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Abstract. In this paper, we prove the boundedness of B−maximal operator, B−singular integral operator
and B−Riesz potential in the variable exponent Lorentz space Lp(·),q(·),γ(Rn

k,+). As a consequence of the
boundedness of B−Riesz potentials in variable exponent Lorentz spaces, we also obtain that B−fractional
maximal operators are bounded in Lp(·),q(·),γ(Rn

k,+).

1. Introduction

Harmonic analysis consists of significant operators such as singular integrals, maximal operators, frac-
tional maximal operators, Riesz potentials and convolution type operators. On various function spaces,
the problem of boundedness of these operators and their versions which are generated by Laplace-Bessel
differential operators play a critical role in harmonic analysis and PDE’s. Over the years, singular inte-
gral operators generated by Laplace-Bessel differential operators have been investigated by Aliev, Aykol,
Ekincioglu, Gadjiev, Guliyev, Kaya, Kipriyanov, Klyuchantsev, Lyakhov, Safarov, Şerbetçi, Stempak, others
[1–3, 7, 9–12, 15–19].

On Lorentz spaces Lp,q,γ, behavior of generalized B−potential integral operators and rough B−fractional
integral operators have been investigated in [9, 10]. Later, in [12, 13], pointwise rearrangement estimates
for generalized B−convolution operators and O’Neil type inequality for B−convolution type operators
have been obtained and boundedness of generalized B−Riesz potentials, generalized B−fractional maximal
function have been proved. Also, O’Neil type inequality for the Hankel convolution operator have been
obtained [2]. Then, Aykol and Şerbetçi [3] have shown that fractional B−maximal operators defined on
Lorentz spaces are bounded.

Nowadays, there is a big attention on variable exponent function spaces and several results of harmonic
analysis have been discussed on these spaces, for example, Ephremidza et al. [8] have considered maximal
operators, fractional integral operators and singular integral operators on variable exponent Lorentz spaces.
In [8], the boundedness of such operators have been shown by assuming some decay conditions of log-type
on the exponents. Several fundamental properties of variable exponent Lorentz spaces have also been
obtained in [14]. The above results inspire us to investigate B−maximal operator, B−singular integral
operator and B−Riesz potential defined on variable exponent Lorentz spaces. With this motivation we
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aim to obtain that B−maximal operator, B−singular integral operator and B−Riesz potential are bounded
in variable exponent Lorentz spaces by using the rearrangement estimates and O’Neil type inequalities
for these operators. It is worth noting that in general log-Hölder continuous conditions are well used to
obtain the boundedness of these operators. But here, we are able to avoid this condition since the Hardy
inequalities are applicable.

The construction of the article is as follows: The first section is devoted to introduction. In the second
section, we recall some basic concepts, notations and some known results which we need throughout the
paper. In the third section, we have obtained that B−maximal operators are bounded in variable exponent
Lorentz spaces. The fourth section is devoted to boundedness of B−singular integral operators. Finally, in
the fifth section, we present that B−Riesz potentials are bounded in variable exponent Lorentz spaces and
as an immediate consequence of it we obtain that B−fractional maximal operators are bounded in these
spaces.

Throughout the paper we use the letter C for a positive constant, independent of appropriate parameters
and not necessary the same at each occurrence.

2. Preliminaries

We first give some basic concepts, notations and known results which are beneficial for us.
Let x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk, and x′′ = (xk+1, . . . , xn) ∈ Rn−k. Denote Rn

k,+ = {x ∈ R
n : x1 >

0, . . . , xk > 0, 1 ≤ k ≤ n}, γ = (γ1, . . . , γk), γ1 > 0, . . . , γk > 0, and |γ| = γ1 + . . . + γk. We denote by B+(x, r),
the open ball of radius r centered at x, namely, B+(x, r) = {y ∈ Rn

k,+ : |x − y| < r}. Let B+(0, r) ⊂ Rn
k,+be a

measurable set, then

|B+(0, r)|γ =
∫

B+(0,r)
(x′)γdx = ω(n, k, γ)rQ,

where ω(n, k, γ) =
π

n−k
2

2k

k∏
i=1

Γ
(
γi+1

2

)(
γi

2

) , Q = n + |γ|.

