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Abstract. Convergence structure and relation are useful tools in interpreting many mathematical structures
such as topological spaces and convex spaces. The aim of this paper is to study convergence structures
in the framework of L-concave spaces by using relations. Specifically, the notion of L-down–directed
relations is introduced and some simple examples are presented. Based on this, notions of L-down–directed
convergence relation spaces and L-concave down–directed convergence relations are introduced. It is
proved that the category of L-concave internal relation spaces can be embedded into the category of
L-down–directed convergence relation spaces as a reflective subcategory. In addition, the category of L-
concave down–directed convergence relation spaces is isomorphic to the category of L-concave internal
relation spaces.

In order to characterize L-down–directed convergence relation space and L-concave down–directed
convergence relation space, notions of L-concave filters, L-filter convergence spaces and L-concave filter
convergence spaces are introduced. It is showed that the category of L-down–directed convergence relation
spaces is isomorphic to the category of L-filter convergence spaces. It also showed that the category of
L-concave down–directed convergence relation spaces is isomorphic to the category of L-concave filter
convergence spaces and the category of L-concave spaces.

1. Introduction

In an abstract convex space, a convex structure on a nonempty set is a family of subsets containing the
empty set and the underling set and is closed under arbitrary intersections and nested unions. Its theory
is called the abstract convex theory which involves many mathematical structures such as lattice, graph,
median algebra, metric space, poset and vector space [19].

Convex structure has been extended into fuzzy settings by many ways. Maruyama introduced L-fuzzy
convex structure [6] which has being studied by many scholars [8, 12, 22, 26, 28, 34]. Also, Shi and Xiu
introduced M-fuzzifying convex structures [13]. Many subsequent studies have been done [10, 20, 21, 29].
Later, Shi and Xiu introduced (L,M)-fuzzy convex structure which is a unified form of L-convex structure
and M-fuzzifying convex structure [14]. It characterizations have been studied recently [11, 23, 24]. Now,
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these fuzzy forms of convex structures have being applied to many fuzzy mathematical structures such as
fuzzy topology [5, 16, 20, 24, 27], fuzzy convergence [4, 7, 9, 10] and fuzzy matroid [15, 21, 29].

Relation is a useful tool to characterize fuzzy mathematical structures. In L-setting, Shi et al introduced
L-topological internal relation and L-topological enclosed relation by which they characterized L-topologies
[17]. Also, Liao et al introduced L-convex enclosed relation and characterized L-convex structures. Based
on this, they introduced L-topological-convex enclosed relation and characterized L-topological-convex
structure [5]. In (L,M)-fuzzy setting, Shi et al introduced (L,M)-fuzzy topological internal relation and
(L,M)-fuzzy topological enclosed relation which are used to characterize (L,M)-fuzzy topologies [18, 25].
Wu et al introduced (L,M)-fuzzy convex enclosed relation and characterized (L,M)-fuzzy convex struc-
tures. Meanwhile, they introduced (L,M)-fuzzy topological-convex enclosed relation and obtained some
characterizations of (L,M)-fuzzy topological-convex structures [24].

Convergence structures constructed by either filters or ideals are often used in interpreting topologies
or convexities. To interpret fuzzy topologies, Güloǧlu defined I-fuzzy convergence structure and discuss
its relations with I-fuzzy topology [1]. Höhle and Šostak defined stratified L-filters and developed a direct
way to constructing fuzzy convergence structures [2]. Jäger introduced stratified L-fuzzy convergence
structures by using stratified L-filters and established categorical relations between stratified L-fuzzy con-
vergence structures and stratified L-topologies [3]. Yao introduced L-fuzzifying convergence structure by
L-filters and showed that L-fuzzifying convergence structures and L-fuzzifying topologies are categorically
isomorphic [30]. Later, Pang further discussed categorical properties of L-fuzzifying convergence struc-
tures [9]. Also, Pang introduce (L,M)-fuzzy convergence structures by (L,M)-fuzzy filters and characterized
(L,M)-fuzzy topologies [7]. To interpret fuzzy convexities, Pang introduced L-fuzzifying convex conver-
gence structures by L-fuzzifying filters and established its relations with L-fuzzifying convexities [10]. Xiu
and Pang introduced L-convex convergence structures by convex ideals and discussed its relations with
L-convexities [26]. Recently, Zhang and Pang studied convergence structures via residuated lattices [31–33].

As being described above, most of discussions on fuzzy convergence structures are focused on fuzzy
topological spaces. In addition, L-convergence structures in L-topological spaces or L-convex spaces are
constructed by either L-filters or L-convex ideals. Then, how to interpreted L-filters in terms of relations in
the framework of L-concave internal relation spaces? Further, how to construct L-convergence structures in
L-concave internal relation spaces? Motivated by these problems, we present this paper. The arrangement
of this paper is as follows. In Section 2, we recall some basic concepts, denotations and results related
to L-concave spaces. In Section 3, we introduce notions of L-down–directed relations, L-down–directed
convergence relation spaces and L-concave down–directed convergence relation spaces. We find that
the category of L-concave down–directed convergence relation spaces is isomorphic to the category of L-
concave internal relation spaces. In Section 4, we introduce notions of L-concave filters, L-filter convergence
spaces and L-concave filter convergence spaces. We prove that the category of L-filter convergence spaces is
isomorphic to the category of L-down–directed convergence relation spaces and that categories of L-concave
down–directed convergence relation spaces, L-concave filter convergence spaces and L-concave spaces are
all categorically isomorphic.

2. Preliminaries

In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X. L is a completely
distributive lattice. The smallest (resp. largest) element in L is denoted by ⊥ (resp. ⊤). An element a ∈ L
is called a co-prime element, if for all b, c ∈ L, a ≤ b ∨ c implies a ≤ b or a ≤ c. The set of all co-primes in
L\{⊥} is denoted by J(L). For any a ∈ L, there is an L1 ⊆ J(L) such that a =

∨
b∈L1

b. A binary relation ≺ on
L is defined by a ≺ b if ad only if for each L1 ⊆ L, b ≤

∨
L1 implies some d ∈ L1 with a ≤ d. The mapping

β : L −→ 2L, defined by β(a) = {b : b ≺ a}, satisfies β(
∨

i∈I ai) =
⋃

i∈I β(ai) for any {ai}i∈I ⊆ L. For any a ∈ L, we
denote β∗(a) = β(a) ∩ J(L). We have a =

∨
β(a) =

∨
β∗(a), β(a) =

⋃
b∈β∗(a) β(b) and β∗(a) =

⋃
b∈β∗(a) β

∗(b) [16].
An L-fuzzy set on X is a mapping A : X −→ L. The set of all L-fuzzy sets on X is denoted by LX. The

smallest (resp, largest) element in LX is denoted by ⊥ (resp. ⊤). A subset {Ai}i∈I ⊆ LX is said to be down-
directed, if for all i, j ∈ I there is an index k ∈ I such that Ak ≤ Ai∧A j. In this case, {Ai}i∈I ⊆ LX and

∧
i∈I Ai are
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respectively denoted by {Ai}
ddir
i∈I ⊆ LX and

∧ddir
i∈I Ai. An L-fuzzy point xλ (λ ∈ L\{⊥}) is an L-fuzzy set defined

by xλ(x) = λ and xλ(y) = ⊥ for any y ∈ X\{x}. The set of all L-fuzzy points on LX is denoted by Pt(LX). We
also denote J(LX) = {xλ ∈ Pt(LX) : λ ∈ J(L)}. For a mapping f : X −→ Y, the mapping f→L : LX

−→ LY is
defined by f→L (A)(y) =

∨
{A(x) : f (x) = y} for A ∈ LX and y ∈ Y, and the mapping f←L : LY

−→ LX is defined
by f←L (B)(x) = B( f (x)) for B ∈ LY and x ∈ X [16].

Definition 2.1. ([8]) A set A ⊆ LX is called an L-concave structure on X and (X,A) is called an L-concave
space if

(LCA1) ⊤,⊥ ∈ A;
(LCA2) ∀{Ai}i∈I ⊆ A,

∨
i∈I Ai ∈ A;

(LCA3) ∀{Ai}
ddir
i∈I ∈ A,

∧ddir
i∈I ∈ A.

Theorem 2.2. ([8]) Let (X,A) be an L-concave space. The L-concave hull operator caA : LX
−→ LX ofA is defined

by caC(A) =
∨
{B ∈ A : B ≤ A} for any A ∈ LX. It satisfies

(LCAH1) caA(⊤) = ⊤;
(LCAH2) caA(A) ≤ A;
(LCAH3) caA(caA(A)) = caA(A);
(LCAH4) caA(

∧ddir
i∈I Ai) =

∧
caA(Ai).

Conversely, if an operator ca : LX
−→ LX satisfies (LCAH1)–(LCAH4), then the setAca = {A ∈ LX : ca(A) = A}

is an L-concave hull operator satisfying caAca = ca.

