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Abstract. In this paper, we study Bernstein, Markov and Nikol’skii type inequalities for arbitrary algebraic
polynomials with respect to a weighted Lebesgue space, where the contour and weight functions have some
singularities on a given contour.

1. Introduction

Let C be a complex plane, C := C U {oo}; G C C be a bounded Jordan region, with 0 € G and the
boundary L := JG be a closed Jordan curve, Q := C \ G = extL. Let @n denotes the class of arbitrary
algebraic polynomials P,(z) of degree at most n € IN.

Let 0 < p < o0; h(z), z € C, be a some weight function. For a rectifiable Jordan curve L, we denote:

1/p
Pallz, = =1Pullz,0 = f W@ PP ldzl| , 0<p <,
L
IPall. : = WPull oy = max|Pu(a)], p = oo.

Clearly, |Ill, is a quasinorm (i.e. a norm for 1 < p < co and a p—norm for 0 <p <1).
Denoted by w = ®(z), the univalent conformal mapping of Q) onto A := {w : [w| > 1} with normalization

D(o0) = 00, lim,_,0 @ >0and V¥ := & 1. For t > 1, we set:

Lt = {Z: |(D(Z)| = t}, L1 = L, Gt = intLt, Qt = extLt.

!
Let {z j} _, be a fixed system of distinct points on curve L which is located in the positive direction. For

some fixed Ry, 1 < Ryp < o0, and z € Gg,, consider generalized Jacobi weight function % (z) which is defined
as follows:

l
@ =h@ [ [z, (1)

j=1
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where y; > —1forall j = 1,2,...,[, and hg is uniformly separated from zero in Gg,, i.e. there exists a constant
co := co(Gr,) > 0, such that for all z € Gg, ho(z) = ¢y > 0.
In this work, we study the following type estimates

IP™llx < AullPully )

for some spaces X and Y, where A, > 0, A, = o0, n — oo, is a constant, depending on the geometrical
properties of the curve L, the weight function / and spaces X, Y. In the literature, these inequalities are
often called Bernstein-type for X = Y = L; Markov-type for X = Y = £,, p > 0, and Nikolskii-type for
m=0,X=2L,Y=1L,0<p <q < oo, inequalities in Lebesgue space for all polynomials P, € ¢, and any
m=0,1,2,..

One of the first results analogous to (2), in thecase m = 0, X = Lo, Y = L, i(z) =1,L = {z : |z| = 1} and
0 < p < oo was found by Jackson [32] as follows:

1
]

2n
1Pl <20 f 1Pt
0

For some m > 0, X, Y, h(z), L and 0 < p < oo, estimates of ( 2)- type was investigated by Szegé
and Zigmund [46], Suetin [47], [48], Mamedhanov [14, 15], Nikol’skii [17, pp. 122-133], Dzyadyk [29],
Andrashko [18], Nevai, Totik [38], Pritsker [42], Ditzian, Pritsker [28], Ditzian, Tikhonov [27], Andrievskii
[20], [21] (see also the references cited therein) and others.

The last few years, analogous estimates of (2) for some m > 0, X, Y, h(z), L and 0 < p < oo, were obtained
in [3-16, 22, 43] and others.

In this work, we continue to study the estimation of (2)-type for quasidisks and for weight function h(z)
defined as in (1) for various regions in the complex plane.

2. Definitions and main results

Throughout this paper, ¢, ¢ c1, ¢, ... are positive and &g, €1, €, ... are sufficiently small positive constants
(generally, different in different relations), which depends on G in general and, on parameters inessential
for the argument; otherwise, such dependence will be explicitly stated.

For any k > 0 and I > k, notationi = k,I meansi=kk+1,..., 1.

Let z = ¢(w) be the univalent conformal mapping of B := {w : |w| < 1} onto the G normalized by 1(0) = 0,
Y’ (0) > 0. According to [40, pp.286-294], we say a bounded Jordan region G is called « -quasidisk, 0 < x <1,
if any conformal mapping ¢ can be extended to a K -quasiconformal, K = {*£, the homeomorphism of the
plane C on plane C. In that case, the curve L := 9G is called a « -quasicircle. The region G (curve L) is called
a quasidisk (quasicircle), if it is x-quasidisk (x -quasicircle) for some 0 < x < 1.