The definition of the generalized shift operator is as follows:

Ty f (x) := Ck,γ

∫ π

0
. . .

∫ π

0
f
[
(x1, y1)α1 , . . . , (xk, yk)αk , x

′′
− y′′

]
dγ(α),

where Ck,γ = π−
k
2 Γ(γi+1

2 )[Γ(γi

2 )]−1, (xi, yi)αi = (x2
i − 2xiyi cosαi + y2

i )
1
2 , 1 ≤ i ≤ k, 1 ≤ k ≤ n, and dγ(α) =

k∏
i=1

sinγi−1 αi dαi [17, 18]. Notice that the generalized shift operator is related to the Laplace-Bessel differential

operator,

∆B :=
k∑

i=1

Bi +

n∑
i=k+1

∂2

∂x2
i

, Bi =
∂2

∂x2
i

+
γi

xi

∂
∂xi
, 1 ≤ k ≤ n.

The B−convolution operator associated with Ty is as follows:

( f ⊗ 1)(x) =
∫
Rn

k,+

f (y)Ty1(x)(y′)γdy.

For a function f ∈ Lloc
1,γ(R

n
k,+), the B−maximal operator and B−fractional maximal operator are defined

by, respectively,

Mγ f (x) = sup
r>0
|B+(0, r)|−1

γ

∫
B+(0,r)

Ty
| f (x)|(y′)γdy,

Mα
γ f (x) = sup

r>0
|B+(0, r)|

α
Q−1
γ

∫
B+(0,r)

Ty
| f (x)|(y′)γdy, 0 ≤ α < Q.
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It is easy to observe that M0
γ f =Mγ f for α = 0 (see [11]).

B−Riesz potential is defined by the following:

Iαγ f (x) =
∫
Rn

k,+

Ty
|x|α−Q f (y)(y′)γdy, 0 < α < Q.

It is well known that the inequality Mα
γ ≤ C Iαγ holds.

Singular integral operator generated by a generalized shift operator (B−singular integral operator) is
defined as

Tγ f (x) = p.v.
∫
Rn

k,+

Ω(θ)
|y|Q

[Ty f (x)](y′)γdy

= lim
ε→0

∫
{y∈Rn

k,+: |y|>ε}

Ω(θ)
|y|Q

[Ty f (x)](y′)γdy = lim
ε→0

Tγ,ε f (x), (1)

where θ = y/|y|, and the characteristic Ω(θ) belong to some function space on the semi-sphere Sk,+ = {x ∈
Rn

k,+ : |x| = 1} and satisfying the ”cancellation” condition∫
Sk,+

Ω(θ)(θ′)γdσ(θ) = 0

(dσ(θ) is the area element of the sphere |θ| = 1). B−singular integral operators are the convolution type

operator, where the kernel of these operator is K(y) =
Ω(θ)
|y|Q

and thus it can be written as Tγ f (x) = (K⊗ f )(x).

The existence of the limit (1) for all x ∈ Rn
k,+ and for Schwartz test functions f (x) can be proved in the

standard way by considering the well-known estimate
∣∣∣Ty f (x) − f (x)

∣∣∣ ≤ c(x)|y|.
We will now introduce the variable exponent Lebesgue spaces Lp(·),γ(Rn

k,+). Let P(Rn
k,+) be the set of all

measurable functions p(·) : Rn
k,+ → [1,∞]. The elements of P(Rn

k,+) are called variable exponent functions
and also let 1 ≤ p− := ess inf

x∈Rn
k,+

p(x) ≤ p+ := ess sup
x∈Rn

k,+

p(x) < ∞. The space Lp(·),γ(Rn
k,+) is known as the set of

measurable functions f such that for a variable exponent p(·) : Rn
k,+ → [1,∞],

∥ f ∥Lp(·),γ(Rn
k,+) = inf

{
λ > 0 : ϱp(·),γ

(
f/λ

)
≤ 1

}
,

where

ϱp(·),γ :=
∫
Rn

k,+\(R
n
k,+)∞
| f (x)|p(x)(x′)γdx + ∥ f ∥L∞,γ(Rn

k,+)∞ < ∞.