Let (X,AX) and (Y,AY) be L-concave spaces. A mapping f : X −→ Y is called an L-concavity preserving
mapping, if A ∈ AY implies f←L (A) ∈ AX for any A ∈ LY. The category of L-concave spaces and L-concavity
preserving mappings is denoted by L-CAS [8].

Definition 2.3. ([8]) A family N = {Nxλ ⊆ LX : xλ ∈ J(LX)} is called an L-concave neighborhood system on
LX and the pair (X,N) is called an L-concave neighborhood space, if for any xλ ∈ J(LX),

(LCAN1) ⊤ ∈ Nxλ and ⊥ < Nxλ ;
(LCAN2) A ∈ Nxλ implies xλ ≤ A;
(LCAN3) A ∈ Nxλ implies a set B ∈ Nxλ such that B ∈ Nyµ for any yµ ∈ β∗(B);

(LCAN4)
∧ddir

i∈I Ai ∈ Nxλ if and only if Ai ∈ Nxλ for any i ∈ I.

Let (X,NX) and (Y,NY) be L-concave neighborhood spaces. A mapping f : X −→ Y is called an L-concave
neighborhood preserving mapping if B ∈ N f→L (xλ) implies f←L (B) ∈ Nxλ for all xλ ∈ J(LX) and B ∈ LY. The
category of L-concave neighborhood spaces and L-concave neighborhood preserving mappings is denoted
by L-CANS [8].

Theorem 2.4. ([8]) (1) For an L-concave space (X,A) and any xλ ∈ J(LX), the set N = {NAxλ : xλ ∈ J(LX)} is an
L-concave neighborhood system, whereNAxλ = {B ∈ LX : ∃A ∈ A, xλ ≤ A ≤ B}.

(2) For an L-concave neighborhood system N = {Nxλ : xλ ∈ J(LX)}, the set AN = {A ∈ LX : ∀xλ ∈ β∗(A), A ∈
Nxλ } is an L-concave structure on X.

(3)NAN = N andANA = A.
(4) The category L-CANS is isomorphic to the category L-CAS.

Definition 2.5. ([22]) A binary relation ≼ on LX is called an L-concave internal relation and the pair (X,≼)
is called an L-concave internal relation space, if ≼ satisfies

(LCIR1) ⊤ ≼ ⊤;
(LCIR2) A ≼ B implies A ≤ B;
(LCIR3)

∨
i∈I Ai ≼ B if and only if Ai ≼ B for all i ∈ I;

(LCIR4) A ≼ B implies a set C ∈ LX such that A ≼ C ≼ B;
(LCIR5) A ≼

∧ddir
i∈I Bi if and only if A ≼ Bi for any i ∈ I.
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Let (X,≼X) and (Y,≼Y) be L-concave internal relation spaces. A mapping f : X −→ Y is called an
L-concave internal relation preserving mapping, if A ≼Y B implies f←L (A) ≼X f←L (B) for all A,B ∈ LY.
The category of L-concave internal relation spaces and L-concave internal relation preserving mappings is
denoted by L-CIRS [22].

Theorem 2.6. ([22]) (1) For an L-concave internal relation space (X,≼), the operator ca≼ : LX
−→ LX, defined by

ca≼(A) =
∨
{B ∈ LX : B ≼ A} for any A ∈ LX, is an L-concave hull operator of an L-concave structureA≼.

(2) For an L-concave space (X,A), the binary relation ≼A, defined by A ≼A B if and only if A ≤ caA(B) for any
A,B ∈ LX, is an L-concave internal relation.

(3)A≼A = A and ≼A≼=≼.
(4) The category L-CAS is isomorphic to the category L-CIRS.

3. L-down–directed relation spaces and L-(resp. concave) down–directed convergence relation spaces

In this section, we define the notion of L-down–directed relations and present some of examples. Based
on this, we further introduce notions of L-filter convergence relation spaces and L-concave filter convergence
relation spaces. Then we study their relations with L-concave internal relation spaces.

Definition 3.1. A binary operator ⩽ on LX is called an L-down–directed relation and the pair (X,⩽) is called
an L-down–directed relation space, if for any A,B,C ∈ LX,

(LDDR1) ⊥ ̸⩽ ⊥ and ⊤ ⩽ ⊤;
(LDDR2) A ⩽ B if and only if A ≤ B ⩽ B;
(LDDR3) A ⩽

∧ddir
i∈I Ci if and only if A ⩽ Ci for all i ∈ I.

In the sequel, the set of any L-down–directed relations on LX will be denoted by Rddir(LX). For ⩽1,⩽2∈

R
ddir(LX), ⩽1 is coarser that ⩽2, denoted by ⩽1≤⩽2 provided that A ⩽1 B implies A ⩽2 B for all A,B ∈ LX.

For examples L-down–directed relations, we provide some L-down–directed relations via an L-fuzzy
point xλ ∈ J(LX) by the following proposition.

Proposition 3.2. (1) Let xλ ∈ J(LX). Define a binary relation ⩽xλ on LX by

∀A,B ∈ LX, A ⩽xλ B ⇐⇒ xλ ∨ A ≤ B.

Then ⩽xλ is an L-down–directed relation.
(2) Let (X,≼) be an L-concave internal relation space and xλ ∈ J(LX). Define a binary relation ⩽≼xλ on LX by

∀A,B ∈ LX, A ⩽≼xλ B ⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼ D ≤ D ∨ A ≤ B.

Then ⩽≼xλ is an L-down–directed relation. In addition,
(i) ⩽≼xλ≤⩽xλ=⩽

≼ f in
xλ , where ≼ f in, defined by A ≼ f in B if and only if A ≤ B for any A,B ∈ LX, is the finest L-concave

internal relation on LX;
(ii) A ⩽≼xλ B if and only if A ⩽≼xµ B for any µ ∈ β∗(λ).
(3) Let (X,A) be an L-concave space and let NAxλ be the L-concave neighborhood system of xλ ∈ J(LX). Define a

binary relation ⩽Axλ on LX by

∀A,B ∈ LX, A ⩽Axλ B ⇐⇒ ∃C ∈ NAxλ s.t. A ≤ C ≤ B.

Then ⩽Axλ is an L-down–directed relation satisfying ⩽Axλ≤⩽xλ .

Proof. (1) (LDDR1) is trivial. We check that (LDDR2) and (LDDR3) hold for ⩽xλ .
(LDDR2) For any A,B ∈ LX,

A ⩽xλ B ⇐⇒ xλ ∨ A ≤ B ⇐⇒ A ≤ B = B ∨ xλ ⇐⇒ A ≤ B ⩽xλ B.
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(LDDR3) For any A ∈ LX and {Bi}
ddir
i∈I ⊆ LX,

A ⩽xλ

ddir∧
i∈I

Bi ⇐⇒ xλ ∨ A ≤
ddir∧
i∈I

Bi ⇐⇒ ∀i ∈ I, xλ ∨ A ≤ Bi ⇐⇒ ∀i ∈ I, A ⩽xλ Bi.

Therefore ⩽xλ is an L-down–directed relation.
(2) (LDDR1) ⊥ ̸⩽≼xλ ⊥ holds trivially. Also, ⊤ ⩽≼xλ ⊤ since xλ ≤ ⊤ ≼ ⊤ by (LCIR1).
(LDDR2) For any A,B ∈ LX,

A ⩽≼xλ B ⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼ D ≤ D ∨ A ≤ B

⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼ D ≤ D ∨ B ≤ B and A ≤ B
⇐⇒ A ≤ B ⩽≼xλ B.

(LDDR3) If A ≤ C ⩽≼xλ D ≤ B, then it is easy to check that A ⩽≼xλ B.
Let A ∈ LX and let {Bi}

ddir
i∈I ⊆ LX. It is clear that A ⩽≼xλ

∧ddir
i∈I Bi implies that A ⩽≼xλ Bi for any i ∈ I.

Conversely, assume that A ⩽≼xλ Bi for any i ∈ I. For any i ∈ I, there is a set Di ∈ LX such that
xλ ≤ Di ≼ Di ≤ Di ∨ A ≤ Bi. Further, for each i ∈ I, let

ψi = {Ci ∈ LX : xλ ≤ Ci ≼ Ci ≤ Ci ∨ A ≤ Bi}.

Clearly, Di ∈ ψi. Let Ei =
∨
ψi. Next, we check that {Ei}i∈I ⊆ LX is down-directed.

Let i, j ∈ I. Since the set {Bi}i∈I is down-directed, there is an index k ∈ I such that Bk ≤ Bi ∧ B j. For any
Ck ∈ ψk, it is clear that xλ ≤ Ck ≼ Ck ≤ Ck∨A ≤ Bk ≤ Bi∧B j. Thus Ck ∈ ψi∩ψ j which implies that Ek ≤ Ei∧E j.
So {Ei}i∈I is down-directed.

