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On Gallai’s path decomposition conjecture
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Abstract. Gallai conjectured that every connected graph on n vertices can be decomposed into at most
n+1

2 paths. Let G be a connected graph on n vertices. The E-subgraph of G, denoted by F, is the subgraph
induced by the vertices of even degree in G. The maximum degree of G is denoted by △(G). In 2020,
Botler and Sambinelli verified Gallai’s Conjecture for graphs whose E-subgraphs F satisfy △(F) ≤ 3. If the
E-subgraph of G has at most one vertex with degree greater than 3, Fan, Hou and Zhou verified Gallai’s
Conjecture for G. In this paper, it is proved that if there are two adjacent vertices x, y ∈ V(F) such that
dF(v) ≤ 3 for every vertex v ∈ V(F)\{x, y}, then G has a path-decomposition D1 such that |D1| ≤

n+1
2 and

D1(x) ≥ 2, and a path-decompositionD2 such that |D2| ≤
n+1

2 andD2(y) ≥ 2.

1. Introduction

All graphs considered in this paper are finite and simple. A decomposition of a graph is a set of
subgraphs that partition its edge set. If all these subgraphs are isomorphic to path, then it is called a
path-decomposition. LetD be a path-decomposition of a graph G. The number of elements ofD is denoted
by |D|. For a vertex v ∈ V(G), the number of paths inD with v as an end vertex is denoted byD(v). Gallai
[6] proposed the following conjecture.

Conjecture 1.1. (Gallai’s conjecture [6]) Let G be a connected graph on n vertices. Then G has a path-decomposition
D such that |D| ≤ n+1

2 .

The first breakthrough in the study of Gallai’s conjecture is Lovász [6] made.

Theorem 1.1. (Lovász [6]) Let G be a graph on n vertices. If G has at most one vertex of even degree, then G has a
path-decompositionD such that |D| ≤ n

2 .

Given a graph G, the sets of vertices and edges of G are denoted by V(G) and E(G), respectively. A cut
vertex of G is a vertex whose removal increases the number of components of G. The even subgraph of G
(E-subgraph, for short), denoted by EV(G), is the subgraph of G induced by its even degree vertices. The
maximum degree of a graph G is denoted by △(G). A block in a graph G is a maximal 2-connected subgraph
of G. We use Sk1,k2 to denote a double-star with center vertices x and y, where the degree of x is k1 and the
degree of y is k2.
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By Theorem 1.1, Gallai’s conjecture is true if the E-subgraph of G has at most one vertex. The conjecture
was verified by Favaron and Kouider [5] for Eulerian graphs with degrees 2 and 4, by Botler and Jiménez
[1] for 2k-regular (k ≥ 3) graphs of girths at least 2k− 2 that have a pair of disjoint perfect matchings. Pyber
[7] verified Gallai’s conjecture for graphs whose E-subgraphs are forests. Each block of a forest is a single
edge. If each block of the E-subgraph of G has maximum degree at most 3 and contains no triangles, Fan
[3] verified Gallai’s conjecture is true. If the maximum degree of the E-subgraph of G less than or equal
to 3, Botler and Sambinelli [2] verified that G has a path-decomposition D1 such that |D1| ≤

|V(G)|
2 , or a

path-decompositionD2 such that |D2| ≤
|V(G)|+1

2 . From this result, we can get the following theorem.

Theorem 1.2. (Theorem 13, [2]) Let G be a connected graph on n vertices and F be the E-subgraph of G. If △(F) ≤ 3,
then G has a path-decompositionD such that |D| ≤ n+1

2 .

Fan, Hou and Zhou [4] generalized the result above.

Theorem 1.3. (Theorem 5, [4]) Let G be a connected graph on n vertices and F be the E-subgraph of G. If there is
a vertex x ∈ V(F) such that dF(v) ≤ 3 for every vertex v ∈ V(F)\{x}, then G has a path-decomposition D such that
|D| ≤

n+1
2 andD(x) ≥ 2.

The main result of this paper is as following.