Given p(·), the conjugate exponent function is as follows,

1
p(x)

+
1

p′(x)
= 1, x ∈ Rn

k,+.

Let P(0,∞) be the set of all measurable functions p(·) on interval (0,∞).
The elements of P(0,∞) are called variable exponent functions and also let

p− := ess inf
0<t<∞

p(t), p+ := ess sup
0<t<∞

p(t)

satisfying the conditions

|p(t) − p(0)| ≤
C0

| ln t|
, 0 < t ≤

1
2
, (2)
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and

|p(t) − p(∞)| ≤
C∞

ln(e + t)
. (3)

We will use the notation Pa = {p : a < p− ≤ p+ < ∞} for a = 0 or a = 1. We denote by P(0,∞), the set of all
classes of measurable functions p(·) ∈ L∞(0,∞) such that there exist the limits

p(0) = lim
t→0

p(t) and p(∞) = lim
t→∞

p(t).

We denote Pa(0,∞) = P(0,∞) ∩ Pa(0,∞).

Definition 2.1. [5, 8] Let β(t) and ν(t) are measurable functions on (0,∞). The weighted Hardy operators Hβ(·)
ν(·) and

H
β(·)
ν(·) with power weights acting on φ are defined by

Hβ(·)
ν(·)φ(t) = tβ(t)+ν(t)−1

∫ t

0

φ(y)
yν(y)

dy

and

H
β(·)
ν(·)φ(t) = tβ(t)+ν(t)

∫
∞

t

φ(y)
yν(y)+1

dy.

We need the following Hardy inequalities in variable Lebesgue spaces (see [5] and the references therein)
which will be used in the proof of our main theorems.

Theorem 2.2. [5, 8] Let p(·) ∈ P1(0,∞), and β, ν ∈ P(0,∞) and

0 ≤ β(0) <
1

p(0)
, 0 ≤ β(∞) <

1
p(∞)

. (4)

Let also q(·) ∈ P1(0,∞) such that

1
q(0)

=
1

p(0)
− β(0),

1
q(∞)

=
1

p(∞)
− β(∞). (5)

Then the inequalities∥∥∥∥Hβ(·)
ν(·)φ

∥∥∥∥
Lq(·)(0,∞)

≤ C
∥∥∥φ∥∥∥Lp(·)(0,∞)

and ∥∥∥∥Hβ(·)ν(·)φ∥∥∥∥Lq(·)(0,∞)
≤ C

∥∥∥φ∥∥∥Lp(·)(0,∞)

hold if and only if

ν(0) <
1

p′(0)
and ν(∞) <

1
p′(∞)

, (6)

and

ν(0) > −
1

p(0)
and ν(∞) > −

1
p(∞)

, (7)

respectively.
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2.1. Variable exponent Lorentz spaces

Given a measurable function f : Rn
k,+ → R and any measurable set E with |E|γ =

∫
E
(x′)γdx, the

γ−rearrangement of f in decreasing order is defined as

f ∗γ(t) = inf
{
s > 0 : f∗,γ(s) ≤ t

}
, ∀t ∈ (0,∞),

where f∗,γ(s) denotes the γ−distribution function of f given by

f∗,γ(s) =
∣∣∣∣{x ∈ Rn

k,+ : | f (x)| > s
}∣∣∣∣
γ
.

The average function of f ∗∗γ is defined as

f ∗∗γ (t) =
1
t

∫ t

0
f ∗γ(s)ds,

for t > 0, and the following inequality is valid (see [6]):

( f + 1)∗∗γ (t) ≤ f ∗∗γ (t) + 1∗∗γ (t).

