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Variant of thin sets and their influence in convergence
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Abstract. A class of subsets designated as very thin subsets of natural numbers has been studied and seen
that theory of convergence may be extended further if very thin sets are given to play main role instead of
thin or finite sets which refines even statistical convergence. While developing the theory of very thin sets,
concepts of super lacunary and very very thin sets are evolved spontaneously. Influence of very thin sets
is reflected in various ways mainly in the BW property of the ideal consisting of very thin sets.

1. Introduction

Let’s begin with the well known definition of asymptotic density [1–4] of subsets of set of natural
numbers ω. For any A ⊂ ω, |A| denotes the cardinality of A and A(n) = |{m ∈ ω : m ∈ A ∩ {1, 2, ...,n}}|. The
numbers

d(A) = lim inf
n→∞

A(n)
n

and d(A) = lim sup
n→∞

A(n)
n

are called the lower and upper asymptotic density of A respectively. If d(A) = d(A), then d(A) = d(A) is
called asymptotic density or natural density of A. As in [4], A is called thin subset ofω if d(A) = 0 otherwise
A is nonthin. A lacunary sequence [5, 6] is a strictly increasing sequence (kn)n∈ω of natural numbers such
that kn − kn−1 → ∞ as n → ∞. A subset A of ω is called lacunary [6] if A is finite or A is the range of a
lacunary sequence. It is seen that any lacunary subset of ω is thin.

The concept of statistical convergence [3, 5, 7–10, 18] of real sequences is a generalization of usual
convergence based on asymptotic density, where thin subsets of ω play an important role. A sequence
(xn)n∈ω of real numbers is statistically convergent to a real number a if for any ϵ > 0 the set {n ∈ ω :| xn−a |⩾ ϵ}
is thin.

Consider a real sequence (xn)n∈ω where

xn =

−1, if n = 2k + j, k ∈ ω and 0 ≤ j ≤ k − 1
1, otherwise.

(N)

In this sequence -1 is repeated consecutively k times from (2k)th term to (2k + (k− 1))th term for every natural
number k. As k increases towards infinity, number of consecutive repetition of -1 is also increases towards
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infinity.
Let’s consider another real sequence (yn)n∈ω where

yn =

−1, if n = 2k, k ∈ ω
1, otherwise.

(Y)

In this sequence -1 is appearing only at every 2kth place for each k ∈ ω. As k increases towards infinity, gap
between two consecutive appearance of -1 is also tending to infinity. According to the existing literature
both (xn)n∈ω and (yn)n∈ω are statistically convergent to 1 and here is the where the present variant of thin
sets play crucial role to distinguish (xn)n∈ω and (yn)n∈ω reasonably in regards of their convergence.

2. Variant of thin sets and their characterization

The notion of very thin, super lacunary and very very thin subsets of ω are introduced in this section.
Then, characterization of very thin and very very thin sets and the relations among variant of thin sets are
shown.
Suppose A ⊂ ω and M ∈ ω. Define
(A)M={1} ∪ {n: n > 1 and there exist n consecutive elements of A such that difference between any two
consecutive among them is less than or equal to M}.

For example, if A =
⋃
k∈ω

{2k, 2k + 1, ..., 2k + k} then (A)M = {n ∈ ω : n ⩾ 1} for all M ⩾ 1 and if B = {2k : k ⩾ 1}

then (B)1 = {1} and (B)M = {1, 2, ..., k + 1} for 2k ⩽M < 2k+1.

Definition 2.1. A subset A of ω is very thin if there exist a sub-collection {An : n ∈ ω} of finite subsets of ω and
M ∈ ω such that max(A\An)n ⩽M for all n.

Proposition 2.2. A subset A of ω is very thin if and only if A is finite or A can be written as follows:
(V1) A =

⋃
k∈ω

Ak, where 1 ⩽ |Ak| ⩽M for someM ∈ ω for all k ∈ ω ,

(V2) min(Ak+1) −max(Ak) > 0 for all k ∈ ω,
(V3) lim

k→∞
(min(Ak+1) −max(Ak)) = ∞.