Theorem 1.4. Let G be a connected graph on n vertices and F be the E-subgraph of G. If there are two vertices
x, y ∈ V(F) and an edge xy ∈ E(F) such that dF(v) ≤ 3 for every vertex v ∈ V(F)\{x, y}, then G has a path-
decomposition D1 such that |D1| ≤

n+1
2 and D1(x) ≥ 2, and a path-decomposition D2 such that |D2| ≤

n+1
2 and

D2(y) ≥ 2.

2. Technical Lemmas

In a graph G, the set of neighbors of a vertex x is denoted by NG(x), the set of the edges incident with x
is denoted by EG(x) and its degree by dG(x) = |EG(x)|. For a subgraph H of G and a vertex x ∈ V(G), NH(x)
is the set of the neighbors of x in H, EH(x) is the set of the edges incident with x in H, and dH(x) = |EH(x)|
is the degree of x in H. For B ⊆ E(G), G\B is the graph obtained from G by deleting all the edges of B.
For X ∈ V(G), G − X is the graph obtained from G by deleting all the vertices of X together with all the
edges with at least one end in X. (When X = {x}, we simplify the notation to G − x.) The following easy
observation will be used throughout the paper.

Observation 2.1. Suppose thatD is a path-decomposition of a graph G. ThenD(v) ≥ 1 if dG(v) is odd.

Definition 2.2. Let w be a vertex in a graph G and B be a set of edges incident to w. Let H = G\B and D be a
path-decomposition of H. For a subset A ⊆ B, say A = {wxi : 1 ≤ i ≤ k}, we say that A is addible at w with respect to
D if H ∪ A has a path-decompositionD∗ such that

(i) |D∗| = |D|;
(ii)D∗(w) = D(w) + |A| andD∗(xi) = D(xi) − 1, 1 ≤ i ≤ k;
(iii)D∗(v) = D(v) for each v ∈ V(G)\{w, x1, ..., xk}.

We say thatD∗ a transformation ofD by adding A at w. The next lemma is from [3].

Lemma 2.3. (Lemma 3.6, [3]) Let w be a vertex in a graph G and x1, x2, ..., xs be neighbors of w in G. Let
H = G\{wx1,wx2, ...,wxs}. If H has a path-decomposition D such that D(v) ≥ 1 for every vertex v ∈ NG(w), then
for any vertex x ∈ {x1, x2, ..., xs}, there is an edge set B ⊆ {wx1,wx2, ...,wxs} such that wx ∈ B, |B| ≥ ⌈ s

2 ⌉, and B is
addible at w with respect toD.

The next lemma is from [4].
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Lemma 2.4. (Lemma 5, [4]) Suppose that w is a vertex in a graph G and x1, x2, ..., xk are neighbors of w in G. Let
H = G\{wx1,wx2, ...,wxk}. If H has a path-decompositionD such that for some integer l, |{v ∈ NH(xi) : D(v) = 0}| ≤ l
for each i, 1 ≤ i ≤ k, andD(w) ≥ l + k, then G has a path-decompositionD∗ such that

(i) |D∗| = |D|;
(ii)D∗(w) ≥ l andD∗(xi) = D(xi) + 1, 1 ≤ i ≤ k;
(iii)D∗(v) = D(v) for each vertex v ∈ V(G)\{w, x1, ..., xk}.

3. Proof of Main Theorem

Proof of Theorem 1.4.
By the hypothesis of G, S2,2 is the graph that has the fewest edges.The two center vertices of S2,2 are

denoted by x and y, respectively. The two leaf vertices of S2,2 are denoted by v1 and v2, respectively (see
Figure 1).

1v 2v
x y

Figure 1: S2,2.

Let D1 = {v1x, xyv2} and D2 = {v1xy, yv2}. Because |D1| = |D2| = 2 < 4+1
2 and D1(x) ≥ 2, D2(y) ≥ 2, the

theorem holds. If the theorem is not true, choose G to be a counterexample with |E(G)| minimum. Then
|E(G)| ≥ 4.
Claim 1. For any z ∈ V(F), G − z is connected.