Some properties of γ−rearrangement of functions are given as follows (see [4, 6, 20]):

• if 0 < p < ∞, then∫
Rn

k,+

| f (x)|p(x′)γdx =
∫
∞

0
( f ∗γ(t))

pdt,

• for any t > 0,

sup
|E|γ=t

∫
E
| f (x)|(x′)γdx =

∫ t

0
f ∗γ(s)ds, (8)

• ∫
Rn

k,+

| f (x)1(x)|(x′)γdx ≤
∫
∞

0
f ∗γ(t)1

∗

γ(t)dt,

• it is well known that

( f + 1)∗γ(t) ≤ f ∗γ (t/2) + 1∗γ (t/2) (9)

holds.

Lemma 2.3. [3] For any measurable set A = (A′,An) ⊂ Rn
k,+, An ⊂ (0,∞), A′ = A1 × · · · × An−1 ⊂ Rn−1, and

y ∈ Rn
k,+, then the following equality holds∫
A

Ty1(x)(y′)γdy = Cγ

∫
(x,0)+Ã

1

(
z′,

√
z2

n + z2
n+1

)
dµ(z, zn+1),

where Ã = A′ × (−m,m) × [0,m), m = supAn and dµ(z, zn+1) = zγ−1
n+1dz1dz2 · · · dzndzn+1.

Lemma 2.4. [3] For any measurable setA ⊂ Rn
k,+ and for any y ∈ Rn

k,+, the following equality holds

sup
|A|γ=t

∫
A

Ty
| f (x)|(y′)γdy = Cγ

∫ t

0
f ∗γ(s)ds.
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Definition 2.5. The Lorentz space Lp,q,γ(Rn
k,+) is the collection of all measurable functions f on Rn

k,+ such that the
quantity

∥ f ∥p,q,γ =


(∫

∞

0

(
t

1
p f ∗γ(t)

)q dt
t

)1/q

, 0 < p < ∞, 0 < q < ∞

sup
t>0

t
1
p f ∗γ(t), 0 < p ≤ ∞, q = ∞

is finite.
If 0 < p ≤ ∞, q = ∞, then Lp,∞,γ(Rn

k,+) = WLp,γ(Rn
k,+), where WLp,γ(Rn

k,+) is weak Lebesgue space of all
measurable functions f with following norm

∥ f ∥WLp,γ(Rn
k,+) = sup

t>0
t1/p f ∗γ(t) < ∞, 1 ≤ p < ∞.

If 1 ≤ q ≤ p, or p = q = ∞, then the functional ∥ f ∥p,q,γ is a norm (see [4, 10, 20]). If p = q = ∞, then the space
L∞,∞,γ(Rn

k,+) is denoted by L∞,γ(Rn
k,+).

In the case 1 < p, q < ∞, we give a functional ∥ · ∥∗p,q,γ by

∥ f ∥∗p,q,γ =


(∫

∞

0

(
t

1
p f ∗∗γ (t)

)q dt
t

)1/q

, 0 < p < ∞, 0 < q < ∞

sup
t>0

t
1
p f ∗∗γ (t), 0 < p ≤ ∞, q = ∞

(with the usual modification if 0 < p ≤ ∞, q = ∞) which is a norm on Lp,q,γ(Rn
k,+) for 1 < p < ∞, 1 ≤ q ≤ ∞ or

p = q = ∞.

We will now introduce the variable exponent Lorentz spaces Lp(·),q(·),γ(Rn
k,+).

Definition 2.6. Let p(·), q(·) ∈ P0(0,∞) be variable exponent functions. Then the variable exponent Lorentz spaces
Lp(·),q(·),γ(Rn

k,+) are known as the set of measurable functions f on Rn
k,+ such that t

1
p(t)−

1
q(t) f ∗γ(t) ∈ Lq(·)(0,∞), i.e.

Jp(·),q(·)( f ) :=
∫
∞

0
t

q(t)
p(t)−1
| f ∗γ(t)|

q(t)dt < ∞.

and the norm on these spaces is defined by

∥ f ∥Lp(·),q(·),γ(Rn
k,+) = inf

{
λ > 0 : Jp(·),q(·)

(
f/λ

)
≤ 1

}
=

∥∥∥∥t
1

p(t)−
1

q(t) f ∗γ(t)
∥∥∥∥

Lq(·)(0,∞)
.