We denote the class of « -quasicircle by Q(x), 0 < x <1,and write L € Q,if L € Q(x) forsome 0 <« < 1.1t
is well-known that the quasicircle may not even be locally rectifiable [33, p.104].

Since, the object of study is the £,(h, L), it is natural to give the following definition.

Definition 2.1. We say that L € é(K), 0<x <1,if L € Q(x) and L is rectifiable.

Let z1, z, be arbitrary points on L and I(z;, z2) denotes the subarc of L of shorter diameter with endpoints
z1 and z. The curve L is a quasicircle if and only if (three point property)
|21 — z| + |z — 25

L(z; Z1,Zz) = sup - T < .
21, 2€L, z€l(21,22) |z1 — 22|

Lesley [34, p.341] said that the curve L is “c—quasiconformal”, if there exists the constant c > 0, independent
from points z1, zo and z such that L(z;z1,z0) < c. The Jordan curve L is called asymptotically conformal



P. Ozkartepe et al. / Filomat 37:17 (2023), 5701-5715 5703

[26], [41], if L(z;z1,z2) — 1, as |z1 —z2| — 0. According to the geometric criteria of quasiconformality of
the curves ([17, p.81], [41, p.107]), every asymptotically conformal curve is a quasicircle. Every smooth
curve is asymptotically conformal but corners are not allowed. The asymptotically conformal curves can
be non-rectifiable.

Let S be rectifiable Jordan curve or arc and let z = z(s), s € [0, |S]], |S| := mes S, be the natural
parametrization of S. A Jordan curve or arc is called smooth, if S has a continuous tangent 0(z) := 6(z(s))
at every point z(s). The class of such curves or arcs is denoted by Cy.

Following [40, p.163], we say that abounded Jordan curve L is A—quasismooth (in the sense of Lavrentiev)
curve, if for every pair z1, z> € L, there exists a constant A := A(L) > 1, such that

|l(erzz)| S /\ |Zl - ZZ|, Z1, 22 € L/

where |I/(z1, z2)| is the linear measure (length) of I(z1,z;). The region G is called a A—quasismooth region, if
L =JdGisa A—quasismooth curve.

Following [40, p.48], we say that a Jordan curve S called Dini-smooth, if it has a parametrization
z =12(s), 0 <s < |S|:=mes S, such that z'(s) # 0, 0 < s < |S| and )z'(sz) - z'(sl)| < g(s2 — s1), 51 < 52, where g is
an increasing function for which

1
f@dx < oo.
X
0

A Jordan region G has a piecewise Dini-smooth boundary, if L := dG consists of the union of finite Dini-
smooth arcs Lj, j = 1,1, such that they have exterior (with respect to G) angles A i1, 0 < Aj <2, at the corner

points {z ]-} , j=1,m, where two arcs meet.

According to the ”three-point” criterion [33, p.100], every piecewise Cg—curve, Dini-smooth curve
(without cusps), A—quasismooth (in the sense of Lavrentiev) curve is quasiconformal. But, we know that
calculating the quasi-conformity coefficient x for all such curves is not an easy task. Therefore, we now
give a more general definition of a class of curves with a different functional characteristic.

Definition 2.2. We say that L = dG € Q, if L is a quasicircle and ® € H*(Q) for some 0 < a < 1 (ie.,
|D(z') — D(z")| < clz —2"|*, for any pair 2/, 2’ € Q and ¢ constant, independent from z’,z").

Since the objects will be integrals along the curve, we must also require from the curve their rectifiability.

Definition 2.3. We say that L € éa,O <a<1,if L €Q, and L is rectifiable.