If the claim is not true, then there are two connected nontrivial subgraphs G1 and G2 such that V(G1) ∩
V(G2) = {z}, E(G1) ∪ E(G2) = E(G) and z ∈ V(F). Let Fi be the E-subgraph of Gi, i = 1, 2. Obviously, Fi is a
subgraph of F, i = 1, 2. Since dG(z) is even, we have that dG1 (z) ≡ dG2 (z) (mod 2).

Because xy ∈ E(G) and xy ∈ E(F), x and y are both in either G1 or G2.
Case 1. z , x, y.

Assuming that x, y ∈ V(G2).
Subcase 1.1. Both dG1 (z) and dG2 (z) are even.
In the current case, |V(F1)| ≥ 1. According to Theorem 1.3, G has a path decomposition P1 such that

|P1| ≤
|V(G1)|+1

2 and P1(z) ≥ 2. Let P1 and P2 be two paths in P1 having z as an endvertex.
Because x, y ∈ V(G2) and dG2 (z) is even, |V(F2)| ≥ 3. By the minimality of G, G2 has a path-decomposition

P2 such that P2(x) ≥ 2 and a path-decomposition P′2 such that P′2(y) ≥ 2. dG2 (z) is even. If z is not the end
vertex of any path in P2, let Q ∈ P2 and z ∈ V(Q). The two segments of Q divided by z are denoted by Q1
and Q2. If z is the end vertex of some paths in P2, there are at least two such paths. Choose two paths from
P2 with z as the end vertex, denoted by Q1 and Q2, respectively.

LetD1 = (P1\{P1,P2}) ∪ (P2\{Q1 ∪ Q2}) ∪ {P1 ∪ Q1,P2 ∪ Q2}, then |D1| ≤
|V(G1)|+1

2 − 2 + |V(G2)|+1
2 − 1 + 2 =

|V(G)|+1
2 = n+1

2 and D1(x) ≥ 2. Similarly, we can use P1 and P′2 to find a path-decomposition D2 of G such
that |D2| ≤

n+1
2 andD2(y) ≥ 2, contradicting that G is a counterexample.

Subcase 1.2. Both dG1 (z) and dG2 (z) are odd.
If the degree of every vertex of G1 is odd, then there is a path-decomposition P1 of G1 such that

|P1| ≤
|V(G1)|+1

2 , P1(z) ≥ 1, by Theorem 1.1 and Observation 2.1. If the number of even degree vertices in G1

is greater than or equal to 1, then there is a path-decomposition P1 of G1 such that |P1| ≤
|V(G1)|+1

2 , P1(z) ≥ 1,
by Theorem 1.3 and Observation 2.1. So, in either case, G1 always has a path-decomposition P1, such that
|P1| ≤

|V(G1)|+1
2 , P1(z) ≥ 1. Let P1 be a path in P1 that ends at z. By the minimality of G, G2 has a path-

decomposition P2 such that |P2| ≤
|V(G2)|+1

2 , P2(x) ≥ 2 and a path-decomposition P′2 such that |P′2| ≤
|V(G2)|+1

2 ,
P
′

2(y) ≥ 2. For path-decomposition P2 or P′2, z is the end vertex of at least one path, by Observation 2.1. Let
Q1 and Q′1 be a path in P2 and P′2 that ends at z, respectively. Let D1 = (P1\{P1}) ∪ (P2\{Q1}) ∪ {P1 ∪ Q1}
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and D2 = (P1\{P1}) ∪ (P2\{Q′1}) ∪ {P1 ∪ Q′1}. Then |D1| ≤
|V(G1)|+1

2 − 1 + |V(G2)|+1
2 − 1 + 1 = |V(G)|+1

2 = n+1
2 ,

|D2| ≤
|V(G)|+1

2 = n+1
2 andD1(x) ≥ 2,D2(y) ≥ 2, contradicting that G is a counterexample.

