Also, Lutwak had studied in systematize
the the mixed projection bodies and their polars and obtained a number of elegant results [14], [15], [16],
[17], [18] and [19]. Recent research on this subject can be found in the literature [1], [3], [11], [12], [13], [22],
[25], [26], [27], [28], [29], [30], [31], [32] and [33].

In the paper, we consider convex function ¢ : R — [0, c0) with ¢(0) = 0. This means that ¢ must be
decreasing on (—oo, 0] and increasing on [0.c0). We will assume throughout that one of these is happening
strictly so; namely, ¢ is either strictly decreasing on (—oo,0] or strictly increasing on [0.c0). Let ® be the
class of convex and strictly increasing functions ¢ : [0, o) — [0, o0) such that ¢(0) = 0, and C be the class of
convex and strictly decreasing functions ¢ : [-o0,0) — [0, o) such that ¢(0) = 0.

The Orlicz mixed projection body I1,(Ky, ..., K;) of n convex bodies K, ..., K, is defined as the body whose
support function (see Sec. 3 for the definition) is given by

W, (Ky, ..., Ky),x) = inf{/\ >0: f
S

n—1

XU
(p(m)dV(Kl, ..,Kn,'lxl) < l}, (16)

forx € 5”1, where dV(Ky, ..., Ky; u) denotes mixed volume probability measure of convexbodies Kj, ..., Ky,

and (see [34])
1

dV(Kl,...,KH;M) = m
sy ivn

h(Ky, 0)dS(Ky, . .., Ky_1; 1). 1.7)
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For convex body K, and u € §"7!, let K denote the image of the orthogonal projection of K onto &,, the
(n — 1)-dimensional subspace of R” that is orthogonal to u. If Kj, ..., K,_ are convex bodies, then write

o(Ky,..., K" _,) for the mixed volume of the figures KY, ..., K_; in the space &,. With ¢ = @1(t) = [¢], it turns
out that for u € §"1 c
n
h(I'I(Pl (Kl, N ,Kn), M) = ml)(K”, cee ’KZ—I)'
where ¢, denotes a constant depending only n. Further,
Cn
I, (Ky,...,K,) = ———II(Ky, ..., K,_1). 1.8
o (Ki n) VK K (Kq n-1) (1.8)

This shows the classical mixed projection body II(Kj, . . ., K;,-1) is a special case of the Orlicz mixed projection
body Iy (K, ..., Ky).
When K; = --- = K,, = K, it turns out that

M, (K, ..., K) = ILK (1.9)

where I, K is the Orlicz projection body given by Lutwak, Yang and Zhang [20] as follows

. x-o(y) -
h(I1,K, x) = inf A>O:f (—) -o(y)dH"! SnVK}, 1.10
for x € S"71, where v(y) is the outer unit normal of JK at y € JK, x - v(y) denotes the inner product of x and
o(y), and H" ! is (n — 1)-dimensional Hausdorff measure.

When ¢ = @,(t) = |tf,and p > 1,

Cnp

I, (Ky,...,Ky) = ———
(/)P( 1 Vl) V(Kl,-n/KVl)l/p

(K, ..., Ky,), (1.11)

where ¢, , denotes a constant depending only 7 and p, and I, (K1, . . ., K;) is a new mixed projection body,
and call it L,-mixed projection body of convex bodies Kj, ..., K, defined as the convex body whose support
function is given by

1/p
h(Il,, (K, ..., Ky), x) = (f |x - ulph(Kn,u)l_PdS(Kl,...,K,,1;u)) , (1.12)
S

n—1

for x € 5" 1. Putting Ky = --- = K,, = K'in (1.12), the Lp—mixed projection body 1'[% (K1, ...,K,) becomes the
well-known L,-projection body IT,K of K, and (see [18])

1/p
h(I1y, K, x) = (f Ix - ulP (K, u)!PdS(K; u)) .
Gn-1

Namely (see [20])
1/p
h(I, K, x) = ( fa lx - o(y)Ply - v(y)|1f’d74”1(y)) ) (1.13)
K
In this Section 4, we establish the following Alesandrov-Fenchel inequality for the Orlicz mixed projec-

tion bodies I, (Ky, ..., Ky).
The Orlicz projection Alesandrov-Fenchel inequality. IfKi,...,K, € K, 1 <r <n, ¢ € DUC, then

2 n r
M, (Ky,...,Ky)) > |——————— IN(K;, ..., K, K1, ..., K )), 1.14
Vi P( ! ))_(HC(pV(Kl/...,Kn)) EV( ( ! Jr el 1) ( )

where c,, is in as (2.3).
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Putting ¢(t) = [t} and p > 1 in (1.14), a new L, projection Alesandrov-Fenchel inequality is also derived
(see Sec. 4). Obviously, the classical projection Alesandrov-Fenchel inequality (1.5) is also a special case of
(1.14).

