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Abstract. The aim of this paper is to study the existence and uniqueness of solutions for nonlinear fractional
relaxation impulsive integro-differential equations with boundary conditions. Some results are established
by using the Banach contraction mapping principle and the Schauder fixed point theorem. An example is
provided which illustrates the theoretical results.

1. Introduction

Fractional differential equations have many applications in different problems and phenomenons in
science and engineering, see [1]-[19], [21]-[23]. Recently, fractional differential equations have been proved
to be useful tools in the modelling of many phenomena in various fields of engineering, physics and
economics. It finds an extensive use in fluid dynamic traffic models, nonlinear earthquake oscillations, and
many other physical phenomena including seepage flow in porous media. Actually, fractional differential
equations are studied as an alternative model to integer differential equations. Since the turn of the century,
some authors have used impulsive differential systems to describe the model, particularly in describing
dynamics of populations subject to abrupt changes as well as other phenomena like harvesting, diseases,
and so forth. Impulsive differential equations have played an important role in modelling phenomena.

In [10], Chidouh, Guezane-Lakoud and Bebbouchi studied the existence and uniqueness of positive
solutions of the following nonlinear fractional relaxation differential equationLCDγu(ι) + αu(ι) = f (ι, u(ι)), 0 < ι ≤ 1,

u(0) = u0 > 0,
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where LCDγ is fractional derivative of Liouville-Caputo, 0 < γ ≤ 1. By using the method of the upper
and lower solutions and the Schauder and Banach fixed point theorems, the existence and uniqueness of
solutions have been established.

In [11], Guezane Lakoud, Khaldi and Kilicman discussed the existence of solutions for the following
nonlinear differential equation with boundary conditionsLCD

γ
1−D

µ
0+u(ι) = f (ι, u(ι)), ι ∈ (0, 1),

u(0) = u
′

(0) = u(1) = 0,

where LCD
γ
1− andDµ0+ are correct Caputo and Liouville to the left fractional derivatives of Riemann-Liouville

respectively, 0 < γ ≤ 1, 1 < µ ≤ 2. By employing the Krasnoselskii fixed point theorem, the authors
produced results for existence.

In [2], Abdo, Wahash and Panchat investigated the existence and uniqueness of positive solutions of the
following nonlinear fractional differential equation with integral boundary conditionsLCDγu(ι) = f (ι, u(ι)), 0 < ι ≤ T,

u(0) = a
∫ T

0 u(ξ)dξ + b,

where 1 < γ < 1. The existence and uniqueness of solutions have been demonstrated using the method of
the upper and lower solutions and the Schauder and Banach fixed point theorems.

Motivated and inspired by the works mentioned above, by applying the Banach and Schauder fixed point
theorems, we investigate the existence and uniqueness of solutions to the following fractional relaxation
impulsive integro-differential equation of the form

Dµ LCDγu(ι) + αu(ι) = f (ι, u(ι), Iϑu(ι)), ι , ιz, ι ∈ (0,T), α ∈ R,
∆u(ιz) = Gz(u(ι−z )), z = 1, 2, ...,m,
LCDγu(0) =LC Dγu(T) = 0, u(0) = a

∫ T

0 u(ξ)dξ + b, a, b ∈ R,
(1)

where Dµ and LCDγ are the fractional derivative of Riemann-Liouville and Liouville-Caputo fractional
derivative of orders µ and γ respectively, 1 < µ < 2, 0 < γ < 1, Iϑ is fractional integral order ϑ ∈ (0, 1) by
Riemann-Liouville, and f : [0,T] × R × R → R is a nonlinear continuous function. ∆u(ιz) = u(ι+z ) − u(ι−z )
denotes the jump of u at ι = ιz, u(ι+z ) and u(ι−z ) respresent the right and left limits of u(ι) at ι = ιz respectively,
z = 1, 2, ...,m.

The remaining part of the paper is divided into four sections. Section 2 presents notations, fractional
calculus definitions, and fixed point theorems. In Section 3, results about the existence and uniqueness of
nonlinear fractional relaxation impulsive integro-differential equations are obtained. Section 4 provides an
example.

2. Preliminaries

In this section, we mention some definitions, notations and results of the fractional calculus. Consider
the Banach space

PC(J,X) = {u : J→ X : u ∈ C(ιz, ιz+1],X}, z = 0, 1, 2, ...,m

and there exist u(ι−z ) and u(ι+z ), z = 0, 1, 2, ...,m with u(ι−z ) = u(ιz) with the norm

∥u∥PC := sup{∥u(ι)∥ : ι ∈ J}.

Now we’re giving out some fractional calculus results and properties.