For any i ∈ I and any Ci ∈ ψi, it is clear that Ci ≼ Ci ≤ Ei. Thus Ci ≼ Ei and Ei =
∨

Ci∈ψi
Ci ≼ Ei by (LCIR3).

Hence
∧ddir

i∈I Ei ≼ Ei for any i ∈ I. Therefore
∧ddir

i∈I Ei ≼
∧ddir

i∈I Ei by (LCIR5). Let E =
∧ddir

i∈I Ei. Then

xλ ≤
∧
i∈I

Di ≤ E ≼ E ≤ E ∨ A ≤
ddir∧
i∈I

Bi.

Thus A ⩽≼xλ
∧ddir

i∈I Bi.
Therefore ⩽≼xλ is an L-down–directed relation. Next, we prove other results.
(i) For any A,B ∈ LX,

A ⩽≼xλ B ⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼ D ≤ D ∨ A ≤ B

=⇒ ∃D ∈ LX s.t. xλ ∨ A ≤ D ∨ A ≤ B
=⇒ ∃H ∈ LX s.t. xλ ∨ A ≤ H ≤ B
=⇒ A ⩽xλ B.

Thus ⩽≼xλ≤⩽xλ . Further, it is clear that ≼ f in is an L-concave internal relation. Thus it follows that ⩽≼ f in
xλ ≤⩽xλ .

To check that⩽xλ≤⩽
≼ f in
xλ , let A,B ∈ LX with A ⩽xλ B. Then there is a set C ∈ LX such that xλ ≤ C and A ≤ C ≤ B.

Thus C ≼ f in C = C ∨ A ≤ B which implies that A ⩽≼ f in
xλ B. Therefore ⩽xλ≤⩽

≼ f in
xλ .

(ii) If A ⩽≼xλ B, then it is clear that A ⩽≼xµ B for any µ ∈ β∗(λ). Conversely, assume that A ⩽≼xµ B for any
µ ∈ β∗(λ). For any µ ∈ β∗(λ), there is a set Dµ ∈ LX such that xµ ≤ Dµ ≼ Dµ ≤ Dµ∨A ≤ B. Let D =

∨
µ∈β∗(λ) Dµ.

Then Dµ ≼ D for any µ ∈ β∗(λ). Thus xλ ≤ D ≼ D ≤ D ∨ A ≤ B by (LCIR3). Therefore A ⩽≼xλ B.
(3) (LDDR1) Since ⊤ ∈ NAxλ and ⊥ < NAxλ by (LCAN1), it is clear that ⊤ ⩽Axλ ⊤ and ⊥ ̸⩽Axλ ⊥.
(LDDR2) For any A,B ∈ LX, it follows that

A ⩽Axλ B ⇐⇒ ∃E ∈ NAxλ , A ≤ E ≤ B ⇐⇒ B ∈ NAxλ , A ≤ B ⇐⇒ A ≤ B ⩽Axλ B.

(LDDR3) Let A ∈ LX and {Bi}
ddir
i∈I ⊆ LX. If A ⩽Axλ

∧ddir
i∈I Bi then it is clear that A ⩽Axλ Bi for any i ∈ I.

Conversely, assume that A ⩽Axλ Bi for any i ∈ I. Then, for any i ∈ I, there is a set Di ∈ N
A
xλ such that
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A ≤ Di ≤ Bi. Let Ei =
∨
{Di ∈ N

A
xλ : A ≤ Di ≤ Bi} for any i ∈ I. Then Ei ∈ N

A
xλ and A ≤ Ei ≤ Bi. In addition, it

is clear that {Ei}i∈I is down-directed. Thus
∧ddir

i∈I Ei ∈ N
A
xλ and A ≤

∧ddir
i∈I Ei ≤

∧ddir
i∈I Bi. Hence A ⩽Axλ

∧ddir
i∈I Bi.

Therefore ⩽Axλ is an L-down–directed relation.

Lemma 3.3. Let (X,⩽) be an L-down–directed relation space. For any A,B,C,D ∈ LX,
(1) A ≤ C ⩽ D ≤ B implies A ⩽ B;
(2) A ⩽ B implies A ∨ C ⩽ B ∨ C.

Proof. (1) Since A ≤ C ⩽ D, it follows that A ≤ C ≤ D ⩽ D and A ⩽ D by (LDDR2). Further, since the set
{D,B} is down-directed and A ⩽ D = D ∧ B, we have A ⩽ B by (LDDR3).

(2) Since A ⩽ B ≤ B ∨ C, it is clear that A ⩽ B ∨ C by (1). Thus A ≤ B ∨ C ⩽ B ∨ C by (LDDR2). Hence
A ∨ C ≤ B ∨ C ⩽ B ∨ C. Therefore A ∨ C ⩽ B ∨ C.

Proposition 3.4. Let f : X −→ Y be a mapping and let ⩽X∈ R
ddir(LX). Then ⩽ f (X)∈ R

ddir(LY), where ⩽ f (X) is defined
by

∀A,B ∈ LY, A ⩽ f (X) B ⇐⇒ A ≤ B and f←L (A) ⩽X f←L (B).

Proof. (LDDR1) It is clear that ⊤ ⩽ f (X) ⊤ and ⊥ ̸⩽ f (X) ⊥.
(LDDR2) For any A,B ∈ LX,

A ⩽ f (X) B ⇐⇒ A ≤ B and f←L (A) ⩽X f←L (B)
⇐⇒ A ≤ B and f←L (A) ≤ f←L (B) ⩽X f←L (B)
⇐⇒ A ≤ B ⩽ f (X) B.

(LDDR3) For any A ∈ LX and {Bi}
ddir
i∈I ⊆ LX,

A ⩽ f (X)

ddir∧
i∈I

Bi ⇐⇒ A ≤
ddir∧
i∈I

Bi and f←L (A) ⩽X f←L (
ddir∧
i∈I

Bi)

⇐⇒ A ≤
ddir∧
i∈I

Bi and f←L (A) ⩽X

ddir∧
i∈I

f←L (Bi)

⇐⇒ ∀i ∈ I, A ≤ Bi and f←L (A) ⩽X f←L (Bi)
⇐⇒ ∀i ∈ I, A ⩽ f (X) Bi.

Therefore ⩽ f (X) is an L-down–directed relation.

Based on examples of L-down–directed relations presented in Proposition 3.2, we introduce the notion
of L-down–directed convergence relation spaces and study its relation with L-concave internal spaces.

Definition 3.5. A relation ⊑ on J(LX) × Rddir(LX) is called an L-pre-down-directed convergence relation on
LX if for any xλ ∈ J(LX) and ⩽1,⩽2∈ R

ddir(LX),
(LDDCR1) xλ ⊑⩽xλ ;
(LDDCR2) xλ ⊑⩽1 and ⩽1≤⩽2 imply xλ ⊑⩽2.

Lemma 3.6. Let ⊑ be an L-pre-down-directed convergence relation on LX and xλ ∈ J(LX). Define a binary relation
⩽⊑xλ on LX by

∀A,B ∈ LX, A ⩽⊑xλ B⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ), A ⩽ B,

where Rddir
⊑

(xλ) = {⩽∈ Rddir(LX) : xλ ⊑⩽}. Then ⩽⊑xλ is an L-down–directed relation.
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Proof. (LDDR1) Since xλ ⊑⩽xλ by (LDDCR1) and ⊥ ̸⩽xλ ⊥, it is clear that ⊥ ̸⩽⊑xλ ⊥. For any ⩽∈ Rddir(LX), it is
clear that ⊤ ⩽ ⊤ by (LDDR1). Thus ⊤ ⩽⊑xλ ⊤ holds trivially.

(LDDR2) For any A,B ∈ LX,

A ⩽⊑xλ B ⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ), A ⩽ B

⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ), A ≤ B ⩽ B
⇐⇒ A ≤ B ⩽⊑xλ B.

(LDDR3) For any A ∈ LX and {Bi}
ddir
i∈I ⊆ LX,

A ⩽⊑xλ

ddir∧
i∈I

Bi ⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ), A ⩽
ddir∧
i∈I

Bi

⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ),∀i ∈ I, A ⩽ Bi

⇐⇒ ∀i ∈ I, A ⩽⊑xλ Bi.

Therefore ⩽⊑xλ is an L-down–directed relation.

Definition 3.7. An L-pre-down-directed convergence relation ⊑ on LX is called an L-down–directed con-
vergence relation and the pair (X,⊑) is called an L-down–directed convergence relation space if

(LDDCR3) ∀A,B ∈ LX, A ⩽⊑xλ B if and only if A ⩽⊑xµ B for any µ ∈ β∗(λ).