Proof. For any finite subset A of ω, max(A)n ⩽ |A| for all n. So finite subsets of ω are very thin.
Let A be an infinite very thin subset of ω. There exist a sub-collection {An : n ∈ ω} of non-empty finite
subsets of ω and M ∈ ω such that (max(An+1) − max(An)) > 2n and max(A\An)n ⩽ M for all n. Let
Bk = A ∩ {max(Ak) + 1, ...,max(Ak+1)}, k ⩾ 1. If |Bk| > 1 then Bk can be decomposed as

Bk =

jk⋃
i=1

Bki

such that 1 ⩽ |Bki| ⩽M, 1 ⩽ i ⩽ jk and

min(Bk(i+1)) −max(Bki) > k, 1 ⩽ i ⩽ jk − 1.

Thus, A can be expressed in such way that A satisfies (V1), (V2) and (V3) whereM = max{M,max A1}.
Conversely, let A be an infinite subset of ω so that A satisfies (V1), (V2) and (V3). Then there exists an
infinite subset {n1 < n2 < n3 < ...} of ω such that

(min(Am+1) −max(Am)) > k for all m > nk.

Let Ak = {1, ...,min(Ank+1)}, k ⩾ 1. Then max(A\Ak)k ⩽M for all k.
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Example 2.3. Let A =
⋃
k∈ω

Ak, where Ak = {2k, 2k + 1, ..., 2k + k}. Then A(n)
n ⩽ (k+1)(k+2)

2k for 2k ⩽ n < 2k+1. So A is

thin. If A =
⋃
k∈ω

Bk where 1 ⩽ |Bk| ⩽M for all k ∈ ω for some M ∈ ω and min(Bk+1)−max(Bk) > 0 for all k ∈ ω then

there exists a subset {n1 < n2 < n3 < ...} of ω such that lim
k→∞

(min(Bnk+1) −max(Bnk )) = 1. Therefore, A is not very

thin.

The Prime number theorem implies that set of prime numbers is thin (see in [2]). Whereas it can be
shown that set of prime numbers is not very thin by using the Prime k-tuples conjecture which holds for
a positive proportion of admissible k-tuples for each k in ω (see Theorem 1.2 in [11]) . As in [11], a set
D = {d1, ..., dk} consisting of non-negative integers is called admissible set if for any prime p, there is an
integer bp such that bp . d(mod p) for all d ∈ D.

Example 2.4. Let pn denotes the n-th prime. Then {p1, p1p2, ..., p1p2...pk} is an admissible set.

The statement of Prime k-tuples conjecture is given as in [11]:

Conjecture 2.5 (Prime k-tuples conjecture). Let D = {d1, ..., dk} be an admissible set. Then there are infinitely
many integers h such that {h + d1, ..., h + dk} is a set of primes.

Result 1. Set of prime numbers is not very thin.

Proof. Let P be the set of all primes and let P =
⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽ M for all k ∈ ω for some M ∈ ω and

min(Ak+1) −max(Ak) > 0 for all k ∈ ω. Then there exists an admissible set {d1, ...dM+1}.
Let G = max{di+1 − di : i = 1, ...,M}. By Prime k-tuples conjecture, there should be infinitely many (M+1)-
tuple of primes (p + d1, ..., p + dM+1). Therefore, (min(Ak+1) −max(Ak)) ≤ G for infinitely many k ∈ ω. So, P
is not very thin.

Definition 2.6. A subset A of ω is super lacunary if A is finite or
∞∑

k=1

1
(nk+1 − nk)

< ∞ if A = {n1 < n2 < n3 < ...}.

Definition 2.7. A subset A of ω is very very thin if A is finite or A can be written as follows:
(i) A =

⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽M for someM ∈ ω for all k ∈ ω,

(ii) min(Ak+1) −max(Ak) > 0 for all k ∈ ω,

(iii)
∞∑

k=1

1
(min(Ak+1) −max(Ak))

< ∞.

Example 2.8.
⋃
k∈ω

{2k, 2k + k} is lacunary (because 2k + k − 2k = k → ∞ and 2k+1
− (2k + k) = 2k

− k → ∞ as

k → ∞) and very very thin (one may consider Ak = {2k, 2k + k}, k ⩾ 1 then min(Ak+1) −max(Ak) = 2k
− k and

∞∑
k=1

1
2k − k

< ∞) but not super lacunary since the series
∞∑

k=1

1
k

is not convergent.