As an application, we establish the following polar Orlicz Alesandrov-Fenchel inequality for polar of
Orlicz mixed projection body.

The Orlicz polar projection Alesandrov-Fenchel inequality. If Ky, ..., K, € K, 1 <r <nand ¢ € PUC,
then
2V(Ky,...,Ky)

y . <|l————
V(H(p(Kll /Kl’l)) = ( nC(p

n r
) : H V(H*(K/ -~/Kj/KV+1/~- -/anl))l/r/ (115)
j=1

where IT"(Ky, . .., Ky,—1) denotes the polar of mixed projection body II(Ky, ..., K,—1) and H;(Kl, ..., Ky) the polar of
Orlicz mixed body I1,(Ky, ..., K,) (see Section 2).
2. Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space IR"”. We write K™ for the set of convex bodies
(compact convex subsets with nonempty interiors) of R". We write K’ for the set of convex bodies that
contain the origin in their interiors. We reserve the letter u € S"! for unit vectors, and the letter B for
the unit ball centered at the origin. For a compact set K, we write V(K) for the (n-dimensional) Lebesgue
measure of K and call this the volume of K. Support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K, x), (2.1)
forallx e R*and r > 0.
2.1 Basics regarding convex bodies

For ¢ € GL(n) write ¢' for the transpose of ¢ and ¢~ for the inverse of the transpose of ¢. Write |¢]
for the absolute value of the determinant of ¢. Observe that from the definition of the support function it
follows immediately that for ¢ € GL(n) the support function of the image ¢K = {¢y : y € K} is given by

h(pK, x) = h(K, ¢'x), (2.2)
Let d denote the Hausdorff metric on K", i.e., for K, L € K",
d(K,L) = |h(K, u) — h(L, t)|co,
where | - | denotes the sup-norm on the space of continuous functions C(S"1). Define cy by
¢y = minfc > 0 : max{¢p(c), p(-c)} < 1} (2.3)
We say that the sequence {@;}, where the ¢; € ® U C, is such that ¢; — ¢ € ® U C provided
Ipi = ol == max|pi(t) — po(H)l — 0, (24)

for every compact interval I C R.
The classical Aleksandrov-Fenchel-Jessen surface area measure, S(K,-) , of the convex body K can be
defined as the unique Borel measure on S"~! such that

FO)AS(K, 1) = £ S ), 25)

Sn-1

for each continuous f : §"1 - R. Hence, for K € K"

V=5 [ hKdsim =+ [y, 26)
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If K € K, then the polar body K" is defined by
K={xeR":x-y<1 forall y e K}.

It is easy to verify that
(K) =K

Let p(K, -) = R"\{0} — [0, o) denote radial function of K € K', i.e.
p(K, x) = max{A > 0: Ax € K}.

It is easily verified that
h(K*,x) =1/p(K,x) and p(K*,x) = 1/h(K, x). (2.7)

2.2 Mixed volumes

IfKie K" (i=12,...,r)and A; (i = 1,2,...,r) are nonnegative real numbers, then of fundamental
importance is the fact that the volume of }./_; A;K; is a homogeneous polynomial in A; given by (see e.g.
[14])

VK + -+ AK) = Y Ao A Vi s 2.8)

where the sum is taken over all n-tuples (i1, ..., i,) of positive integers not exceeding r. The coefficient
Vi,..i, depends only on the bodies Kj,, ..., K;, and is uniquely determined by (2.8), it is called the mixed
volume of K, ...,K; , and is written as V(Ky, ..., K,). Associated with Kj,...,K,, € K" is a Borel measure
S(K1,...,K,_1;-) on §"71, called the mixed surface area measure of Ky, ..., K,_;, which has the property that
for each K € K" (see e.g. [8], p.353),