Let (X,⊑X) and (Y,⊑Y) be L-down–directed convergence relation spaces. A mapping f : X −→ Y is
called an L-down–directed convergence relation preserving mapping if xλ ⊑X⩽X implies f→L (xλ) ⊑Y⩽ f (X)

for any xλ ∈ J(LX) and ⩽X∈ R
ddir(LX). The category of L-down–directed convergence relation spaces and

L-down–directed convergence relation preserving mappings is denoted by L-DDCRS.
Next, we study relations between L-down–directed convergence spaces and L-concave internal spaces.

Theorem 3.8. Let (X,≼) be an L-concave internal relation space. Define a relation ⊑≼ on J(LX) × Rddir(LX) by

∀xλ ∈ J(LX),∀ ⩽∈ Rddir(LX), xλ ⊑≼⩽ ⇐⇒ ⩽≼xλ≤⩽ .

Then ⊑⩽ is an L-down–directed convergence relation satisfying ⩽⊑≼xλ =⩽
≼
xλ .

Proof. (LDDCR1) For any xλ ∈ J(LX), it follows from Proposition 3.2(2) that ⩽≼xλ≤⩽xλ . Thus xλ ⊑≼⩽xλ .
(LDDCR2) If xλ ⊑≼⩽1 and ⩽1≤⩽2, then ⩽≼xλ≤⩽1≤⩽2. Thus ⩽≼xλ≤⩽2. This shows that xλ ⊑≼⩽2.
(LDDCR3) For any A,B ∈ LX and xλ ∈ J(LX),

A ⩽⊑≼xλ B ⇐⇒ ∀xλ ⊑≼⩽, A ⩽ B ⇐⇒ ∀ ⩽≼xλ≤⩽, A ⩽ B ⇐⇒ A ⩽≼xλ B.

Thus ⩽⊑≼xλ =⩽
≼
xλ . Further, It follows from Proposition 3.2(2) that

A ⩽⊑≼xλ B ⇐⇒ A ⩽≼xλ B ⇐⇒ ∀µ ∈ β∗(λ), A ⩽≼xµ B ⇐⇒ ∀µ ∈ β∗(λ), A ⩽⊑≼xµ B.

This implies that (LDDCR3) holds.
Therefore ⊑⩽ is an L-down–directed convergence relation satisfying ⩽⊑≼xλ =⩽

≼
xλ .

Theorem 3.9. Let (X,≼X) and (Y,≼Y) be L-concave internal relation spaces. If f : X −→ Y is an L-concave internal
relation preserving mapping with respect to (X,≼X) and (Y,≼Y), then f : (X,⊑≼X ) −→ (Y,⊑≼Y ) is an L-down–directed
convergence relation preserving mapping.
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Proof. For any xλ ∈ J(LX) and ⩽X∈ R
ddir(LX) with xλ ⊑≼X⩽X, it follows that ⩽≼X

xλ ≤⩽X. In order to prove
f→L (xλ) ⊑≼Y⩽ f (X), it is sufficient to prove that ⩽≼Y

f→L (xλ)≤⩽ f (X). Indeed, for any A,B ∈ LY,

A ⩽≼Y
f→L (xλ) B ⇐⇒ ∃D ∈ LY s.t. f→L (xλ) ≤ D ≼Y D ≤ D ∨ A ≤ B

=⇒ A ≤ B and ∃D ∈ LY s.t. xλ ≤ f←L (D) ≼X f←L (D) ≤ f←L (D) ∨ f←L (A) ≤ f←L (B)

=⇒ A ≤ B and f←L (A) ⩽≼X
xλ f←L (B)

=⇒ A ≤ B and f←L (A) ⩽X f←L (B)
=⇒ A ⩽ f (X) B.

Thus ⩽≼Y
f→L (xλ)≤⩽ f (X). This implies that f→L (xλ) ⊑≼Y⩽ f (X). Therefore f is an L-down–directed convergence

relation preserving mapping.

Theorem 3.10. Let (X,⊑) be an L-down–directed convergence relation space. Define a binary relation ≼⊑ on LX by

∀A,B ∈ LX, A ≼⊑ B ⇐⇒ ∃A ≤ D ≤ B s.t. ∀xλ ∈ β∗(D),∀ ⩽∈ Rddir
⊑

(xλ), A ⩽ D.

Then ≼⊑ is an L-concave internal relation.

Proof. By Lemma 3.3(1), it is easy to see that A ≤ C ≼⊑ D ≤ B implies A ≼⊑ B for any A,B,C,D ∈ LX. In
addition, (LCIR1) and (LCIR2) hold trivially for ≼⊑. We next verify (LCIR3)–(LCIR5) hold for ≼⊑.

(LCIR3) If
∨

i∈I Ai ≼⊑ B then it is clear that Ai ≼⊑ B for any i ∈ I. Conversely, assume that Ai ≼⊑ B for any
i ∈ I. By Ai ≼⊑ B, there is a Di ∈ LX such that Ai ≤ Di ≤ B and Ai ⩽ Di for any xλ ∈ β∗(Di) and ⩽∈ Rddir

⊑
(xλ).

Let D =
∨

i∈I Di. Then
∨

i∈I Ai ≤ D ≤ B. For all yµ ∈ β∗(D) and ⩽∈ Rddir
⊑

(yµ), there is an index j ∈ I such that
yµ ∈ β∗(D j). Thus A j ⩽ D j by Ai ≼⊑ B. Hence Lemma 3.3(2) implies∨

i∈I

Ai ≤ D = D ∨ A j ⩽ D ∨D j = D

As a result,
∨

i∈I A j ⩽ D by Lemma 3.3(1). Therefore
∨

i∈I A j ≼⊑ B.
(LCIR4) Let A ≼⊑ B. We need to find a D ∈ LX such that A ≼⊑ D ≼⊑ B. By A ≼⊑ B, there is D ∈ LX such

that A ≤ D ≤ B and A ⩽ D for any xλ ∈ β∗(D) and ⩽∈ Rddir
⊑

(xλ).
We say that D ≼⊑ B. Indeed, it is clear that D ≤ D ≤ B. In addition, for all yµ ∈ β∗(D) and ⩽∈ Rddir

⊑
(yµ), it

follows that A ⩽ D. Thus Lemma 3.3(2) yields that D = D ∨ A ⩽ D ∨D = D. This shows that D ≼⊑ B.
We also say that A ≼⊑ D. Indeed, it is clear that A ≤ D ≤ D. In addition, for all zη ∈ β∗(D) and⩽∈ Rddir

⊑
(zη),

it is clear that A ⩽ D by A ≼⊑ B. Thus A ≼⊑ D. Therefore A ≼⊑ D ≼⊑ B as desired.
(LCIR5) If A ≼⊑

∧ddir
i∈I Bi, then it is clear that A ≼⊑ Bi for any i ∈ I. Conversely, assume that A ≼⊑ Bi for

any i ∈ I. Thus, for any i ∈ I, there is a set Di ∈ LX such that A ≤ Di ≤ Bi and A ⩽ Di for any xλ ∈ β∗(Di) and
any ⩽∈ Rddir

⊑
(xλ). Let Ei =

∨
φi, where

φi = {Di ∈ LX : A ≤ Di ≤ Bi s.t. ∀xλ ∈ β∗(Di),∀ ⩽∈ Rddir
⊑

(xλ), A ⩽ Di}.

Form Lemma 3.3(1), it is easy to check that Ei ∈ φi. Since {Bi}i∈I is down-directed, {Ei}i∈I is also down-
directed. Thus A ≤

∧ddir
i∈I Ei ≤

∧ddir
i∈I Bi. In addition, for any xλ ∈ β∗(

∧ddir
i∈I Ei), it is clear that xλ ∈ β∗(Ei) for any

i ∈ I. For any ⩽∈ Rddir
⊑

(xλ), we have A ⩽ Di ≤ Ei by A ≼⊑ Bi. Thus A ⩽ Ei for any i ∈ I. Hence A ⩽
∧ddir

i∈I Ei by
(LDDR3). Therefore A ≼⊑

∧ddir
i∈I Bi.

Theorem 3.11. Let (X,⊑X) and (Y,⊑Y) be L-down–directed convergence relation spaces. If f : X −→ Y is an
L-down–directed convergence relation preserving mapping with respect to (X,⊑X) and (Y,⊑Y), then f : (X,≼⊑X ) −→
(Y,≼⊑Y ) is an L-concave internal relation preserving mapping.
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Proof. If A ≼⊑Y B then there is D ∈ LX such that A ≤ D ≤ B and A ⩽Y D for all yµ ∈ β∗(D) and ⩽Y∈ R
ddir
⊑Y

(yµ).
Thus f←L (A) ≤ f←L (D) ≤ f←L (B). In order to prove that f←L (A) ≼⊑X f←L (B), let xλ ∈ β∗( f←L (D)) and ⩽X∈ R

ddir
⊑X

(xλ).
Then f→L (xλ) ∈ β∗(D) and ⩽ f (X)∈ R

ddir
⊑Y

( f→L (xλ)). Thus A ⩽ f (X) D which implies that f←L (A) ⩽X f←L (D). This
shows that f←L (A) ≼⊑X f←L (B).