Example 2.9. Let X = {b1, b2, b3, ...} and Y = {b1, b1 + 1, b2, b3, b3 + 1, b4, ...} where bk = 1 + ... + k. Let X =
⋃
k∈ω

Xk

where 1 ⩽ |Xk| ⩽ M for all k ∈ ω for some M ∈ ω. Then (min(Xk+1) −max(Xk)) ≤ (bl+1 − bl) = l + 1 for some
l ≤ kM. Hence, for all k ⩾ 1,

1
k+1 ≤

M
min(Xk+1)−max(Xk) .

Therefore, X is not very very thin but lacunary. Since X ⊂ Y, Y is not very very thin but very thin.
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Lemma 2.10. Union of two lacunary sets is very thin.

Proof. Suppose S = {s1 < s2 < s3 < ...} and T = {t1 < t2 < t3 < ...} are lacunary subsets of ω. For each i ∈ ω,
construct a set containing si and the smallest number t of T such that si ⩽ t < si+si+1

2 if such a number t exists
and the largest number t of T such that si−1+si

2 < t ⩽ si if such a number t exists. Leave all remaining elements
of T as singleton. Then S ∪ T can be decomposed into the sets Ak such that
(i) S ∪ T =

⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽ 3 for all k ∈ ω ,

(ii) for all k ∈ ω,

(min(Ak+1) −max(Ak)) ⩾ (ti+1 − ti) for some i ∈ ω

or

(min(Ak+1) −max(Ak)) ⩾ (s j+1−s j)
2 for some j ∈ ω.

Therefore, S ∪ T is very thin.

Theorem 2.11. Union of two super lacunary sets is very very thin.

Proof. If S and T are two super lacunary subsets of ω, following the proof of Lemma 2.10 one will get in
addition that

∞∑
k=1

1
(min(Ak+1) −max(Ak))

⩽
∞∑

i=1

1
(si+1−si)

2

+

∞∑
i=1

1
(ti+1 − ti)

.

Lemma 2.12. Union of a lacunary and a very thin subset of ω is very thin.

Proof. Let S be a very thin and T = {t1 < t2 < t3 < ...} be a lacunary subset ofω. Let S =
⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽

M for all k ∈ ω for some M ∈ ω and min(Ak+1)−max(Ak) > 0 for all k ∈ ωwith lim
k→∞

(min(Ak+1)−max(Ak)) = ∞.

For every i ∈ ω, construct a set Bi containing Ai and the smallest number t of T such that max(Ai) ⩽ t <
max(Ai)+min(Ai+1)

2 if such a number t exists and the largest number t of T such that min(Ai−1)+max(Ai)
2 < t ⩽ min(Ai)

if such a number t exists and elements t of T such that min(Ai) < t < max(Ai). Now each Bi can be
decomposed as

Bi =

j(i)⋃
k=1

Bik

such that

min(Bi(k+1)) −max(Bik) > 0, 1 ⩽ k ⩽ j(i) − 1,
max(Bik) ∈ T for 1 ⩽ k < j(i) and min(Bik) ∈ T for 1 < k ⩽ j(i)

and there is no r ∈ ω so that tr, tr+1 ∈ Bik if there does not exist any s ∈ Ai satisfying tr < s < tr+1. Leave all
remaining elements of T as singleton, S ∪ T can be decomposed into the sets Dk such that
(i) S ∪ T =

⋃
k∈ω

Dk where 1 ⩽ |Dk| ⩽ 2M + 1 for all k ∈ ω ,

(ii) for all k ∈ ω,

(min(Dk+1) −max(Dk)) ⩾ (ti+1 − ti) for some i ∈ ω

or

(min(Dk+1) −max(Dk)) ⩾ (min(A j+1)−max(A j))
2 for some j ∈ ω.
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Therefore, S ∪ T is very thin.

Theorem 2.13. Union of a super lacunary and a very very thin subset of ω is very very thin.

Proof. If S is very very thin and T is super lacunary then using the proof of Lemma 2.12 one will obtain

∞∑
k=1

1
(min(Dk+1) −max(Dk))

⩽
∞∑

i=1

1
(min(Ai+1)−max(Ai))

2

+

∞∑
i=1

1
(ti+1 − ti)

as well.

Theorem 2.14. A subset A of ω is very thin if and only if A can be expressed as a finite union of lacunary subsets of
ω.