V(Ky, ..., Ky) = % f WK, w)dS(Ky, . .., Ku1; 1). (2.9)
Sn-1

In fact, the measure S(Kj, ..., K,-1;-) can be defined by the propter that (2.9) holds for all K € K". Let
Ki=...=K,i-1 =Kand K,,_; = ... = K1 = L, then the mixed surface area measure S(Ky, ..., K,_1;-) is
written as S;(K, L; -). When L = B, S;(K, L;-) is written as S;(K; -) and called as ith mixed surface area measure.
A fundamental inequality for mixed volume V(Kj, ..., K;) is the following Alesandrov-Fenchel inequality:
If Ky,...,K,_1 are convex bodies and 1 < r < n, then

r
VK, ... Ky > H VK, ..., K, Kt Ki) . (2.10)

j=1
LetK; =... =K,.; = Kand K,,_j;; = ... = K, = L, then the mixed volume V(Kj,...,K,) is written as

Vi(K,L). When i =1, Vi(K, L) becomes the classical mixed volume V1(K, L) of K and L, and
V(K+¢L)- V(K
Vi L) = & tim YEHED VIO _ 1 f WL, W)AS(K, ). @11)
n e—-0* & n Jgn-1

A fundamental inequality for mixed volume V(K L) is the following Minkowski inequality: For K, L € K",
Vi(K,L)" > V(K)"'V(L), (2.12)
with equality if and only if K and L are homothetic.

2.3 Mixed projection body

The projection body ITK of a convex body K € K™, is defined as the convex body whose support function
is given by (see [14])
h(IIK, u) = v(K"), ueS", (2.13)
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where v(K*) denote the (n — 1)-dimensional volume of K|&,,.
If Ky,...,Ky—1 € K", then the mixed projection body of Kj, ..., K,-1 is denoted by II(Kj, ..., K,-1), and
whose support function is given, for u € S"!, by (see [14])

WKy, ..., Kyo1),u) = 0(KY, ..., K"_)). (2.14)

Thus
h(H(Kl, . /Kn—l)/ u) = TlV(Kl, o, Ky, L_l). (215)

where # denotes the closed line segment connecting —u and u.
IfKi,...,Ky-1 € K" and ¢ € SL(n), then

TI(OK, ..., K1) = ¢7TLKy, . .., Kyyy). (2.16)

The mixed projection operator is monotone nondecreasing with respect to set inclusion; i.e., if K;, L;
i=1,2,...,n—1) e K"and K; C L;, then

H(Kl,...,Kn_l) C H(Kl,...,Kn_l). (217)
An important fact is the following:
h(II(Ky, ..., K1), u) = %f lu-0ldS(Ky,...,K-1;0). (2.18)
Sn—l

For the polar of mixed projection body II(Kj, ..., K,-1) we will simply write IT*(Kj, ..., K,-1) not
(II(Ky, ..., Ky-1))". An important inequality on the polar of mixed projection body is the following polar
Aleksandrov-Fenchel inequality for the polar of mixed projection body.

The polar Alesandrov-Fenchel inequality. If Ky,...,K,-1 € K and 1 <r < n, then

.
VAT (Ky, ..., K1) < H VAT (K;, ..., K;, Kr+1,...,K,,_1))1/’, (2.19)
i=1
with equality if Ky, ..., Ky—1 are homothetic (see [11]).

3. Orlicz mixed projection body

We first give the definition of Orlicz mixed projection body of (n + 1) convex bodies as follows.
Definition 3.1 Let Kj,...,K, € K" and ¢ € ® U C, the Orlicz mixed projection body of Kj, ..., K,,
denoted by I1,(Ky, ..., K;), defined by

@(”—u)dV(Kl,...,Kn; u) < 1}. (3.1)

h(Iy(Ky, ..., Ky), x) := mf{)\ >0: fs Ah(K,, 1)

n—1
Since ¢ € ® U C, it follows that the function:

X-Uu

Ao gn-1 ¢ (m)dV(Klr ., Ky u)

is also strictly decreasing in (0, c0). This yields that
Lemma3.2 IfKy,...,K, € K], p € DUC and x, € R"/{0}, then

Xo U ‘ ~
fs v (thmn, u>)dV(Kl' oK) =1
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if and only if
h(Iy(Ky, ..., Ky), X0) = A,.

In the following, we show that the Orlicz mixed projection body I, (K, ..., K;) is indeed a convex body
containing the origin in its interior.

Lemma 3.3 IfKy,..., K, € K}, and ¢ € ®UC, then the function h(I1, (K, ..., K,), x) is homogeneous of degree
one, sub-additive and positive.