Therefore f is an L-concave internal relation preserving mapping.

Lemma 3.12. Let (X,⊑) be an L-down–directed convergence relation space. Then ⩽≼⊑xλ ≤⩽
⊑
xλ≤⩽xλ for any xλ ∈ J(LX).

Proof. Let xλ ∈ J(LX) and A,B ∈ LX. If A ⩽≼⊑xλ B then there is a D ∈ LX such that xλ ≤ D ≼⊑ D ≤ D∨A ≤ B. So

D ≼⊑ D ⇐⇒ ∀yη ∈ β∗(D),∀ ⩽1∈ R
ddir
⊑

(yη), D ⩽1 D

=⇒ ∀µ ∈ β∗(λ),∀ ⩽1∈ R
ddir
⊑

(xµ), D ⩽1 D
⇐⇒ ∀µ ∈ β∗(λ), D ⩽⊑xµ D

(LDDCR3)
⇐⇒ D ⩽⊑xλ D

=⇒ A ≤ B ⩽⊑xλ B (by Lemma 3.3(2))
(LDDR2)
⇐⇒ A ⩽⊑xλ B.

This shows that ⩽≼⊑xλ ≤⩽
⊑
xλ . Further, since xλ ⊑⩽xλ by (LDDCR1), it follows that

A ⩽⊑xλ B ⇐⇒ ∀xλ ⊑⩽, A ⩽ B =⇒ A ⩽xλ B.

This implies that ⩽⊑xλ≤⩽xλ . So ⩽≼⊑xλ ≤⩽
⊑
xλ≤⩽xλ .

Theorem 3.13. Let (X,⊑) be an L-down–directed convergence relation space. Then ⊑≤⊑≼⊑ .

Proof. Let xλ ∈ J(LX) and let ⩽∈ Rddir(LX) with xλ ⊑⩽. It follows from Lemma 3.12 that ⩽≼⊑xλ ≤⩽
⊑
xλ≤⩽. Thus

⩽≼⊑xλ ≤⩽ followed by xλ ⊑≼⊑⩽. Therefore ⊑≤⊑≼⊑ .

Theorem 3.14. ≼⊑≼=≼ for any L-concave internal relation space (X,≼).

Proof. Let A,B ∈ LX with A ≼⊑≼ B. It follows from Theorem 3.8 that ⩽⊑≼xλ =⩽
≼
xλ . Thus

A ≼⊑≼ B ⇐⇒ ∃A ≤ D ≤ B s.t. ∀xλ ∈ β∗(D),∀ ⩽∈ Rddir
⊑≼

(xλ), A ⩽ D

⇐⇒ ∃A ≤ D ≤ B s.t. ∀xλ ∈ β∗(D), A ⩽⊑≼xλ D
⇐⇒ ∃A ≤ D ≤ B, s.t. ∀xλ ∈ β∗(D), A ⩽≼xλ D.

There is a set D ∈ LX such that A ≤ D ≤ B and A ⩽≼xλ D for any xλ ∈ β∗(D). By A ⩽≼xλ D, there is a set Exλ ∈ LX

such that

xλ ≤ Exλ ≼ Exλ ≤ Exλ ∨ A ≤ D ≤ B.

Let E =
∨

xλ∈β∗(D) Exλ . Then D =
∨

xλ∈β∗(D) xλ ≤
∨

xλ∈β∗(D) Exλ = E. In addition, E ≼ E by (LCIR3) of ≼. Hence
A ≤ D ≤ E ≼ E ≤ B which implies that A ≼ B. Therefore ≼⊑≼≤≼.

Conversely, let A ≼ B. By (LCIR4), there is a set C ∈ LX such that A ≼ C ≼ B. Put

D =
∨
{C ∈ LX : A ≼ C ≼ B}.

Then A ≼ D ≼ B. Further, by D ≼ B and (LCIR4), there is an E ∈ LX such that D ≼ E ≼ B. Thus A ≼ E ≼ B
which implies D ≼ E ≤ D. Hence D ≼ D.

In order to prove that A ≼⊑≼ B, let xλ ∈ β∗(D) and ⩽∈ Rddir
⊑≼

(xλ). Then xλ ⊑≼⩽ implies ⩽≼xλ≤⩽. Further,
since xλ ≤ D ≼ D = D∨A = D, it follows that A ⩽≼xλ D. Thus A ⩽ D followed by A ≼⊑≼ B. Therefore ≼≤≼⊑≼ .

In conclusion, we proved that ≼⊑≼=≼, as desired.
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Based on Theorems 3.8 and 3.9, we obtain a functor F : L-CIRS −→ L-DDCRS defined by:

F((X,≼)) = (X,⊑≼) and F( f ) = f .

Similarly, based on Theorems 3.10 and 3.11, we obtain an functor G : L-DDCRS −→ L-CIRS defined by:

G((X,⊑)) = (X,≼⊑) and G( f ) = f .

Based on Theorems 3.8–3.14, we have the following conclusions.

Corollary 3.15. (F,G) is a Galois connection, where G is a left inverse of F.

Corollary 3.16. The category L-CAS can be embedded in the category L-DDCRS as a reflective subcategory.

Now, we have established the connection between L-down–directed convergence relations and L-
concave internal relations. Then, is there any L-down–directed convergence relation with special prop-
erties which can enhance this connection? In order to discuss this, we present the notion of L-concave
down–directed relations as follows.

Definition 3.17. An L-down–directed convergence relation ⊑ on LX is called an L-concave down–directed
convergence relation and the pair (X,⊑) is called an L-concave down–directed convergence relation space,
if ⊑ satisfies

(LCDDCR1) xλ ⊑⩽⊑xλ ;
(LCDDCR2) A ⩽⊑xλ B if and only if ∃D ∈ LX s.t. ∀yµ ∈ β∗(D), xλ ≤ D ⩽⊑yµ D ≤ D ∨ A ≤ B.

The category of L-concave down–directed convergence relation spaces and L-down–directed conver-
gence relation preserving mappings is denoted by L-CDDCRS. Next, we discuss relationships between
L-CIRS and L-CDDCRS.

Theorem 3.18. Let (X,≼) be an L-concave internal relation space. Then ⊑≼ is an L-concave down–directed conver-
gence relation.

Proof. By Theorem 3.8, it is sufficient to prove that ⊑≼ satisfies (LCDDCR1) and (LCDDCR2).
(LCDDFCR1). For any xλ ∈ J(LX), ⩽≼xλ≤⩽

≼
xλ implies xλ ⊑≼⩽≼xλ . Thus xλ ⊑≼⩽

⊑≼
xλ by Theorem 3.8.

(LCDDCR2). For any D ∈ LX and yµ ∈ β∗(D), it is clear that D ≼ D implies D ⩽≼yµ D. Theorem 3.8 implies

A ⩽⊑≼xλ B ⇐⇒ A ⩽≼xλ B

⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼ D ≤ D ∨ A ≤ B
=⇒ ∃D ∈ LX s.t. ∀yµ ∈ β∗(D), xλ ≤ D ⩽≼yµ D ≤ D ∨ A ≤ B

⇐⇒ ∃D ∈ LX s.t. ∀yµ ∈ β∗(D), xλ ≤ D ⩽⊑≼yµ D ≤ D ∨ A ≤ B

=⇒ ∃D ∈ LX s.t. ∀µ ∈ β∗(λ), xλ ≤ D ⩽⊑≼xµ D ≤ D ∨ A ≤ B
(LDDCR3)
=⇒ ∃D ∈ LX s.t. xλ ≤ D ⩽⊑≼xλ D ≤ D ∨ A ≤ B

⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ⩽≼xλ D ≤ D ∨ A ≤ B (by Theorem 3.8)

=⇒ A ≤ B ⩽≼xλ B (by Lemma 3.3(2))

=⇒ A ≤ B ⩽⊑≼xλ B (by Theorem 3.8)

⇐⇒ A ⩽⊑≼xλ B.

Thus (LCDDCR2) holds for ⊑≼.
Therefore ⊑≼ is an L-concave down–directed convergence relation.

Lemma 3.19. Let (X,⊑) be an L-concave down–directed convergence relation space. Then ⩽≼⊑xλ =⩽
⊑
xλ for xλ ∈ J(LX).
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Proof. For any A,B ∈ LX, (LCDDCR2) yields that

A ⩽≼⊑xλ B ⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼⊑ D ≥ D ∧ B ≥ A

⇐⇒ ∃D ∈ LX s.t. ∀yµ ∈ β∗(D),∀ ⩽∈ Rddir
⊑

(yµ), xλ ≤ D ⩽ D ≤ D ∨ A ≤ B

⇐⇒ ∃D ∈ LX, ∀yµ ∈ β∗(D), xλ ≤ D ⩽⊑yµ D ≤ D ∨ A ≤ B

⇐⇒ A ⩽⊑xλ B.