If we take p(·) = q(·), then we obtain variable Lebesgue spaces Lp(·),p(·),γ = Lp(·),γ. For the proof of this, the
reader may refer to [14].

One can write the following norm

∥ f ∥∗Lp(·),q(·),γ(Rn
k,+) =

∥∥∥∥t
1

p(t)−
1

q(t) f ∗∗γ (t)
∥∥∥∥

Lq(·)(0,∞)
.

The validity of the following can be obtained easily from the definition of Lorentz Lp(·),q(·),γ(Rn
k,+) spaces:

• If p(·), q(·) ∈ P(0,∞), then the functional ∥ f ∥Lp(·),q(·),γ is a quasi-norm.

• Let p(·) ∈ P0([0, ℓ]), q ∈ P1([0, ℓ]). Then ∥ f ∥Lp(·),q(·),γ and ∥ f ∥∗Lq(·),q(·),γ
are equivalent, i.e.,

∥ f ∥Lp(·),q(·),γ ≤ ∥ f ∥∗Lp(·),q(·),γ
≤ C ∥ f ∥Lp(·),q(·),γ (10)

if and only if p(0) > 1 and in the case of ℓ = ∞, also p(∞) > 1, where C > 0 does not depend on f .
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3. Boundedness of B−maximal operators in variable exponent Lorentz spaces

In this section, we will first give sharp rearrangement inequality for B−maximal operators. By using
this inequality, we obtain that B−maximal operators are bounded in Lp(·),q(·),γ(Rn

k,+).

Lemma 3.1. [3] Sharp rearrangement inequality for B−maximal operators,

(Mγ f )∗γ(t) ≤ C f ∗∗γ (t), t > 0, (11)

holds, where C = C(n, γ) is a positive constant.

Theorem 3.2. Let p(·), q(·) ∈ P1(0,∞). Then B−maximal operator Mγ is bounded on Lp(·),q(·),γ(Rn
k,+).

Proof. From the inequalities (10) and (11) we obtain

∥Mγ f ∥Lp(·),q(·),γ(Rn
k,+) =

∥∥∥∥t
1

p(t)−
1

q(t) (Mγ f )∗γ(t)
∥∥∥∥

Lq(·)(0,∞)

≤ C
∥∥∥∥t

1
p(t)−

1
q(t) f ∗∗γ (t)

∥∥∥∥
Lq(·)(0,∞)

≡ C∥ f ∥Lp(·),q(·),γ(Rn
k,+). (12)

Hence, the proof is completed.

4. Boundedness of B−singular integral operators in variable exponent Lorentz spaces

In this section, we obtain that B−singular integral operators are bounded in variable exponent Lorentz
spaces. We will first give two theorems which is used in proof of Theorem 4.3. While Theorem 4.1 states
O’Neil type inequality for B−convolution operator, Theorem 4.2 states a pointwise rearrangement estimate
of generalized B−potential integral. For more details, see [12].

Theorem 4.1. [12] Let f , 1 be two positive measurable functions onRn
k,+. Then for all t > 0 the following inequality

holds:

( f ⊗ 1)∗∗γ (t) ≤ Ck,γ

(
f ∗∗γ (t)

∫ t

0
1∗∗γ (u)du +

∫
∞

t
f ∗γ(u)1∗∗γ (u)du

)
.

Theorem 4.2. [12] If Kα ∈WLQ/(Q−α),γ(Rn
k,+), 0 < α < Q, then

(Kα ⊗ 1)∗γ(t) ≤ (Kα ⊗ 1)∗∗γ (t) ≤ C
(
tα/Q−1

∫ t

0
f ∗γ(s)ds +

∫
∞

t
sα/Q−1 f ∗γ(s)ds

)
,

where C = Ck,γ(Q/α)2
∥Kα∥WLQ/(Q−α),γ(Rn

k,+).