Case 2. z = x or y.
Without loss of generality, we assume that z = x and y ∈ V(G1). Because dG(y) is even and y ∈ V(G1), we

can choose G1 such that G1 − x is connected and |E(G1)| ≥ 2.
Subcase 2.1. Both dG1 (x) and dG2 (x) are even.
In the current case, x, y ∈ V(F1). By the minimality of G, G1 has a path-decomposition P1 such that

|P1| ≤
|V(G1)|+1

2 ,P1(x) ≥ 2 and a path-decompositionP′1 such that |P′1| ≤
|V(G1)|+1

2 ,P′1(y) ≥ 2. Because x ∈ V(F2),
there are at least one vertex of even degree in G2. By Theorem 1.3, G2 has a path-decomposition P2 such
that |P2| ≤

|V(G2)|+1
2 , P2(x) ≥ 2. In P2, we choose two paths with x as the end vertex, denoted by Q1 and Q2,

respectively. In P1, we choose two paths with x as the end vertex, denoted by P1 and P2, respectively. Let
D1 = (P1\{P1})∪ (P2\{Q1})∪{P1∪Q1}, then |D1| ≤

|V(G1)|+1
2 −1+ |V(G2)|+1

2 −1+1 = |V(G)|+1
2 = n+1

2 andD1(x) ≥ 2.
InP′1,P′1(x) = 0 orP′1(x) ≥ 2. IfP′1(x) = 0, we choose a path fromP′1 containing x, denoted by P. We divide P
from x into two segments, denoted by P1 and P2, respectively. IfP′1(x) ≥ 2, we choose two paths with x as the
end vertex, denoted by P1 and P2, respectively. LetD2 = (P′1\{P1∪P2})∪(P2\{Q1,Q2})∪{P1∪Q1,P2∪Q2}. Then
|D2| ≤

|V(G1)|+1
2 − 1+ |V(G2)|+1

2 − 2+ 2 = |V(G)|+1
2 = n+1

2 andD2(y) ≥ 2, contradicting that G is a counterexample.
Subcase 2.2. Both dG1 (x) and dG2 (x) are odd.
(i) |E(G2)| ≥ 2.
Let Hi be the connected graph obtained from Gi by adding a new edge xw, where w is a new vertex,

i = 1, 2. The E-subgraph of Hi is denoted by F′i , i = 1, 2. Then xy ∈ E(F′1), x ∈ F′i and |E(Hi)| ≤ |E(G)|,
i = 1, 2. By the minimality of G, H1 has a path-decomposition P1 such that |P1| ≤

|V(H1)|+1
2 , P1(x) ≥ 2 and

a path-decomposition P′1 such that |P′1| ≤
|V(H1)|+1

2 , P′1(y) ≥ 2. Because dH2 (x) is even, the number of even
degree vertices of H2 is greater than or equal to 1. By Theorem 1.3, H2 has a path-decomposition P2 such
that |P2| ≤

|V(H2)|+1
2 , P2(x) ≥ 2. Next, we construct the path-decomposition D1 of G such that |D1| ≤

n+1
2 ,

D1(x) ≥ 2.
In P1, we choose the path which contains the edge xw, denoted by P1. In P1\{P1}, we choose one path

with x as the end vertex, denoted by P2. In P2, we choose the path which contains the edge xw, denoted by
Q1. In P2\{Q1}, we choose one path with x as the end vertex, denoted by Q2.

Let P = (P1\xw) ∪ (Q1\xw) and Q = P2 ∪ Q2. If neither Q1 nor P1 is the single edge xw, let D1 =

(P1\{P1,P2})∪ (P2\{Q1,Q2})∪ {P,Q}. Then |D1| ≤
|V(H1)|+1

2 − 2+ |V(H2)|+1
2 − 2+ 2 = |V(G)|+1

2 = n+1
2 andD1(x) ≥ 2.

If both Q1 = xw and P1 = xw, let D1 = (P1\{Q1}) ∪ (P2\{Q2}). Then |D1| ≤
|V(H1)|+1

2 − 1 + |V(H2)|+1
2 − 1 =

|V(G)|+1
2 = n+1

2 and D1(x) ≥ 2. If exactly one of Q1 and P1 is the single edge xw, say P1 = xw, Q1 , xw. Let
D1 = (P1\{P1,P2}) ∪ (P2\{Q1,Q2}) ∪ {Q,Q1\xy}, then |D1| ≤

|V(G)|+1
2 andD1(x) ≥ 2.