Therefore ⩽≼⊑xλ =⩽
⊑
xλ .

Theorem 3.20. ⊑≼⊑=⊑ for any L-concave down–directed convergence relation space (X,⊑).

Proof. ⊑≤⊑≼⊑ by Theorem 3.13. In order to prove that ⊑≼⊑≤⊑, let xλ ∈ J(LX) and ⩽∈ Rddir(LX) with xλ ⊑≼⊑⩽.
Then⩽≼⊑xλ ≤⩽. Thus xλ ⊑⩽⊑xλ=⩽

≼⊑
xλ ≤⩽ by (LCDDCR1) and Lemma 3.19. Hence xλ ⊑⩽ by (LDDCR2). Therefore

⊑≼⊑≤⊑.

Based on Theorems 3.8- 3.11, 3.13, 3.18 and 3.20, we have the following conclusion.

Theorem 3.21. The category L-CIRS is isomorphic to the category L-CDDCRS.

Remark 3.22. Based on Theorems 2.6 and 3.21, relationships between L-CDDCRS and L-CAS are as follows.
(1) Let (X,⊑) be an L-concave down–directed convergence space. The set

A⊑ = {A ∈ LX : ∀xλ ∈ β∗(A), A ⩽⊑xλ A}

is an L-concave structure on LX.
(2) Let (X,A) be an L-concave space. Define a mapping ⊑A on J(LX) × Rddir(LX) by

∀xλ ∈ J(LX),∀ ⩽∈ Rddir(LX), xλ ⊑A⇐⇒ ⩽Axλ≤⩽ .

Then ⊑A is an L-concave down–directed convergence relation.
(3) ⊑A⊑=⊑ andA⊑A = A.
(4) The category L-CDDCRS is isomorphic to the category L-CAS.

4. L-concave filters and L-(resp. concave) filter convergence spaces

In [26], Xiu et al. presented the notion of L-convex ideals by which they introduced L-convex convergence
spaces and discussed its relationships with L-convex space. Then, is it possible to introduce L-concave filter
or L-concave filter convergence space? Further, how about their relationships with L-down–directed relation
and L-concave down–directed convergence relation spaces? In order to solve these problems, we define
L-concave filter and discuss its relationships with L-concave down–directed convergence relations.

Definition 4.1. A set F ⊆ LX is called an L-concave filter on LX and the pair (X,F ) is called an L-concave
filter space, if

(LCF1) ⊥ < F and ⊤ ∈ F ;
(LCF2) A ∈ F and A ≤ B imply B ∈ F ;
(LCF3) {Ai}

ddir
i∈I ⊆ F implies

∧ddir
i∈I Ai ∈ F .

The set of any L-concave filters on LX is denoted by Fc(LX).

Example 4.2. (1) For any xλ ∈ J(LX), the set Fxλ = {F ∈ LX : xλ ≤ F} is an L-concave filter on LX.
(2) For any xλ ∈ J(LX) and any L-concave space (X,A), the setNAxλ is an L-concave filter on LX.

Theorem 4.3. Let (X,⩽) be an L-down–directed relation space. Then F⩽ = {B ∈ LX : B ⩽ B} is an L-concave filter.
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Proof. (LCF1) It directly follows from (LDDR1) that ⊥ < F⩽ and ⊤ ∈ F⩽.
(LCF2) If B ∈ F⩽ and B ≤ C, then B ⩽ B ≤ C. Thus B ⩽ C by Lemma 3.3(1). Hence C ⩽ C by (LDDR2).

Therefore C ∈ F⩽.
(LCF3) Let {Bi}

ddir
i∈I ⊆ F⩽. Then Bi ⩽ Bi for any i ∈ I. Thus

∧ddir
i∈I Bi ⩽ Bi for any i ∈ I. Hence

∧ddir
i∈I Bi ⩽

∧ddir
i∈I Bi

by (LDDR3). Therefore
∧ddir

i∈I Bi ∈ F⩽.

Theorem 4.4. Let (X,F ) be an L-concave filter spaces. Define a binary relation ⩽F by

∀A,B ∈ LX, A ⩽F B ⇐⇒ A ≤ B ∈ F .

Then ⩽F is an L-down–directed relation on LX.

Proof. (LDDR1) By (LCF1), it is clear that ⊤ ⩽F ⊤ and ⊥ ̸⩽F ⊥.
(LDDR2) For A,B ∈ LX, (LCF2) implies that A ⩽F B if and only if A ≤ B ∈ F if and only if A ≤ B ⩽F B.
(LDDR3) Let A ∈ LX and {Bi}

ddir
i∈I ⊆ LX. If A ⩽F

∧ddir
i∈I Bi then it is clear that A ⩽F Bi for any i ∈ I.

Conversely, assume that A ⩽F Bi for any i ∈ I. For each i ∈ I, it is clear that A ≤ Bi ∈ F . Since {Bi}
ddir
i∈I ∈ F , it

follows from (LCF3) that A ≤
∧ddir

i∈I Bi ∈ F . Therefore A ⩽F
∧ddir

i∈I Bi.

Theorem 4.5. Fc(LX) and Rddir(LX) are one-to-one correspondent.

Proof. Let (X,⩽) be an L-down–directed relation space. For any A,B ∈ LX, (LDDR2) implies that

A ⩽ B ⇐⇒ A ≤ B ⩽ B ⇐⇒ A ≤ B ∈ F⩽ ⇐⇒ A ≤ B ⩽F⩽ B ⇐⇒ A ⩽F⩽ B.

This shows that ⩽=⩽F⩽ .
Let (X,F ) be an L-concave filter space. For any B ∈ LX, it is clear that

B ∈ F⩽F ⇐⇒ B ⩽F B ⇐⇒ B ∈ F .

Therefore F⩽F = F .

Lemma 4.6. (1) If (X,≼) be an L-concave internal relation space then Fxλ = F⩽xλ
and ⩽xλ=⩽Fxλ

for any xλ ∈ J(LX).
(2) If (X,A) is an L-concave space then F⩽≼xλ = N

A≼
xλ and ⩽≼Axλ =⩽

A
xλ for any xλ ∈ J(LX).

(3) If {Fi}i∈I ⊆ Fc(LX) then
⋂

i∈I Fi is also an L-concave filter.
(4) If (X,FX) is an L-concave filter space and if f : X −→ Y is a mapping, then F f (X) = {G ∈ LY : f←L (G) ∈ FX}

is an L-concave filter on LY.

Proof. (1) For any F ∈ LX,

F ∈ Fxλ ⇐⇒ xλ ≤ F ⇐⇒ xλ ∨ F ≤ F ⇐⇒ F ⩽xλ F ⇐⇒ F ∈ F⩽xλ
.

Thus Fxλ = F⩽xλ
. Also, for any A,B ∈ LX,

A ⩽xλ B ⇐⇒ A ≤ B ∈ Fxλ ⇐⇒ A ≤ B ⩽Fxλ
B ⇐⇒ A ⩽Fxλ

B.

Therefore ⩽xλ=⩽Fxλ
.

(2) For any D ∈ LX, it is clear that D ≼ D if and only if D ∈ A≼. For any F ∈ LX,

F ∈ F⩽≼xλ ⇐⇒ F ⩽≼xλ F ⇐⇒ xλ ≤ F ≼ F ⇐⇒ xλ ≤ F ∈ A≼ ⇐⇒ F ∈ NA≼xλ .

Thus F⩽≼xλ = N
A≼
xλ . Also, for any D ∈ LX, it is clear that D ∈ A if and only if D ≼A D. For any A,B ∈ LX,

A ⩽≼Axλ B ⇐⇒ ∃D ∈ LX s.t. xλ ≤ D ≼A D ≤ D ∨ A ≤ B
⇐⇒ ∃D ∈ A s.t. xλ ≤ D ≤ D ∨ A ≤ B
⇐⇒ A ≤ B ∈ NAxλ
⇐⇒ A ⩽Axλ B.
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Therefore ⩽≼Axλ =⩽
A
xλ .

(3) Its proof is direct.
(4) We verify that F f (X) satisfies (LCF1)–(LCF3).
(LCF1) It is clear that ⊥ < F f (X) and ⊤ ∈ F f (X) since f←L (⊥) = ⊥ < FX and f←L (⊤) = ⊤ ∈ FX.
(LCF2) If A ∈ F f (X) and A ≤ B ∈ LY then f←L (A) ∈ FX. Thus f←L (A) ≤ f←L (B) ∈ FX which implies B ∈ F f (X).
(LCF3) If {Ai}

ddir
i∈I ⊆ F f (X) then f←L (

∧ddir
i∈I Ai) =

∧ddir
i∈I f←L (Ai) ∈ FX. Thus

∧ddir
i∈I Ai ∈ F f (X).