Proof First, for any y > 0, and noticing that dV(Kj, ..., K,; 1) is a probability measure on §"~1 we obtain

. _ y(x - u) .
1nf{/\ >0: js‘nl (p(m)dV(Kl,...,Kmu) < 1}

XU
inf{u>0: ———|dV(Ky,...,Kj;u) <1
V4 {“ Ln—l¢(yh(K,1,M)) ( 1 ) }
yh(IL,(Ky, ..., K;), x),

WL, (Ky, ..., Ky), %)

where p = %

Next, we prove that h(I1,(Ky, ..., K;), x) is sub-additive.
Let h(HVJ(Kl, ..., Ky),x1) = A1 and h(HqJ(Kl, ..., Ky),x2) = Ay, then

_x1 u . —
Ln—l go (Alh(Kn, u))dV(Klr oo /Kn/ 1/[) - ]-/ (32)
and
X2 U . —
Lﬂ (P(m)dV(KL---,KWﬂ) =1 (3.3)

Combining the convexity of the function s — ¢(s/h(K,, u)), we obtain

Al X1 U /\2 Xo U
1 = U VAV(Ky, .. K ) + —2— 20 Vav(Ky, ..., Ky
Mt A fsn_l@(mh(m,u)) & DT fsn_l(P(Mh(Kn,u)) & )

X1 U+x2-uU
> _MUuER U N\ vk, K
fsnl(’)(mlmz)h(lg,u)) Ky )

(x1+x2)-u )
Lol v o

Hence
h(Iy(Ky, ..., Ky), x1 +Xx2) < A1+ Ay
= h(IIy(Ky, ..., Ky),x1) + h(I1p(Ky, ..., Ky), x2).
Moreover, for x # 0, obviously h(Il,(K, ..., K;),x) > 0. O

This shows also that h(Il,(K, ..., Ky),x) is a support function of a convex body II,(Kj,...,K;) that
contains the origin in its interior.

In the following, we prove that the Orlicz projection operator IT,(Ky, ..., K;) : K" x--- X K" — K" is
L S——

n-1
continuous.

Lemma 3.4 IfKy,..., K, € K}, and ¢ € ® U C, then the Orlicz mixed projection operator I1,(Ky, ..., Ky) :

K" x -+ x K" = K" is continuous.
N—

n
Proof To see this, indeed, let K;; € §",i e NU {0}, j = 1,...,n, be such that K;; — Ko; as i — co. Noting
that
h(nq)(Kil/ sy Kin)/ x)
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. XU
= 11’1f{/\ >0: Lﬂ] (p(m)dV(Kn,...,Ki(nl);u) < 1}

:inf{)\>0: 1 XU

nV(Kll, . ,Kin) gt (P (Ah(Kln, u))h(Kll’lr u)dS(Klll IKI(H 1)/ u) - 1}

Since the mixed area measures is weakly continuous, i.e.
dS(Kﬂ, ey Ki(nfl); u) i dS(K()l, ey Ko(n,l),' u) weakly on Sn_l.

Since h(K;y, 1) — h(Koy,, 1), uniform on "1, and @ is continuous, implies that

X-U R X-U
P\ )~ P\ Ao,y )
Further

x U XU
j;nl @(m)dV(Kﬂ,-.-,Kz’m—l); u) — L,l (P(m)dV(Km,.--,KO(n—l),‘M)~

Hence

. . XU

i1, , Kin), : _ , e, Ko=) <
lim h(TL, (K, - .., Kin), ) 1nf{)\>0 fs H(p( /\h(Komu))dV(Km Kogu-1); 1) 1}
= h(H(P(Kolr ey KOH)/ x)‘

This shows that the Orlicz projection operator I, (Ky, ..., K;) is continuous. O
Lemma 3.5 IfKy,..., K, € K, and p; € D UC, then

@i = ¢ = h(Ily(Ky, ..., Ky),x) = h(Il,(Ky, . .., Ky), x). (3.4)

Proof Noting that ; = ¢ € PN Cand dV(Ky, ..., K,;u) is a probability measure on s implies that

f_x-u XU ®
P\ K,y |~ C\ A,y ) €

Further
X-u X-u

Lnl qai(—/\h(Kmu))dV(Kl,...,Kn,'u) — o (P(—/\h(Kn,u))dV(Kl"”'K""u)'

Hence

. . . X-u .
}Lgh(ﬂq,i(Kl, ..., Ky, x) mf{)\ >0: L1_1 (P(—/\h(Kn,u))dV(Kl"”'K"' u) < 1}

WL, (Ky, ..., Ky), X).