In the following, we construct the path-decomposition D2 of G such that |D2| ≤
n+1

2 , D2(y) ≥ 2. In G1,
the number of even degree vertices is greater than or equal to 1, and the degree of every vertex except y of F1

less than or equal to three. By Theorem 1.3, G1 has a path-decomposition P1 such that |P1| ≤
|V(G1)|+1

2 = n+1
2 ,

P1(y) ≥ 2. Because dG1 (x) is odd, P1 ≥ 1, by Observation 2.1. In P1, we choose one path with x as the end
vertex, denoted by P1. By Theorem 1.1 or 1.2, G2 has a path-decompositionP2 such that |P2| ≤

|V(G2)|+1
2 = n+1

2 .
By Observation 2.1, P2(x) ≥ 1. In P2, we choose one path with x as the end vertex, denoted by P2. Let
D2 = (P1\{P1})∪ (P2\{P2})∪ {P1,P2}. Then |D2| ≤

|V(G1)|+1
2 − 1+ |V(G2)|+1

2 − 1+ 1 = |V(G)|+1
2 = n+1

2 andD2(y) ≥ 2,
contradicting that G is a counterexample.

(ii) |E(G2)| = 1.
G2 is a single edge, say G2 = xw1. Let R = G1 − x. By the choice of G1, R is connected. Let EF(x) =

{xx1, xx2, ..., xxm}, m = dF(x). Let H = G\EF(x) and FH be the E-subgraph of H.
In the following, we construct the path-decompositionD1 of G such that |D1| ≤

n+1
2 ,D1(x) ≥ 2.

(1) m < dG1 (x).
Because R = G1 − x is connected and m < dG1 (x), H is connected.
If m is even, then dH(x) is even, and y ∈ {x1, x2, ..., xm}. So, dH(y) is odd. By Theorem 1.3, there is a
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path-decomposition P of H such that |P| ≤ |V(H)|+1
2 ≤

n+1
2 and P(x) ≥ 2. By Lemma 2.3, there is an edge set

B ⊆ EF(x) such that |B| ≥ ⌈m
2 ⌉, xy ∈ B and B is addible at x with respect to P.

If m is odd, then x is odd degree in H, and H has a path-decompositionP such that |P| ≤ n+1
2 , by Theorem

1.1 or 1.2. By Observation 2.1, P(x) ≥ 1. By Lemma 2.3, there is an edge set B ⊆ EF(x) and xy ∈ B such that
|B| ≥ ⌈m

2 ⌉ and B is addible at x with respect to P.
In either case, H ∪ B has a path-decomposition P′, a transformation of P by adding B at x, such that

|P
′
| ≤

n+1
2 and P′(x) ≥ m− ⌈m

2 ⌉+ 2. Since dF(v) ≤ 3 for every vertex V(F)\{x, y}. So, every vertex v ∈ EF(x)\B,
dF(v) ≤ 3 and dFH (v) ≤ 2.

By Lemma 2.4, with l = 2 and k = m − ⌈m
2 ⌉, G has a path-decomposition P∗ such that |P∗| = |P′| ≤ n+1

2
and P∗(x) ≥ 2.

(2) m = dG1 (x).
Because dG(x) is even and dG2 (x) = 1, m is odd, say m = 2k + 1. There are no new even vertices in

R = G1 − x. The degree of x and all vertices adjacent to x are odd. By Theorem 1.1 or 1.2, there is a
path-decomposition R of R such that |R| ≤ |V(R)|+1

2 and R(xi) ≥ 1 for all i, 1 ≤ i ≤ m. By Lemma 2.3, there
is an edge set B ⊆ EF(x), xy ∈ B, such that |B| ≥ k + 1 and B is addible at x with respect to R. Let R′ be
a transformation of R by adding B at x. Then R′ is a path-decomposition of R ∪ B such that |R′| ≤ |R|+1

2
and R′(x) ≥ |B| ≥ k + 1. Let P′ = R′ ∪ {xw1}, which is a path-decomposition of R ∪ B ∪ {xw1}. Note that
|V(R)| = |V(G)| − 2. So, |P′| ≤ |V(R)|+1

2 + 1 = n+1
2 and P′(x) ≥ |B| + 1 ≥ k + 2. By Lemma 2.4, with l = 2, we

obtain a path-decompositionD1 of G such that |D1| ≤
n+1

2 andD1(x) ≥ 2.