By Theorem 4.5, there is a one-to-one correspondence between L-concave filters and L-down–directed
relations. Next, we introduce L-filter convergence and L-concave filter convergence and discuss their
relationships with L-down–directed relations and L-concave down–directed convergence relations. For
this, we present the following lemma.

Definition 4.7. A mapping lim : Fc(LX) −→ 2J(LX) is called an L-filter convergence structure and the pair
(X, lim) is called an L-filter convergence space if lim satisfies

(LFC1) ∀xλ ∈ J(LX), xλ ∈ lim(Fxλ );
(LFC2) ∀F1,F2 ∈ F (LX), F1 ⊆ F2 implies lim(F1) ⊆ lim(F2);
(LFC3) F lim

xλ =
⋂
µ∈β∗(λ) F

lim
xµ , where F lim

xλ =
⋂

xλ∈lim(F ) F .

Let (X, limX) and (Y, limY) be L-filter convergence spaces. A mapping f : X −→ Y is called an L-filter
convergence preserving mapping, if xλ ∈ limX(F ) implies f→L (xλ) ∈ limY(F f (X)) for any xλ ∈ J(LX) and
FX ∈ Fc(LX). The category of any L-filter convergence spaces and L-filter convergence preserving mappings
is denoted by L-FCS.

Lemma 4.8. Let (X,⊑) be an L-down–directed convergence relation space. Define lim⊑ : Fc(LX) −→ J(LX) by

∀F ∈ Fc(LX), lim⊑(F ) = {xλ ∈ J(LX) : xλ ⊑⩽F }.

Then F lim⊑
xλ = {A ∈ LX : A ⩽⊑xλ A} for any xλ ∈ J(LX).

Proof. Let A ∈ LX. Theorem 4.5 implies that

A ∈ F lim⊑
xλ ⇐⇒ ∀F ∈ Fc(LX), xλ ∈ lim⊑(F ) implies A ∈ F

⇐⇒ ∀F ∈ Fc(LX), xλ ⊑⩽F implies A ⩽F A

⇐⇒ ∀ ⩽∈ Rddir(LX), xλ ⊑⩽F⩽ implies A ∈ F⩽
⇐⇒ ∀ ⩽∈ Rddir(LX), xλ ⊑⩽ implies A ⩽ A

⇐⇒ ∀ ⩽∈ Rddir
⊑

(xλ), A ⩽ A
⇐⇒ A ⩽⊑xλ A.

This shows that F lim⊑
xλ = {A ∈ LX : A ⩽⊑xλ A}.

Theorem 4.9. Let (X,⊑) be an L-down–directed convergence relation space. Define lim⊑ : Fc(LX) −→ J(LX) by

∀F ∈ Fc(LX), lim⊑(F ) = {xλ ∈ J(LX) : xλ ⊑⩽F }.

Then lim⊑ is an L-filter convergence structure on LX.

Proof. (LFC1) For any xλ ∈ J(LX), (LDDCR1) yields that xλ ⊑⩽xλ . Since ⩽Fxλ
=⩽xλ by Lemma 4.6(1), it is clear

that xλ ⊑⩽Fxλ
. Thus xλ ∈ lim⊑(Fxλ ).

(LFC2) If F1 ⊆ F2 and xλ ∈ lim⊑(F1), then ⩽F1≤⩽F2 and xλ ⊑⩽F1 . Thus xλ ⊑⩽F2 by (LDDR2). Hence
xλ ∈ lim⊑(F2). Therefore lim⊑(F1) ⊆ lim⊑(F2).
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(LFC3) Let xλ ∈ J(LX) and A ∈ LX. Then Lemma 4.8 and (LDDCR3) imply that

A ∈ F lim⊑
xλ ⇐⇒ A ⩽⊑xλ A

⇐⇒ ∀µ ∈ β∗(λ), A ⩽⊑xµ F

⇐⇒ ∀µ ∈ β∗(λ), A ∈ F lim⊑
xµ

⇐⇒ F ∈
⋂

µ∈β∗(λ)

F
lim⊑

xµ .

Hence F lim⊑
xλ =

⋂
µ∈β∗(λ) F

lim⊑
xµ .

Therefore lim⊑ is an L-filter convergence structure.

Theorem 4.10. Let (X,⊑X) and (Y,⊑Y) be L-down–directed convergence relation spaces. If f : X −→ Y is an L-
down–directed convergence relation preserving mapping with respect to (X,⊑X) and (Y,⊑Y), then f : (X, lim⊑X ) −→
(Y, lim⊑Y ) is an L-filter convergence preserving mapping.

Proof. Let F ∈ F (LX) and let A,B ∈ LY. Then

A(⩽F ) f (X)B ⇐⇒ A ≤ B and f←L (A) ⩽F f←L (B)
⇐⇒ A ≤ B and f←L (A) ≤ f←L (B) ∈ F
⇐⇒ A ≤ B ∈ F f (X)

⇐⇒ A ≤ B ⩽F f (X) B
⇐⇒ A ⩽F f (X) B.

Thus (⩽F ) f (X) =⩽F f (X) . For any xλ ∈ J(LX), it follows that

xλ ∈ lim⊑X (F ) ⇐⇒ xλ ⊑X⩽F
=⇒ f→L (xλ) ⊑Y (⩽F ) f (X)

⇐⇒ f→L (xλ) ⊑Y⩽F f (X)

⇐⇒ f→L (xλ) ∈ lim⊑Y (F f (X)).

Therefore f is an L-down–directed convergence relation preserving mapping.

Theorem 4.11. Let (X, lim) be an L-filter convergence space. Define a relation ⊑lim on J(LX) × Rddir(LX) by

∀xλ ∈ J(LX),∀ ⩽∈ Rddir(LX), xλ ⊑lim⩽ ⇐⇒ xλ ∈ lim(F⩽).

Then ⊑lim is an L-down–directed convergence relation satisfying ⩽⊑lim
xλ =⩽F lim

xλ
.

Proof. (LDDCR1) F⩽xλ
= Fxλ by Lemma 4.6(1). Since xλ ∈ lim(Fxλ ) by (LFC1), it follows that xλ ⊑lim⩽xλ .

(LDDCR2) Let⩽1,⩽2∈ R
ddir(LX) with⩽1≤⩽2 and xλ ⊑lim⩽1. ThenF⩽1 ⊆ F⩽2 and xλ ∈ lim(F⩽1 ) ⊆ lim(F⩽2 ).

Thus xλ ⊑lim⩽2.
(LDDCR3). Let xλ ∈ J(LX). We check that ⩽⊑lim

xλ =⩽F lim
xλ

. Indeed, for any A,B ∈ LX, Theorem 4.5 yields that

A ⩽⊑lim
xλ B ⇐⇒ ∀ ⩽∈ Rddir

⊑lim
(xλ), A ⩽ B

⇐⇒ ∀ ⩽∈ Rddir(LX), xλ ∈ lim(F⩽) implies A ⩽ B

⇐⇒ ∀ ⩽∈ Rddir(LX), xλ ∈ lim(F⩽) implies A ≤ B ∈ F⩽
⇐⇒ ∀F ∈ F (LX), xλ ∈ lim(F⩽F ) implies A ≤ B ∈ F⩽F
⇐⇒ ∀F ∈ F (LX), xλ ∈ lim(F ) implies A ≤ B ∈ F

⇐⇒ A ≤ B ∈ F lim
xλ

⇐⇒ A ⩽
F lim

xλ
B.
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Thus ⩽⊑lim
xλ =⩽F lim

xλ
. For any A,B ∈ LX, (LFC3) implies that

A ⩽⊑lim
xλ B ⇐⇒ A ⩽

F lim
xλ

B

⇐⇒ A ⩽⋂
µ∈β∗ (λ) F

lim
xµ

B

⇐⇒ ∀µ ∈ β∗(λ), A ⩽
F lim

xµ
B

⇐⇒ ∀µ ∈ β∗(λ), A ⩽⊑lim
xµ B.

Hence (LDDCR3) holds for ⊑lim.
Therefore ⊑lim is an L-filter convergence relation satisfying ⩽⊑lim

xλ =⩽F lim
xλ

.

Theorem 4.12. Let (X, limX) and (Y, limY) be L-filter convergence spaces with respect to (X, limX) and (Y, limY). If
f : X −→ Y is an L-filter convergence preserving mapping, then f : (X,⊑limX )→ (Y,⊑limY ) is an L-filter convergence
preserving mapping.