Definition 2.1. ([15]) The fractional integral of a functionK : J→ R of order γ > 0 is defined by

IγK (ι) =
1
Λ(γ)

∫ ι

0
(ι − ξ)γ−1

K (ξ)dξ,

provided the integral exists.
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Definition 2.2. ([15]) The Liouville-Caputo fractional derivative of a function K : J → R of order γ > 0 is defined
by

LCDγK (ι) = Dγ
K (ι) −

m1−1∑
z=0

K
(z)(0)
z!
ιz
 ,

where

m1 = [γ] + 1 f or γ <N0, m1 = γ f or γ ∈N0, (2)

and Dγ0+ is a fractional derivative in Riemann-Liouville sense of order γ given by

DγK (ι) = Dm1 Im1−γK (ι) =
1

Λ(n − γ)
dm1

dιm1

∫ ι

0
(ι − ξ)m1−γ−1

K (ξ)dξ.

The Liouville-Caputo fractional derivative LCD
γ
0+ exists for u belonging to ACm1 (J). In this case, it is defined by

LCDγK (ι) = Im1−γu(m1)(ι) =
1

Λ(n − γ)

∫ ι

0
(ι − ξ)m1−γ−1

K
(m)1 (ξ)dξ.

Remark that when γ = m1, we get LCDγK (ι) = K (m1)(ι).

Lemma 2.3. ([15]) Let γ > 0 and m be the given by (2). IfK ∈ ACm(J,R), then

(IγLCDγK )(ι) = K (ι) −
m−1∑
z=0

K
(z)(0)
z!
ιz,

whereK (z) is the usual derivative ofK of order z.

Lemma 2.4. ([15]) For γ > 0 and m be given by (2), then the Liouville-Caputo fractional differential equation
LCDγK (t) = 0 has a general solution

K (ι) = a0 + a1ι + a2ι
2 + ... + am−1ι

m−1,

where ai ∈ R, i = 0, 1, 2, ...,m − 1. Further, the Riemann-Liouville fractional differential equation DγK (ι) = 0 has a
general solution

K (ι) = a1ι
γ−1 + a2ι

γ−2 + a3ι
γ−3 + ... + amι

γ−m, ai ∈ R, i = 1, 2, ...,m.

Lemma 2.5. ([15]) For any γ, µ ∈ [0,∞) and ϵ > −1, we have

1
Λ(γ)

∫ ι

0
(ι − ξ)µ−1ξγ−1dξ =

Λ(µ)
Λ(γ + µ)

ιγ+µ−1.

Lemma 2.6. ([20]) (Banach fixed point theorem) LetΥ be a nonempty closed convex subset of a Banach space (S, ∥ · ∥),
then any contraction mapping Φ of Υ into itself has a unique fixed point.

Lemma 2.7. ([20]) (Schauder fixed point theorem) Let Υ be a nonempty bounded closed convex subset of a Banach
space S and Φ : Υ→ Υ be a continuous compact operator. Then has a fixed point in Υ.

We require the following lemma in order to get our results.

Lemma 2.8. For anyK ∈ C(J), the following problem
Dµ LCDγu(ι) + αu(ι) = K (ι), ι , ιz, ι ∈ [0,T], α ∈ R,
∆u(ιz) = Gz(u(ι−z )), z = 1, 2, ...,m,
LCDγu(0) =LC Dγu(T) = 0, u(0) = a

∫ T

0 u(ξ)dξ + b, a, b ∈ R,
(3)
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is equivalent to the integral equation

u(ι) = Iγ+µK (ι) − αIγ+µu(ι) −
ιµ+γ−1

Tµ−1Λ(µ + γ)
(IµK (T) − αIµu(T)) + a

∫ T

0
u(ξ)dξ + b +

m∑
z=1

Gz(u(ιz)) (4)

=



1
Λ(γ + µ)

(∫ ι

0
(ι − ξ)γ+µ−1

K (ξ)dξ − α
∫ ι

0
(ι − ξ)γ+µ−1u(ξ)dξ

)
−

ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

K (ξ)dξ − α
∫ T

0
(T − ξ)µ−1u(ξ)dξ

)
+a

∫ T

0
u(ξ)dξ + b if ι ∈ [0, ι1]

1
Λ(γ + µ)

(∫ ι2

ι1

(ι2 − ξ)γ+µ−1
K (ξ)dξ − α

∫ ι2

ι1

(ι2 − ξ)γ+µ−1u(ξ)dξ
)

+
1

Λ(γ + µ)

(∫ ι

ι1

(ι − ξ)γ+µ−1
K (ξ)dξ − α

∫ ι

ι1

(ι − ξ)γ+µ−1u(ξ)dξ
)

−
ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

K (ξ)dξ − α
∫ T

0
(T − ξ)µ−1u(ξ)dξ

)
+a

∫ T

0
u(ξ)dξ + b + G1(u(ι−1 )) if ι ∈ (ι1, ι2].