Next, we will find a path-decomposition D2 of G, such that |D2| ≤
n+1

2 and D2(y) ≥ 2. Let I = G\{xw1}

and FI be the E-subgraph of I. Because the number of even vertices in I is greater than or equal to one, and
only dFI (y) may be greater than three, I has a path-decomposition P such that |P| ≤ |V(I)|+1

2 and P(y) ≥ 2, by
Theorem 1.3. Because dI(x) is odd, P(x) ≥ 1, by Observation 2.1. In P, we choose one path with x as the end
vertex, denoted by P. Let Q = P ∪ {xw1} andD2 = (P\{P}) ∪ {Q}. Then |D2| ≤

|V(I)|+1
2 − 1 + 1 < |V(G)|+1

2 = n+1
2

andD2(y) ≥ 2, contradicting that G is a counterexample. This proves Claim 1.
Claim 2. At least one of dF(x) and dF(y) is even.

Suppose, to the contrary, that dF(x) and dF(y) are odd. Let EF(x) = {xw1, xw2, ..., xwm}, where m = dF(x)
and wm = y. Let H = G\EF(x). By Claim 1, H is connected. Note that the degree of x and y are odd
in H. By Theorem 1.1 or 1.2, H has a path-decomposition P1 such that |P1| ≤

n+1
2 . By Observation 2.1,

P1(x) ≥ 1, P1(y) ≥ 1. By Lemma 2.3, to add a set B ⊆ EF(x) at x with |B| ≥ ⌈m
2 ⌉ and xy ∈ B, we can get a

path-decomposition P2 of H ∪ B from P1. Since |B| ≥ ⌈m
2 ⌉ and m is odd, |B| ≥ m+1

2 , P2(x) ≥ m+1
2 + 1 = m+3

2
and |P2| ≤

n+1
2 . By applying Lemma 2.4, with l = 2, we obtain a path-decomposition D1 of G such that

|D1| ≤
n+1

2 andD1(x) ≥ 2. Because dF(y) is odd, we can obtain the path-decompositionD2 in the same way
as above such that |D2| ≤

n+1
2 andD2(y) ≥ 2, contradicting that G is a counterexample. This proves Claim 2.

Because xy ∈ EF(x) and xy ∈ EF(y), dF(x) , 0 and dF(y) , 0. By Claim 2, at least one of dF(x) and dF(y) is
even. Without loss of generality, suppose dF(x) is even. So, dF(x) ≥ 2.

In the following, we will find a path-decompositionD of G, such that |D| ≤ n+1
2 ,D(x) ≥ 2 andD(y) ≥ 2.

Let EF(x) = {xx1, xx2, ..., xxm}, m = dF(x) ≥ 2 is even. Let xxm = xy, m = 2k and k ≥ 1. Let S = EF(x)\{xxm}.
Thus |S| = 2k − 1. Suppose H = G\S. By Claim 1, H is connected. dH(x) is odd and dH(y) is even. By
Theorem 1.3, there is a path-decomposition P of H such that |P| ≤ n+1

2 and P(y) ≥ 2. By Observation 2.1,
P(x) and P(v) ≥ 1, v ∈ NG(x). By Lemma 2.3, there is an edge set B ⊆ S, such that |B| ≥ k and B is addible
at x with respect to P. Let P′ be a transformation of P by adding B at x. Then P′ is a path-decomposition
of H ∪ B such that |P′| ≤ n+1

2 and P′(x) ≥ k + 1. Note that |S\B| ≤ k − 1. By Lemma 2.4, with l = 2, G
has a path-decomposition D of G, such that |D| ≤ n+1

2 , D2(x) ≥ 2 and D2(y) ≥ 2, contradicting that G is a
counterexample.
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