O
Lemma 3.6 IfKy,..., K, € Ki, and ¢ € ® U C, then the Orlicz mixed projection operator I,(Ky, ..., Ky) :

K" x - x K" — K" is bounded.
———

Proof Choosing c¢ such that h(II(Kj, ..., Ky—1),u) > c> 0. Letx € Ss1 and suppose that

h(Hq)(Kl, ce ,Kn), x) = /\0.
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From the definition (2.3), we may let ¢(c,,) = 1. Hence from the fact that ¢ in nonnegative and ¢(0) = 0,
and (2.5), Lemma 3.2 and Jensen’s inequality, we obtain

1 = @)

X-U
= fs‘nl (p(m)dV(Kl,...,Kn,u)

XU
> ——dV(Ky,..., K, u
‘P(fs T,y K ’)

— (P( 1 x-udS(Kl,...,Kn_l;u))

nA()V(KL cesy Kn) gn-1

2c
PV, LKy )

Noticing the fact that ¢ is increasing on [0, ), we have

> 2c
"= e, VK, .. Ky)

Next, we give the upper estimate. From (2.3), together with the fact that the function t — max{p(t), p(-t)}
is increasing on [0, o) and noticing that dV(Kj, ..., Ky; u) is a probability measure on st yields that

(3.5)

1= max{p(cy) p(=cy)}
X-u
= ——|dV(Ky, ..., Ky;
fs v (th<1<n, u>) s 4
|x - ul —|x - u '
< L,l max {(P ()\oh(K,,,u))’(P (th(K”,u))} dV(K,..., Ky u)
1 -1
= Lnl max {(P ()\0 min,,egn-1 MKy, 1) ) s (/\0 min,egi-1 1Ky, 1) )} dV(Ky, ..., Ky;u).
Hence 1
Ao < i : 3.6
0 @(cy) min,cgn1 h(Ky, 1) (3.6)
This completes the proof. °

We easy find that the volume of Orlicz mixed projection body II,(Kj, ..., K;) is invariant under simul-
taneous unimodular centro-affine transformation.
Lemma 3.7 IfKy,..., K, € K}, ¢ € SL(n), then

V(IL,(¢Ky, ..., pK,)) = VI,(K, . .., Ky)). (3.7)

Proof For x € R", let ¥ denote the closed line segment connecting —x and x. From (2.2) and (3.1), we
have, for ¢ € SL(n),

WL (@Ky, ..., $K,), x) inf{/\ >0: fs (p(m)dwwh...,wmm < 1}

. h(_, ) t
- mf{/\ >0 fp @(lem))dV(Kl,...,KH_l;gb 1) < 1}

h -1 T, t
= inf{/\ >0: fsnl (p(%)dV(Kl,...,Kn_uq)tu) < 1}

_ . ¢~x- glu .
= ll’lf{/\>0.j;u_l(P(W)dV(Kl,...,Kn_llqbtu)Sl}

= h(I,(Ky, ..., Ky), ¢ 'x)
= oMKy, ..., Ky, x).
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Hence
HW(¢K1/ cee /(PKW) = (P_tn(p(Kl/ sy KVI)

Since |det(¢p~1)| = 1, it follows
V(Iy(PKy, ..., pKy)) = VI, (K, . .., Ky)).

This completes the proof. O

4. The Orlicz projection Alesandrov-Fenchel inequality

Lemma 4.1 (Jensen’s inequality) Let u be a probability measure on a space X and g : X — I C Risa
u-integrable function, where I is a possibly infinite interval. If 1 : I — R is a convex function, then

f P(g(x)du(x) = tp( f g(x)dy(x)).
X X

If ¢ is strictly convex, equality holds if and only if g(x) is constant for y-almost all x € X (see [10, p.165]).

Next, we establish the following Orlicz Alesandrov-Fenchel inequality for the Orlicz mixed projection
body ITy(Ky, ..., Ky).