...

1
Λ(γ + µ)

z∑
i=1

(∫ ιi

ιi−1

(ιi − ξ)γ+µ−1
K (ξ)dξ − α

∫ ιi

ιi−1

(ιi − ξ)γ+µ−1u(ξ)dξ
)

+
1

Λ(γ + µ)

(∫ ι

ιz

(ι − ξ)γ+µ−1
K (ξ)dξ − α

∫ ι

ιz

(ι − ξ)γ+µ−1u(ξ)dξ
)

−
ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

K (ξ)dξ − α
∫ T

0
(T − ξ)µ−1u(ξ)dξ

)
+a

∫ T

0
u(ξ)dξ + b +

m∑
z=1

Gz(u(ι−z )) if ι ∈ (ιz, ιz+1].

Proof. Taking the integral operator Iµ to the first equation of (3), and from Lemma 2.4, we get
LCDγu(ι) = IµK (ι) − αIµu(ι) + a1ι

µ−1 + a2ι
µ−2. (5)

According to the conditions LCDγu(0) =LC Dγu(T) = 0, it yields

a1 =
1

Tµ−1 (αIµu(T) − IµK (T)), a2 = 0.

Replacing a1 and a2 by their values in (5), we find

LCDγu(ι) = IµK (ι) − αIµu(ι) +
ιµ−1

Tµ−1 (αIµu(T) − IµK (T)).

If we take the integral operator Iγ again to the above equation and use Lemma 2.4 and Lemma 2.5, we
observe

u(ι) = Iγ+µK (ι) − αIγ+µu(ι) −
Λ(µ)ιµ+γ−1

Tµ−1Λ(µ + γ)
(IµK (T) − αIµu(T)) + a3. (6)

Using the integral condition, we find

a3 = a
∫ T

0
u(ξ)dξ + b.

As a result, we obtain the integral equation (4) by substituting the value of a3 into (6). The reverse is
followed by a direct calculation which completes the proof.
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3. Main results

In the following, we employ some fixed point theorems to prove existence and uniqueness results for
the problem (1). The following hypotheses are required in order to get our results.

(H1) There exist constants l1, l2 > 0 such that

| f (ι, u1, v1) − f (ι, u2, v2)| ≤ l1|u1 − u2| + l2|v1 − v2|,

for any ι ∈ J and each ui, vi ∈ R, i = 1, 2.
(H2) There exists a functionΨ ∈ L1(J,R+) such that

| f (ι, u, v)| ≤ Ψ(ι), ∀(ι, u, v) ∈ J ×R ×R.

(H3) There exists ρ > 0 that says

|Gz(u) − Gz(v)| ≤ ρ|u − v|, for all u, v ∈ X with z = 1, 2, ...,m.

Existence and uniqueness results via Banach fixed point theorem

Theorem 3.1. Let (H1) holds. If

θ =

(
(m + 1)Tγ+µ

Λ(γ + µ + 1)
+

T2µ+γ−1

µTµ−1Λ(µ + γ)

) (
l1 + l2

Tη

Λ(η + 1)
+ |α|

)
+ |a|T +mρ < 1, (7)

then the problem (1) has at least one solution.

Proof. Our aim is to use Banach fixed point theorem. For this reason, we define an operator Φ : C → C as
follows:

(Φu)(ι) =
1

Λ(γ + µ)

∑
0<ιz<ι

(∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
K (ξ)dξ − α

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1u(ξ)dξ
)

+
1

Λ(γ + µ)

(∫ ι

ιm

(ι − ξ)γ+µ−1
K (ξ)dξ − α

∫ ι

ιm

(ι − ξ)γ+µ−1u(ξ)dξ
)

−
ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

K (ξ)dξ − α
∫ T

0
(T − ξ)µ−1u(ξ)dξ

)
+a

∫ T

0
u(ξ)dξ + b +

∑
0<ιz<ι

Gz(u(ι−z )). (8)

So we transform the problem (1) into a fixed point problem. Obviously, the fixed points of operator Φ are
solutions of problem (1). By (H1) and (H3) , for each u, v ∈ C and ι ∈ J, we get
|(Φu)(ι) − (Φv)(ι)|

≤
1

Λ(γ + µ)

∑
0<ιz<ι

(∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ)) − f (ξ, v(ξ), Iηv(ξ))|dξ