Proof. Suppose A is a very thin subset of ω such that
(i) A =

⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽M for all k ∈ ω for some M ∈ ω,

(ii) min(Ak+1) −max(Ak) > 0 for all k ∈ ω,
(iii) lim

k→∞
(min(Ak+1) −max(Ak)) = ∞.

Let Ak = {ak1 ⩽ ak2 ⩽ ... ⩽ akM}, k ∈ ω. Define Bi = {aki : k ∈ ω}, 1 ⩽ i ⩽M. Then A =
M⋃

i=1

Bi and

(a(k+1)i − aki) ⩾ (ak+1)1 − akM) = (min(Ak+1) −max(Ak))

Therefore, Bi is lacunary for 1 ⩽ i ⩽M.
Converse part follows directly from Lemma 2.10 and Lemma 2.12.

Corollary 2.15. Finite union of very thin subsets of ω is very thin.

Corollary 2.16. Very thin subsets of ω are thin.

Theorem 2.17. Any very thin set can be expressed as a finite intersection of thin but non very thin sets.

Proof. Suppose S = {t1 < t2 < t3 < ...} is a lacunary subset of ω. Take two disjoint thin but not very thin
sets A and B

(
one may take A =

⋃
k⩾1

{tnk , ..., tnk + k} and B =
⋃
k⩾1

{tnk+1 − k, ..., tnk+1} where (nk)k⩾1 is a strictly

increasing sequence of natural numbers such that tn1+1 − tn1 > 2 and tnk > 2tnk−1 and tnk+1 − tnk > 2k for k ≥ 2

and let uk =
(k+1)(k+2)

tnk
, k ⩾ 1 then for tnk ≤ r < tnk+1 , dr(T) ≤

k∑
i=1

(i + 1)

r ≤
(k+1)(k+2)

tnk
= uk where T = A or B and

so lim
k→∞

uk = 0 as lim uk+1
uk
≤

1
2

)
. Let A′ = A ∪ S and B′ = B ∪ S. Since S is lacunary, A′ and B′ are thin but not

very thin with A′ ∩ B′ = S. Hence any lacunary set can be expressed as intersection of two thin but non
very thin sets. From Theorem 2.14, it follows that any very thin set can be expressed as a finite intersection
of thin but non very thin sets.

Theorem 2.18. A subset A of ω is very very thin if and only if A can be expressed as a finite union of super lacunary
subsets of ω.

Proof. If A is very very thin then each Bi defined in Theorem 2.14 becomes super lacunary.
Theorem 2.11 and Theorem 2.13 together implies that finite union of super lacunary sets is very very
thin.
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Corollary 2.19. Finite union of very very thin subsets of ω is very very thin.

From Corollary 2.16, it follows that very thin sets are thin. Since zero uniform density ([13, 14]) subsets
of ω are thin, it is natural to arise a question that whether very thin sets have uniform density zero or zero
uniform density sets are very thin. Let B ⊂ ω. For h ⩾ 0 and k ⩾ 1, let A(h+1, h+k) = |{n ∈ B : h+1 ⩽ n ⩽ h+k}|.
The existence of the following limits are proved in [13]:

u(B) = lim
k→∞

1
k

lim inf
h→∞

A(h + 1, h + k) , u(B) = lim
k→∞

1
k

lim sup
h→∞

A(h + 1, h + k)

u(B) and u(B) are called lower and upper uniform density of B respectively. If u(B) = u(B) then u(B) =
u(B) = u(B) is called uniform density of B. From now on call B is uniformly thin if u(B) = 0. Since
u(B) ⩽ d(B) ⩽ d(B) ⩽ u(B), B is thin if B is uniformly thin, but the converse is not true (see in [13]).

Theorem 2.20. Any very thin subset of ω is uniformly thin.

Proof. Suppose A be a very thin subset ofω such that A =
⋃
k∈ω

Ak where 1 ⩽ |Ak| ⩽M for all k ∈ ω for some M ∈

ω, min(Ak+1) −max(Ak) > 0 for all k ∈ ω and lim
k→∞

(min(Ak+1) −max(Ak)) = ∞. Let nk = min(Ak+1) −max(Ak),

k ∈ ω.
Let k1 = the least element of ω such that nk1 ⩽ nk for all k ∈ ω and let
kr+1 = the least element of ω − {k1, ..., kr} such that nkr+1 ⩽ nk for all k ∈ ω − {k1, ..., kr}, r > 1.
Then lim

r→∞
nkr = ∞ and so lim

r→∞

r
nk1 + ... + nkr

= 0.