Since Tγ f (x) is convolution type operator and from the above theorem, we can write

(Tγ f (x))∗γ(t) ≤ (Tγ f (x))∗∗γ (t) ≤ C
(
t−1

∫ t

0
f ∗γ(s)ds +

∫
∞

t
s−1 f ∗γ(s)ds

)
. (13)

Now, we are ready to present Lp(·),q(·),γ(Rn
k,+)−boundedness of B−singular integral operators.

Theorem 4.3. Let p(·), q(·) ∈ P1(0,∞). Then B−singular integral operators Tγ are bounded on Lp(·),q(·),γ(Rn
k,+).
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Proof. Let p(·), q(·) ∈ P1(0,∞). Then,

∥Tγ f ∥Lp(·),q(·),γ(Rn
k,+) =

∥∥∥∥t
1

p(t)−
1

q(t) (Tγ f )∗γ(t)
∥∥∥∥

Lq(·)(0,∞)

≤ C
∥∥∥∥t

1
p(t)−

1
q(t) (Tγ f )∗∗γ (t)

∥∥∥∥
Lq(·)(0,∞)

.

Then from (13) and Theorem 4.2 we get

∥∥∥∥t
1

p(t)−
1

q(t) (Tγ f )∗∗γ (t)
∥∥∥∥

Lq(·)(0,∞)
≤ C

∥∥∥∥∥∥t
1

p(t)−
1

q(t)

(
t−1

∫ t

0
f ∗γ(s)ds +

∫
∞

t
s−1 f ∗γ(s)ds

)∥∥∥∥∥∥
Lq(·)(0,∞)

≤ C

∥∥∥∥∥∥t
1

p(t)−
1

q(t)−1
∫ t

0
f ∗γ(s)ds

∥∥∥∥∥∥
Lq(·)(0,∞)

+ C
∥∥∥∥∥t

1
p(t)−

1
q(t)

∫
∞

t
s−1 f ∗γ(s)ds

∥∥∥∥∥
Lq(·)(0,∞)

= I1 + I2.

From the inequality (12) we easily obtain

I1 ≤ C ∥ f ∥Lp(·),q(·),γ(Rn
k,+).

For I2, taking β(t) = 0, ν(t) = 1
p(t) −

1
q(t) and φ(t) = t

1
p(t)−

1
q(t) f ∗(t) in Theorem 2.2, we get

I2 =

∥∥∥∥∥t
1

p(t)−
1

q(t)

∫
∞

t
s−1 f ∗γ(s)ds

∥∥∥∥∥
Lq(·)(0,∞)

=

∥∥∥∥∥tν(t)
∫
∞

t

φ(s)
sν(s)+1

ds
∥∥∥∥∥

Lq(·)(0,∞)

= C
∥∥∥∥Hβ(·)ν(·)φ∥∥∥∥Lq(·)(0,∞)

≤ C ∥φ∥Lp(·)(0,∞) = C ∥t
1

p(t)−
1

q(t) f ∗γ(t)∥Lq(·)(0,∞) = C ∥ f ∥Lp(·),q(·),γ(Rn
k,+).

This completes the proof.

5. Boundedness of B−Riesz potentials in variable exponent Lorentz spaces

In this section, we will obtain the (Lp(·),r(·),γ(Rn
k,+),Lq(·),s(·),γ(Rn

k,+))−boundedness of B−Riesz potential.
For B−Riesz potential, the following inequality

(Iαγ f )∗γ(t) ≤ (Iαγ f )∗∗γ (t) ≤ C2

(
t
α
Q−1

∫ t

0
f ∗γ(s)ds +

∫
∞

t
s
α
Q−1 f ∗γ(s)ds

)
, (14)

holds, where C2 = Ck,γ(Q/α)2ω(n, k, γ)(Q−α)/Q. For more details, see [9].