)
+

1
Λ(γ + µ)

∫ ι

ιm

(ι − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ)) − f (ξ, v(ξ), Iηv(ξ))|dξ

+
|α|

Λ(γ + µ)

∑
0<ιz<ι

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
|u(ξ) − v(ξ)|dξ



K. Karthikeyan et al. / Filomat 37:17 (2023), 5775–5783 5780

+
|α|

Λ(γ + µ)

∫ ι

ιm

(ι − ξ)γ+µ−1
|u(ξ) − v(ξ)|dξ

+
ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

| f (ξ, u(ξ), Iηu(ξ))

− f (ξ, v(ξ), Iηv(ξ))|dξ + |α|
∫ T

0
(T − ξ)µ−1

|u(ξ) − v(ξ)|dξ
)

+|a|
∫ T

0
|u(ξ) − v(ξ)|dξ +

m∑
z=1

|Gz(u(ι−z )) − Gz(v(ι−z ))|

≤

[(
(m + 1)Tγ+µ

Λ(γ + µ + 1)
+

T2µ+γ−1

µTµ−1Λ(µ + γ)

)
×

(
l1 + l2

Tη

Λ(η + 1)
+ |α|

)
+ |a|T +mρ

]
∥u − v∥.

Thus we obtain

∥Φu −Φv∥ ≤ θ∥u − v∥.

From (7), we conclude that Φ is a contraction. Banach fixed point theorem states that Φ has a unique fixed
point, which is the unique solution of the problem (1) on J. This completes the proof.

Existence results via Schauder’s fixed point theorem
For the sake convenience, we put

κ1 =
Ψ∗(m + 1)Tγ+µ

Λ(γ + µ + 1)
+
Ψ∗Tγ+2µ−1

µTµ−1Λ(γ + µ)
+ |b|,

whereΨ∗ = sup{Ψ(ι) : ι ∈ J}.

Theorem 3.2. Let us assume that the (H1) and (H2) are satisfied. If

ω = |α|

(
(m + 1)Tγ+µ

Λ(γ + µ + 1)
+

Tγ+2µ−1

µTµ−1Λ(γ + µ)

)
+ |a|T +mρ < 1,

then the problem (1) has at least one solution on J.

Proof. We consider the nonempty closed bounded convex subset

Υ = {u ∈ C : ∥u∥ ≤M}

of C, where M is chosen such

M ≥
κ1

1 − ω
.

Notice that the continuity of the operator Φ follows from the continuity of the function f . Now, applying
the Arzela-Ascoli theorem, we need to show that the operator Φ is compact. Therefore, we will show that
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Φ(Υ) ⊂ Υ and Φ(Υ) is uniformly bounded and equicontinuous set. For u ∈ Υ, we have

|(Φu)(ι)| ≤
1

Λ(γ + µ)

∑
0<ιz<ι

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
1

Λ(γ + µ)

∫ ι

ιz

(ι − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
|α|

Λ(γ + µ)

∑
0<ιz<ι

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
|u(ξ)|dξ +

|α|
Λ(γ + µ)

∫ ι

ιz

(ι − ξ)γ+µ−1
|u(ξ)|dξ

+
ιµ+γ−1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

| f (ξ, u(ξ), Iηu(ξ))|dξ + |α|
∫ T

0
(T − ξ)µ−1

|u(ξ)|dξ
)

+|a|
∫ T

0
|u(ξ)|dξ + |b| +

m∑
z=1

|Gz(u(ι−z ))|

≤
Ψ∗(m + 1)Tγ+µ

Λ(γ + µ + 1)
+ |α|M

(
(m + 1)Tγ+µ

Λ(γ + µ + 1)
+

T2µ+γ−1

µTµ−1Λ(µ + γ)

)
+
Ψ∗Tγ+2µ−1

µTµ−1Λ(γ + µ)
+ |a|TM + |b| +mρ

≤ M.

Then ∥Φu∥ ≤ M, which means that Φ(Υ) ⊂ Υ and the set Φ(Υ) is uniformly bounded. Next, we will prove
that Φ(Υ) is equicontinuous set. For ι1, ι2 ∈ J such that ιz−1 < ιz and for u ∈ Υ, we get
|(Φu)(ιz) − (Φu)(ιz−1)|

≤
1

Λ(γ + µ)

∑
0<ιz<ι

∫ ιz−1

0

(
(ιz − ξ)γ+µ−1

− (ιz−1 − ξ)γ+µ−1
)
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
1

Λ(γ + µ)

∑
0<ιz<ι

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
1

Λ(γ + µ)