By induction, it can be shown that for any l ⩾ 1 and for any l elements m1, ...,ml of ω − {k1, ..., kl},

nk1 + ... + nkl ⩽ nm1 + ... + nml .

Let sl = nk1 + ... + nkl . Then for any l, {n ∈ A : t + 1 ⩽ n ⩽ t + sl + 1} can intersect at most l consecutive Ak for
eventually many t ∈ ω. Therefore,

lim sup
t→∞

|{n ∈ A : t + 1 ⩽ n ⩽ t + sl + 1}| ⩽Ml

and so

lim
l→∞

1
sl + 1

lim sup
t→∞

|{n ∈ A : t + 1 ⩽ n ⩽ t + sl + 1}| ⩽ lim
l→∞

Ml
sl + 1

= 0

Hence u(A) = 0 i.e. u(A) = 0.

Example 2.21 shows that uniformly thin set may not be very thin.

Example 2.21. Let a1 = 1 and let ar = ar−1 + 2(13 + ... + (r − 1)3) + 1, r ∈ ω and r ⩾ 2.
Define As = {as, as + 13, as + 13 + 23, ..., as + 13 + 23 + ... + s3

}, s ⩾ 1. Let

A =
∞⋃

s=1

As

Let bn = 13 + 23 + ... + n3 and sm,n = |{r ∈ A : m + 1 ⩽ r ⩽ m + bn + 1}|, n ⩾ 1, m ⩾ 0.
Suppose k ∈ ω. Then

sm,n ≤ (n + 1) if an+k + 13 + ... + (n + k)3 ⩽ m ⩽ an+k+1.

If 1 ⩽ i ⩽ k and an+k + 03 + 13 + ... + (i − 1)3 ⩽ m < an+k + 13 + ... + (i)3 then sm,n < (n + 1) for m + bn + 1 <
an+k + 13 + ... + (n + i)3.
Again
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sm,n < (n + 1) if an+k + 13 + ... + k3 ⩽ m < an+k + 13 + ... + (n + k)3

because in this case m + bn + 1 < an+k+1. Thus,

sm,n ⩽ (n + 1) if an ⩽ m.

Also, sm,n ⩽ |A1| + ... + |An| ⩽
(n+1)(n+2)

2 if 0 ⩽ m < an.
Therefore,

lim
n→∞

1
bn + 1

lim sup
t→∞

|{r ∈ A : m + 1 ⩽ r ⩽ m + bn + 1}| = 0.

Hence, A is uniformly thin.
Suppose A =

⋃
k∈ω

Bk where 1 ⩽ |Bk| ⩽ M for all k ∈ ω for some M ∈ ω, min(Bk+1) −max(Bk) > 0 for all k ∈ ω and

lim
k→∞

(min(Bk+1)−max(Bk)) = ∞. Let T ∈ ω such that T >M. Then there is l ∈ ω so that (min(Bk+1)−max(Bk)) > T3

for all k ⩾ l. So there exists a k ⩾ l such that Bk contains first (T + 1) elements of Ar for some r > T + 1 which
contradicts |Bk| ⩽M. Therefore, A is not very thin.

Thin

Uniformly
Thin

Very Thin

Very very
Thin

Lacunary

lacunary
Super

Figure 1:

Figure 1 shows the relation among various thin sets.

3. Influence of very thin sets in convergence

In this section mainly the Fin-BW property and BW property of the ideal Iv consisting of very thin
subsets of ω are discussed. As in [5, 12, 14–17, 19], an ideal I on ω is a family of subsets of natural numbers
close under taking subsets and finite unions and a real sequence (xn)n∈A, A ⊂ ω, is I-convergent to a real
number a if for any ϵ > 0, {n ∈ A : |xn − a| ⩾ ϵ} ∈ I. A real sequence (an)n∈ω is I∗ convergent [16, 19] to a real
number a if there exists a subset K of ω such that ω\K ∈ I and (an)n∈K converges to a. An ideal I on ω has
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the Fin-BW property [12, 14] if for any bounded sequence (xn)n∈ω of real numbers there is A < I such that
(xn)n∈A is convergent and the BW property [12, 14, 15] if for any bounded sequence (xn)n∈ω of real numbers
there is A < I such that (xn)n∈A is I-convergent. If an ideal I has Fin-BW property then it also has BW
property.