Theorem 4.2 (Orlicz projection Alesandrov-Fenchel inequality) If Ky, ..., K, € K], 1 <r<n,p €e DUC,
then
2

V(y(Ky, ..., Ky)) 2 (m

n r
) HV(l'I(K,...,K,-,KM,...,Kn_l))”r. @.1)
=1

Proof For ¢ € @, there must be a real number 0 < ¢, < oo such that ¢(c,) = 1, and let
h(I1,(Ky, ..., Ky), x) = Ao. (4.2)
From (1.7), Lemma 3.2 and Lemma 4.1, we obtain

1

(P(CqJ)

XU
= —— |dV(Ky, ..., Ky;
‘Lxl(P(th(Kn,u)) ( ! M)

XU
> ——dV(Ky,..., K, u
(P(fsm T,V & ))

1
- udS(Ky, ..., Kooy 1) |
(P(i’lA()V(Kl,...,Kn) Sn_lx u ( 1, , 1 u))

From (1.4) and in view of the monotonicity of the function ¢, we obtain

2 1

e VK W(II(Ky, . .., K1), %). (4.3)

Ag =

From (2.11), (2.12) and (4.3), we have

2 1
> e —
V(I,(Ky, ..., Ky)) > e, V(Kll.'.’Kn)Vl(l'I(P(Kl,...,Kn),H(Kl,...,K,,_l))
2 1
> — VI, (K, ..., K) " V" VAIK, . . ., Kyor)Y™

ne, V(K ..., Ky)
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That is

2\ 1
VIIp(Ky, ..., Ky)) 2 (@) -mV(H(Kl,...,KH,l))

2 ! 1 : 1
e | | Vi : . Ir
( C({)) V(Kl,-..,KH)n j:1 (H(K,...,K],KH_l,...,Kn_l)) .

On the other hand, the case where ¢ € C (i.e. ¢(—c,) = 1) is handled the same way and gives the same
result.

This completes the proof. O

What's interesting is that a new L, projection Alesandrov-Fenchel inequality is derived as follows:

Corollary 4.3 (L, projection Alesandrov-Fenchel inequality) If Ky, ..., K, € KJ, 1 <r <n,p > 1, then

V(Hq)p (Kl/ sy Kn)) 2 "
VK, ..., Kj, Kpsa, ., Ky 44
V(Kl, e ,Kn)m*p)/p - (ﬂCn,p) :]l:‘l[ ( ( r PR o 1)) ( )
Proof This yields immediately from (1.11) and Theorem 4.2 with ¢(t) = [/’ and p > 1. ]
Putting K; = --- = K,, = Kiin (4.1), it yields the following an interesting ratio.

IfKeK!and ¢ € DU C, then

V(I1,K) S 2 !
VIK) ~\nc,V(K)]

From above the ratio and the Petty conjecture inequality ([23, p.415, (7.4.2)]), we get that
2 20)”_1 "
VII,K)V(K) 2 w;, | ——— ] -
NCp Wy

As an application, we establish also the following polar Orlicz Alesandrov-Fenchel inequality for the
polar of Orlicz mixed projection body.

Theorem 4.4 (Orlicz polar projection Alesandrov-Fenchel inequality) IfKy,..., K, € K, 1 <r <nand
@ e DUC, then

VLK, ..., K, ))s(ZV(Kl’ '

) H VIT(K;, ..., Ki, Ko, - .., Kn)Y" (4.5)

Proof From (2.7) and (4.3), for x € S"~!, we have
2V(Ky,...,K;)

p(n;(Kll .. lKn)l .X') < Tlﬂ : P(H*(Kl/ LR /Kn—l)/ X). (46)
®
Hence
2V(Ky, ..., K\ .
VAT(Ky, .., K) < (%) VAT(Ky, . K1), (47)
¢
From (2.19) and (4.7), we obtain
2V(Ky,..., K . r
VL, Ky, ..., Ky) _( i ) HV(H (Ki). . KiyKpat, o, KoM

This completes the proof. o
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Corollary 4.5 (L, polar projection Alesandrov-Fenchel inequality) If Ky, ..., K, € K, 1 <r<n,p 21,

then

V(I (K, ..., Ky)
V(Ky, ..., K"

2C n r
s( :”’ ) HV(H*(K-,...,Kj,KM,...,Kn,l))l/f. (4.8)
=

Proof From (1.11), (2,7) and in view of the definition of the polar body, we have

V(K. K

I'I;p(Kl,...,Kn) o I'I;(Kl,...,Kn), (4.9)
This yields immediately from (4.5) and (4.9) with ¢(t) = [/’ and p > 1. O
Putting K; = --- = K,, = Kin (4.5), it follows the following an interesting ratio.

IfKeK!and ¢ € DU C, then

V(IL,K) [V §
V(IT'K) ~ ’
From above the ratio and the well-known Petty conjecture inequality ([23, p.415, (7.4.5)]), we get that
V(IL,K) 2w, \"
V(K) '

ncy

nC(pC‘)n—l
In fact, the polar projection Alesandrov-Fenchel inequality (2.19) is also a special case of (4.5).
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