∫ ιz−1

0

(
(ιz − ξ)γ+µ−1

− (ιz−1 − ξ)γ+µ−1
)
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
1

Λ(γ + µ)

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
| f (ξ, u(ξ), Iηu(ξ))|dξ

+
|α|

Λ(γ + µ)

∑
0<ιz<ι

(∫ ιz−1

0
(ιz − ξ)γ+µ−1

− (ιz−1 − ξ)γ+µ−1
|u(ξ)|dξ +

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
|u(ξ)|dξ

)
+

|α|
Λ(γ + µ)

(∫ ιz−1

0
(ιz − ξ)γ+µ−1

− (ιz−1 − ξ)γ+µ−1
|u(ξ)|dξ +

∫ ιz

ιz−1

(ιz − ξ)γ+µ−1
|u(ξ)|dξ

)
+
ι
µ+γ−1
2 − ι

µ+γ−1
1

Tµ−1Λ(µ + γ)

(∫ T

0
(T − ξ)µ−1

| f (ξ, u(ξ), Iηu(ξ))|dξ + |α|
∫ T

0
(T − ξ)µ−1

|u(ξ)|dξ
)

+

m∑
z=1

|Gz(u(ι−2 )) − Gz(v(ι11))|

≤
Ψ∗(m + 1)
Λ(γ + µ + 1)

(
ι
γ+µ
2 − ι

γ+µ
1

)
+

(
ι
µ+γ−1
2 − ι

µ+γ−1
1

)
Tµ−1Λ(µ + γ)

(
Ψ∗Tµ

µ
+
|α|TµM
µ

)
+ ρ∥(u(ιz)) − (u(ιz−1))∥.

As ιz−1 → ιz, we can observe that the above inequality’s right-hand side tends to zero and that the con-
vergence is independent of the u in Υ parameters, which means Φ(Υ) is equicontinuous. According to the
Arzela-Ascoli theorem, Φ is compact. Therefore, using the Schauder fixed point theorem, we prove that Φ
has at least one fixed point u ∈ Υ which is a solution of the problem (1) on J.
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4. An example

Consider the following fractional relaxation impulsive integro-differential equation
D

3
2 LCD

1
2 u(ι) + 1

4u(ι) = f
(
ι, u(ι), I

1
3 u(ι)

)
, ι , ιz ι ∈ (0, 1),

∆u(ιz) = Gz(u(ι−z )), z = 1, 2, ...,m,
LCD

1
2 u(0) =LC D

1
2 u(1) = 0, u(0) = 1

10

∫ 1

0 u(ξ)dξ + 2.

(9)

Here γ = 1
2 , µ = 3

2 , η = 1
3 , α = 1

4 , a = 1
10 , and b = 2. Set

f
(
ι, u(ι), I

1
3 u(ι)

)
=

sin(ι)
exp(ι2) + 7

(
|u(ι)|
|u(ι)| + 1

+
|I

1
3 u(ι)|

1 + |I
1
3 u(ι)|

)
.

For ui, vi ∈ R, i = 1, 2,we have

| f (ι, u1, u2) − f (ι, v1, v2)| =

∣∣∣∣∣∣ sin(ι)
exp(ι2) + 7

((
|u1|

|u1| + 1
−
|v1|

|v1| + 1

)
+

(
|u2|

|u2| + 1
−
|v2|

|v2| + 1

))∣∣∣∣∣∣
≤

1
exp(ι2) + 7

(
|u1 − v1|

(1 + |u1|)(1 + |v1|)
+

|u2 − v2|

(1 + |u2|)(1 + |v2|)

)
≤

1
8

(|u1 − v1| + |u2 − v2|).

Thus the assumption (H1) is satisfied with l1 = l2 = 1
8 , ρ = 1

2 and m = 1. We shall verify that condition (7) is
satisfied. Indeed

θ =

(
(m + 1)Tγ+µ

Λ(γ + µ + 1)
+

T2µ+γ−1

µTµ−1Λ(µ + γ)

) (
l1 + l2

Tη

Λ(η + 1)
+ |α|

)
+ |a|T +mρ

=

(
1
Λ(3)

+
2

3Λ(2)

) 1
8
+

1
8

1
Λ( 1

3 + 1)
+

1
4

 + 1
10

≃ 0.85 < 1.

Consequently, the problem (9) has a unique solution on [0, 1] according to the Theorem 3.1. Also we have

f (ι, u, v) ≤
2

exp(ι2) + 7
, ∀(ι, u, v) ∈ J ×R ×R.

Hence condition (H2) holds with Ψ(ι) = 2
exp(ι2)+7 , it follows from Theorem 3.2 that the problem (9) has at

least one solution on [0, 1].
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