Recall that 2ω, 2<ω and 2n denote the set of all infinite sequences of zeros and ones, the set of all finite
sequences of zeros and ones and the set of all sequences of zeros and ones of length n respectively. If
s ∈ 2n, then sˆi denotes the sequence of length n + 1 which extends s by i for i ∈ ω. If x ∈ 2ω then
x ↾ n = (x(0), x(1), ..., x(n − 1)) for n ∈ ω. From Proposition 3.3 in [12] the following characterizations of BW
property and Fin-BW property can be obtained which is also given in [14, 15].

Proposition 3.1. An ideal I has the BW property (the Fin-BW property) if and only if for every family of sets
{As : s ∈ 2<ω} satisfying the following conditions
(S1)A∅ = ω,
(S2)As = Asˆ0 ∪ Asˆ1,
(S3)Asˆ0 ∩ Asˆ1 = ∅,
there exist x ∈ 2ω and B ⊂ ω, B < I such that B\Ax↾n ∈ I (B\Ax↾n is finite respectively) for all n.

Example 3.2. Define a family of sets {As : s ∈ 2<ω} as follows:

A∅ = ω,

A∅

A(0)

A(0,0)

A(0,0,0) A(0,0,1)

A(0,1)

A(0,1,0) A(0,1,1)

A(1)

A(1,0)

A(1,0,0) A(1,0,1)

A(1,1)

A(1,1,0) A(1,1,1)

Figure 2:

A(0) = 2ω, A(1) = 2ω − 1,

A(0,0) = 22ω, A(0,1) = 22ω − 2, A(1,0) = 22ω − 1 ,A(1,1) = 22ω − 3,

A(0,0,0) = 23ω, A(0,0,1) = 23ω − 4, A(0,1,0) = 23ω − 2, A(0,1,1) = 23ω − 6,
A(1,0,0) = 23ω − 1, A(1,0,1) = 23ω − 5, A(1,1,0) = 23ω − 3, A(1,1,1) = 23ω − 7
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and so on.
So if s ∈ 2n then As = 2nω − i, 0 ⩽ i ⩽ 2n

− 1 and

Asˆ0 = 2n(2ω) − i, Asˆ1 = 2n(2ω − 1) − i.

Let x ∈ 2ω. Then
⋂
n∈ω

Ax↾n=∅ and (Ax↾n\Ax↾n+1)n∈ω is a collection of mutually disjoint sets so that numbers in each

Ax↾n\Ax↾n+1 are in arithmetic progressions.
Let N = {n0 < n1 < n2 < n3 < ...} be an infinite subset ofω and let ank be the nth

k element in the arithmetic progression
formed by elements of Ax↾k\Ax↾k+1, k ⩾ 0.
Let ArN =

⋃
k⩾0

{first nk numbers in the arithmetic progression of elements of Ax↾k\Ax↾k+1}.

If a and b are consecutive numbers in ArN where a < b and ank < a ⩽ ank+1 then b − a = 2k+1, k ⩾ 0. So, ArN is
lacunary.
Suppose B ⊂ ω such that B\Ax↾n is finite for all n. Since

⋂
n∈ω

Ax↾n=∅, B =
⋃
n∈ω

B\Ax↾n =
⋃
n∈ω

B ∩ (Ax↾n\Ax↾n+1).

Therefore, B ⊂ ArN for some infinite subset N of ω and so B is lacunary.

Theorem 3.3. Iv = Ideal comprising very thin subsets of ω satisfies the BW property.

Proof. Let A be a subset of ω and M ∈ ω. Define
(A)M={1}∪{n ∈ ω: n > 1 and there exist n consecutive elements of A such that difference between any two
consecutive among them is less than or equal to M}. Then A is very thin implies (A)M is finite for all M ∈ ω.
Let {As : s ∈ 2<ω} be a family of sets satisfying the three conditions S1,S2 and S3 given in Proposition 3.1.
This theorem can be proved in the following cases.