Theorem 5.1. Let p(·), q(·), r(·), s(·) ∈ P1(0,∞), 1 < p(0), p(∞) < Q
α , 1

p(0) −
1

q(0) =
α
Q and 1

p(∞) −
1

q(∞) =
α
Q . Then the

Riesz potential Iαγ is bounded from Lp(·),r(·),γ(Rn
k,+) to Lq(·),s(·),γ(Rn

k,+).
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Proof. The proof can be obtained in similar manner as in Theorem 4.3. From (14), we get

∥Iαγ f ∥Lq(·),s(·),γ(Rn
k,+) =

∥∥∥∥t
1

q(t)−
1

s(t) (Iαγ f )∗γ(t)
∥∥∥∥

Ls(·)(0,∞)

≤

∥∥∥∥t
1

q(t)−
1

s(t) (Iαγ f )∗∗γ (t)
∥∥∥∥

Ls(·)(0,∞)

≤ C

∥∥∥∥∥∥t
1

q(t)−
1

s(t)

(
t
α
Q−1

∫ t

0
f ∗γ(s)ds +

∫
∞

t
s
α
Q−1 f ∗γ(s)ds

)∥∥∥∥∥∥
Ls(·)(0,∞)

≤ C

∥∥∥∥∥∥t
1

q(t)−
1

s(t)+
α
Q−1

∫ t

0
f ∗γ(s)ds

∥∥∥∥∥∥
Ls(·)(0,∞)

+ C
∥∥∥∥∥t

1
q(t)−

1
s(t)

∫
∞

t
s
α
Q−1 f ∗γ(s)ds

∥∥∥∥∥
Ls(·)(0,∞)

= J1 + J2.

We take ν(t) =
1

p(t)
−

1
r(t)

and φ(t) = t
1

p(t)−
1

r(t) f ∗γ(t). Then, we get

β(t) =
1

q(t)
−

1
s(t)
+

1
r(t)
−

1
p(t)
+
α
Q
.

From Theorem 2.2, we obtain

J1 =

∥∥∥∥∥∥tβ(t)+ν(t)−1
∫ t

0

φ(s)
sν(s)

ds

∥∥∥∥∥∥
Ls(·)(0,∞)

=
∥∥∥∥Hβ(·)
ν(·)φ

∥∥∥∥
Ls(·)(0,∞)

≤ C ∥φ∥Lr(·)(0,∞) = C ∥t
1

p(t)−
1

r(t) f ∗γ(t)∥Lr(·)(0,∞) = C ∥ f ∥Lp(·),r(·),γ(Rn
k,+).

We now estimate J2. We take ν(t) =
1

p(t)
−

1
r(t)
−
α
Q

and φ(t) = t
1

p(t)−
1

r(t) f ∗γ(t) ∈ Lq(·)(0,∞). Then, we get

β(t) =
1

q(t)
−

1
s(t)
+

1
r(t)
−

1
p(t)
+
α
Q
.

Therefore, by using Theorem 2.2, we obtain

J2 =

∥∥∥∥∥tβ(t)+ν(t)
∫
∞

t

φ(s)
sν(s)+1

ds
∥∥∥∥∥

Ls(·)(0,∞)

= C
∥∥∥∥Hβ(·)ν(·)φ∥∥∥∥Ls(·)(0,∞)

≤ C ∥φ∥Lr(·)(0,∞) = C ∥t
1

p(t)−
1

r(t) f ∗γ(t)∥Lr(·)(0,∞) = C ∥ f ∥Lp(·),r(·),γ(Rn
k,+).

This completes the proof.

From the inequality Mα
γ ≤ C Iαγ and Theorem 5.1, the following corollary is easily obtained.

Corollary 5.2. Let p(·), q(·), r(·), s(·) ∈ P1(0,∞), 1 < p(0), p(∞) < Q
α , 1

p(0) −
1

q(0) =
α
Q and 1

p(∞) −
1

q(∞) =
α
Q . Then

the B−fractional maximal operator Mα
γ is bounded from Lp(·),r(·),γ(Rn

k,+) to Lq(·),s(·),γ(Rn
k,+).

References

[1] I. A. Aliev, A. D. Gadjiev, Weighted estimates of multidimensional singular integrals generated by the generalized shift operator,
Mat. Sb. 183 (1992) 45–66, English, translated into Russian, Acad. Sci. Sb. Math. 77 (1994) 37–55.



C. Aykol, E. Kaya / Filomat 37:17 (2023), 5765–5774 5774
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