Proof. Let xλ ∈ J(LX) and ⩽∈ Rddir(LX) with xλ ⊑limX⩽. Thus xλ ∈ limX(F⩽). Hence f→L (xλ) ∈ limY((F⩽) f (X)).
So f→L (xλ) ∈ limY(F⩽ f (X) ) which implies that f→L (xλ) ⊑limY⩽ f (X). Therefore f is an L-filter convergence relation
preserving mapping.

Theorem 4.13. Let (X,⊑) be an L-filter convergence relation space. Then ⊑lim⊑=⊑.

Proof. Let xλ ∈ J(LX) and ⩽∈ Rddir(LX). By Theorem 4.5, it follows that

xλ ⊑lim⊑⩽⇐⇒ xλ ∈ lim⊑(F⩽) ⇐⇒ xλ ⊑⩽F⩽ ⇐⇒ xλ ⊑⩽ .

This shows that ⊑lim⊑=⊑.

Theorem 4.14. Let (X, lim) be an L-filter convergence space. Then lim⊑lim = lim.

Proof. Let xλ ∈ J(LX) and F ∈ Fc(LX). It follows from Theorem 4.5 that

xλ ∈ lim⊑lim (F ) ⇐⇒ xλ ⊑lim⩽F ⇐⇒ xλ ∈ lim(F⩽F ) ⇐⇒ xλ ∈ lim(F ).

Thus lim⊑lim = lim.

Based on Theorems 4.9 and 4.10, we obtain a functor T : L-DDCRS −→ L-FCS by

T((X,⊑)) = (X, lim⊑) and T( f ) = f .

Based on Theorems 4.9–4.14, T is an isomorphic functor. Thus we have the following result.

Theorem 4.15. The category L-DDCRS is isomorphic to the category L-FCS.

Definition 4.16. An L-filter convergence structure lim : Fc(LX) −→ 2J(LX) is called an L-concave filter
convergence structure and the pair (X, lim) is called an L-concave filter convergence space if

(LCFC1) xλ ∈ lim(F lim
xλ );

(LCFC2) A ∈ F lim
xλ if and only if there is a set B ∈ LX such that xλ ≤ B ≤ A and B ∈ F lim

xµ for any yµ ∈ β∗(B).

The category of any L-concave filter convergence spaces and L-filter convergence preserving mappings
is denoted by L-CFCS.

Theorem 4.17. If (X,⊑) is an L-concave down–directed convergence relation space then (X, lim⊑) is an L-concave
filter convergence space.
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Proof. Based on Theorem 4.9, lim⊑ is an L-filter convergence . It is sufficient to check that (LCFC1) and
(LCFC2) hold for lim⊑.

(LCFC1) Let xλ ∈ J(LX). Then⩽⊑xλ=⩽
⊑lim⊑
xλ =⩽F lim⊑

xλ
by Theorems 4.13 and 4.11. Since xλ ⊑⩽⊑xλ by (LCDDCR1),

it follows that xλ ⊑⩽
F

lim⊑
xλ

. Thus xλ ∈ lim⊑(F lim⊑
xλ ).

(LCFC2) Let A ∈ LX. Then Lemma 4.8 and (LCDDCR2) yield that

A ∈ F lim⊑
xλ ⇐⇒ A ⩽⊑xλ A

⇐⇒ ∃D ∈ LX s.t. ∀yµ ∈ β∗(D), xλ ≤ D ⩽⊑yµ D ≤ D ∨ A ≤ A

⇐⇒ ∃xλ ≤ D ≤ A s.t. ∀yµ ∈ β∗(D), D ∈ F lim⊑
yµ .

This shows that (LCFC2) holds for lim⊑.

Theorem 4.18. If (X, lim) is an L-concave filter convergence space then (X,⊑lim) is an L-concave down–directed
convergence relation space.

Proof. Based on Theorem 4.11, ⊑lim is an L-down–directed convergence relation. Thus it is sufficient to
prove that (LCDDCR1) and (LCDDFCR2) hold for ⊑lim.

(LCDDCR1) Let xλ ∈ J(LX). Then ⩽⊑lim
xλ =⩽F lim

xλ
by Theorem 4.11. Since xλ ∈ lim(F lim

xλ ) by (LCFC1), it

follows that xλ ⊑lim⩽F lim
xλ

. This shows that xλ ⊑lim⩽
⊑lim
xλ .

(LCDDCR2) Let A,B ∈ LX. It follows from Theorem 4.11 and (LDDR2) that

A ⩽⊑lim
xλ B ⇐⇒ A ⩽

F lim
xλ

B ⇐⇒ A ≤ B ⩽
F lim

xλ
B ⇐⇒ A ≤ B ∈ F lim

xλ .

Further, it follows from (LCFC2) and Theorem 4.11 that

A ⩽⊑lim
xλ B ⇐⇒ A ≤ B ∈ F lim

xλ

⇐⇒ ∃xλ ≤ D ∨ A ≤ B s.t. ∀yµ ∈ β∗(D), D ∈ F lim
yµ

⇐⇒ ∃xλ ≤ D ∨ A ≤ B s.t. ∀yµ ∈ β∗(D), D ⩽
F lim

yµ
D

⇐⇒ ∃xλ ≤ D ∨ A ≤ B s.t. ∀yµ ∈ β∗(D), D ⩽⊑lim
yµ D

⇐⇒ ∃D ∈ LX s.t. ∀yµ ∈ β∗(D), xλ ≤ D ⩽⊑lim
yµ D ≤ D ∨ A ≤ B.

Thus (LCFCR2) hold for ⊑lim.

Based on Theorems 4.15, 4.17 and 4.18, we have the following conclusion.

Theorem 4.19. The category L-CFCRS is isomorphic to the category L-CFCS.

Remark 4.20. Based on Theorems 3.20 and 4.19, relationships between L-CFCS and L-CIRS are present as
follows.

(1) Let (X, lim) be an L-concave filter convergence space. Define a binary relation ≼lim on LX by

∀A,B ∈ LX, A ≼lim B ⇐⇒ ∃A ≤ D ≤ B, ∀xλ ∈ β∗(D), D ∈ F lim
xλ .

Then ≼lim is an L-concave internal relation on LX.
(2) Let (X,≼) be an L-concave internal relation space. Define a mapping lim≼ on F (LX) × 2J(LX) by

∀F ∈ F (LX), lim≼(F ) = {xλ ∈ J(LX) :⩽≼xλ≤⩽F }.

Then lim≼ is an L-concave filter convergence structure on LX.
(3) ≼lim≼=≼ and lim≼lim = lim.
(4) The category L-CFCS is isomorphic to the category L-CIRS.
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Remark 4.21. Based on Remark 4.20 and Theorem 2.6, relationships between L-CFCS and L-CAS are as
follows.

(1) Let (X, lim) be an L-concave filter convergence space. Then the set

Alim = {A ∈ LX : ∀xλ ∈ β∗(A), A ∈ F lim
xλ }

is an L-concave structure on LX.
(2) Let (X,A) be an L-concave space. Define a mapping limA : F (LX) −→ 2J(LX) by

∀F ∈ F (LX), limA(F ) = {xλ ∈ J(LX) : NAxλ ⊆ F }.

Then limA is an L-concave filter convergence structure on LX.
(3)AlimA = A and limAlim = lim.
(4) The category L-CFCS is isomorphic to the category L-CAS.

Conclusions

In this paper, we introduced L-down–directed relations, L-down–directed convergence relations and L-
concave down–directed convergence relations. We proved that the category of L-concave internal relation
spaces can be embedded into the category of L-down–directed convergence relation spaces as a reflective
subcategory, and that the category of L-concave down–directed convergence relation spaces is isomorphic
to the category of L-concave internal relation spaces. We further introduced L-concave filters, L-filter
convergence spaces and L-concave filter convergence spaces. We prove that that L-filter convergence
space and L-down–directed convergence relation spaces are isomorphic. In addition, we also proved
that L-concave down–directed convergence relation spaces, L-concave filter convergence spaces, L-concave
internal relations and L-concave space are all categorically isomorphic.

In [26], Xiu et al introduced notions of L-convex ideals and L-convergence structures. Indeed, if L is
a complete lattice with an inverse involution, then L-concave filter is a dual concept of L-convex ideal.
Similarly, L-concave filter convergence structure is a dual concept of L-convergence structure. However,
L-concave filter convergence structure can adapt to a more general environment where the complete lattice
L has no inverse involution.

In recent years, fuzzy relations have been applied to many mathematical structures such as L-topological
spaces, (L,M)-fuzzy topological spaces, L-concave space, L-convex spaces, (L,M)-fuzzy convex spaces and
M-fuzzifying convex spaces [5, 17, 18, 22, 24]. Thus fuzzy relations may provide some alternative ways to
study convergence structures in these spaces.

Acknowledgement

We sincerely thank the editor and referees for valuable comments and suggestions for improving this
paper.

References
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