Case 1: Suppose there exist x ∈ 2ω and M ∈ ω such that (Ax↾n)M is infinite for all n ∈ ω.
Let B0= {1} and define Bn+1 to be the set of (n+1) consecutive elements of Ax↾n+1 such that difference between
each two consecutive among them is ⩽M so that max(Bn) < min(Bn+1), n ∈ ω.

Let B =
⋃
n∈ω

Bn. Then B is not very thin and B\Ax↾n ⊂

n−1⋃
i=0

Bi is finite for n > 0.

Case 2: Suppose that for every x ∈ 2ω and M ∈ ω there exists n ∈ ω such that (Ax↾n)M is finite.
So there exist k0 > 0 and s0 ∈ 2k0 such that As0 is not very thin and (As0 )1 is finite. Then As is infinite for some
s ∈ 2k0\{s0} and let M0=max(As0 )1.
As max(As0 )1=M0, due to the hypothesis there exist k1 ∈ ωwith k0 < k1 and s1 ∈ 2k1 such that (see Figure 2)
(i) As0 and As1 are disjoint and (As1 )M0+1 is finite,
(ii) there is an infinite subset A1 of As0 such that if p ∈ A1 then p + i ∈ As1 for some i, 1 ⩽ i ⩽ M0 and if
p < q < p + i then q ∈ As0 ,
(iii) max(As0 ∪ As1 )1 ⩽ (M0 + 1)M1 +M0 = N1 where M1=max(As1 )M0+1.
Let B1 = {a0

1, a
1
1}where ai

1 ∈ Asi , i ∈ {0, 1} and (a1
1 − a0

1) ⩽M0.

Because of max(As0 ∪ As1 )1⩽ N1 and the supposition, there exist a k2 ∈ ω with k1 < k2 and s2 ∈ 2k2

such that
(i) As0 , As1 and As2 are mutually disjoint and (As2 )N1+1 is finite,
(ii) there is an infinite subsetA2 ofA1 such that if p ∈ A2 then

p + i ∈ As1 and p + i + j ∈ As2 for some i, j, 1 ⩽ i ⩽M0 and 2 ⩽ i + j ⩽ N1

so that if p < q < p + i then q ∈ As0 and if p + i < q < p + i + j then q ∈ As0 ∪ As1 ,
(iii) max(As0 ∪ As1 ∪ As2 )1 ⩽ (N1 + 1)M2 +N1 = N2 where M2=max(As2 )N1+1.
Let

B2 = {a0
2, a

1
2, a

2
2}where ai

2 ∈ Asi , i ∈ {0, 1, 2} and (a1
2 − a0

2) ⩽M0, (a2
2 − a1

2) ⩽ N1 with (a0
2 − a1

1) > 2.
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Continuing in this way an infinite subset {k0 < k1 < k2 < ...} of ω, a sequence (si)i∈ω such that si ∈ 2ki ,
mutually disjoint sets {Asi : i ∈ ω}, a collection of infinite sets {As0 = A0 ⊃ A1 ⊃ A2 ⊃ A3 ⊃ ...}, a collection
of finite sets {Bi : i ⩾ 1}, a sequence (Mi)i∈ω and an infinite subset {M0 = N0 < N1 < N2 < ...} of ω will be
obtained such that for n ∈ ω
(i) Mn+1=max(Asn+1 )Nn+1,

(ii) An+1 infinite subset of An such that if p ∈ An+1 then p + i0 + i1 + ... + ik ∈ Ask+1 for some ik with
k + 1 ⩽ i0 + i1 + ... + ik ⩽ Nk, 0 ⩽ k ⩽ n so that if p < q < p + i0 then q ∈ As0 and if p + i0 + i1 + ... + ik−1 < q <
p + i0 + i1 + ... + ik then q ∈ As0 ∪ As1 ∪ ... ∪ Ask where 1 ⩽ k ⩽ n,

(iii) max(As0 ∪ As1 ∪ ... ∪ Asn+1 )1 ⩽ (Nn + 1)Mn+1 +Nn = Nn+1 and

(iv) Bn+1 = {a0
n+1, a

1
n+1, ..., a

n+1
n+1}where ai

n+1 ∈ Asi and (ai+1
n+1−ai

n+1) ⩽ Ni for 0 ⩽ i ⩽ n and for n ⩾ 1, a0
n+1−an

n > 2n.

a0
1 a1

1

a0
2 a1

2 a2
2

a0
3 a1

3 a2
3 a3

3

a0
4 a1

4 a2
4 a3

4 a4
4

≤ N0

≤ N0 ≤ N1

≤ N0 ≤ N1 ≤ N2

≤ N0 ≤ N1 ≤ N2 ≤ N3

2 <

22 <

23 <

Figure 3:

Let B =
∞⋃

n=1

Bn. Then B is not very thin and B ∩ Asi is lacunary for all i ∈ ω. Moreover, if M is an infinite

subset of {si : i ∈ ω} then BM =
⋃
s∈M

B ∩ As is not very thin (see Figure 3).

Define x ∈ 2ω such that there are infinitely many i ∈ ω so that Asi ⊂ Ax↾n, n ∈ ω. If there exists m ∈ ω such
that there is no i ∈ ω so that Asi ⊂ Ax↾n\Ax↾n+1 for any n ⩾ m then one can take M = {si : Asi ⊂ Ax↾m+1}. If
there does not exist such m, construct M by taking least si such that Asi ⊂ Ax↾n\Ax↾n+1 (if such si exists) for
n ∈ ω. In both cases M is infinite and so BM is not very thin with BM\Ax↾n is very thin for all n.

Remark 3.4. Let

rn = 0 + 1 + ... + n, n ∈ ω,
pn = N0 +N1 + ... +Nrn , n ∈ ω and
q0 = N0 and qn = qn−1 + pn, n ⩾ 1
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Define a set D =
∞⋃

i=0

Di as follows:

D0=

q0⋃
i=1

Bi

and for n ⩾ 1,

Dn=

qn⋃
i=qn−1+1

Bi

∖ n−1⋃
i=0

Asi

Suppose D =
⋃
k∈ω

Dk where 1 ⩽ |Dk| ⩽ L for all k ∈ ω for some M ∈ ω, min(Dk+1) −max(Dk) > 0 for all k ∈ ω.

Let nk = min(Dk+1) −max(Dk), k ∈ ω. There exists K ∈ ω such that there are more than L numbers in each Bi

∖
n−1⋃
i=0

Asi , qn−1 + 1 ⩽ i ⩽ qn for all n ⩾ K.

So there exists a sequence (En)n∈ω of mutually disjoint subsets of ω such that |En| = pK+n and 1
NL+K−1+n

⩽ 1
nk

for all
k ∈ En, n ∈ ω. Since

pK+n

NL+K−1+n
> 1 eventually,

D is not very very thin and also D ∩ Asi is finite for all i ∈ ω. Similarly, one can construct a non very very thin set
DM such that D ∩ As is finite for all s ∈M and DM ⊂ BM where M is an infinite subset of {si : i ∈ ω}.
Replacing BM by DM and defining same x ∈ 2ω as in the last case of Theorem 3.3 , it can be shown that Ivv = ideal of
very very thin subsets of ω has the Fin-BW property.

4. Conclusions

• Like the ideal Fin= collection of all finite subsets ofω, from Theorem 3.3 it follows thatIv also satisfies
the BW property. But Id = ideal of all thin subsets of ω and Iu = ideal of all uniformly thin subsets of
ω do not satisfy BW and so Fin-BW property ( see Example 4 in [7] and Corollary 1 in [14] ).

• The sequence (xn)n∈ω defined by x0 = 0 and xn =
1

n−k! whenever k! < n ⩽ (k + 1)! shows that Iu-
convergence does not implyIu

∗-convergence. As in case ofIu-convergence, Iv-convergence does not
imply Iv

∗-convergence unlike Id-convergence(see Lemma 1.1 in [3]) which is shown by the example
given below:
Consider the sequence (an)n∈ω where

an =

 1
k , if n = r(r+1)

2 + k, r ⩾ k ⩾ 1
0, if n = r(r+1)

2 , r ⩾ 0

and (an)n∈ω is Iv-convergent to 0.

• It follows from Figure 1 that in the family of Iv-convergent sequences the family of convergent
sequences is totally included, but the family of statistically convergent sequences is partially included.
Now the question is ‘which of the statistically convergent sequences are excluded from the family of
Iv-convergent sequences ?’ It can be observed that the family ofIv-convergent sequences successfully
excludes the statistically convergent sequences of type described in (N) and it carefully includes all
the statistically convergent sequences of type (Y).
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