We note that the class Q, is sufficiently large. A detailed account on it and the related topics are contained
in [34], [41], [49] (see also the references cited therein). This can be seen from the following;:

Remark 2.4. a) If L is a piecewise Dini-smooth curve and largest exterior (interior) angle on L has opening
In(vm),0 <9 <1(1<v<2),thenL € Qy (L € Qz%)[34], [41, p.52]. If L is a smooth curve having continuous

tangent line, then G € Qu forall0<a<1.

b) If G is “L-shaped” region, then G € Qu fora = Z,
¢) If L is quasismooth, then G € Q, fora = %(1 - % arcsin %)‘1 [49], [50].
d) If L is “c-quasiconformal”, then G € Q, for a = —L— [34].

2(mt—arcsin %)
e) If L is an asymptotically conformal curve, then G € Q, for all 0 < o < 1 [34].
Now, we start to formulate the new results.
Throughout in the text, we denote:

Y 1= max {O; Vis j= ﬁ} 3)
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Theorem 2.5. Let0 <p <oo;L € é(K)fOV some 0 < x < 1and h(z) be defined by (1). Then for any P, € 9, n € N,
and everym =0,1,2, ...

1+

Pl < ey T )00y p, 4
where y is defined as in (3).
Corollary 2.6. Let L € é(K)fOT’ some 0 < k < 1. Then for any P, € 9,, n € N, and everym =1,2,...

1Pl < c1n™ PIIP, o, (5)

Theorem 2.7. Let1l <p < oo;L € é(K)fOV some 0 < x < 1and h(z) be defined by (1). Then for any P, € 9,, n € N,
and everym =0,1,2,. ..

(¥+m)(1+k)

[P (z))| < can IPull,-

Theorem 2.8. Letp > 1; L € é(K) for some 0 < k < 1 and h(z) be defined by (1); R = 1 + . Then for arbitrary
P,epyandanym =0,1,2,...

P12,y < €31 9Pyl ©)

Theorem 2.9. Let L € Q(x) for some 0 < x < 1 and h(z) be defined by (1). Then for arbitrary P, € g, ,
O<p<g<ooandanym=0,1,2,...

11
1Pl < canli =)0 PO, )
where y define as in (3).
Now, we can state the corresponding results for the class of regions G € Q,.

Theorem 2.10. Let0 <p < oo; L€ (jafor some 0 < o < 1 and h(z) be defined by (1).Then for any P, € p,, n € N,
and everym =0,1,2, ...

6(1ﬂ+m) 1

nitvr a <3

1P oo < slPally 302, 2 8)
e > L

where y is defined as in (3) and 6 =06(G),1<6<2.

Corollary 2.11. L€ éafor some 0 < o < 1. Then for any P, € 9, n € N, and everym = 1,2, ...

ném

o
1Pl < c5||Pn||m{ oy

1

i )
5

Theorem 2.12. Let1 <p <oo; Le éafor some 0 < a < 1and h(z) be defined by (1). Then for any P, € 9, n € N,
and everym =0,1,2,. ..

[Pz < collPuly ’ (10

Theorem 2.13. Let p > 1; L € Q, for some 0 < o < 1 and h(z) be defined by (1); R = 1 + 1. Then for arbitrary
P,egp,andanym=0,1,2,...

ném

1
(1m) , 57
WP Nl g, 1) < C7||Pn||p{ nt 4 ; (11)
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Theorem 2.14. LetL € éafor some 0 < a < 1and h(z) be defined by (1). Then for arbitrary P, € p,,, 0 <p < g < o0
andanym=0,1,2,..., we have:
=30,

a
n%«(}i’%)(“w, a 12

vV A
NI NI=

uPquSchTmp{

where y is defined as in (3).

Remark 2.15. For some regions and the weight function h(z), similar statements to Theorems 2.5-2.14 were
obtained earlier. In particular, for them =0, h(z) =1,p > 0in [32, k = 0], [6, 0 < k < 1]; for m = 0, same h(z),
p > 0, L—piecewise smooth curve and for h(z) = 1 and rectifiable curve with corners L in [18]; for h(z) = 1
and quasicircle L in [36]; for doubling weight function h(z), quasismooth curve L and R = 1 in [21]; for
m > 1, same h(z), p > 1in [15] and for m = 0, same h(z), p > 1in [8]; form =0, h(z) =1,0 < p < g < o0 in [35,
x =1],[42, « = 1,0 < k¥ < 1] and others.

Theorems 2.10-2.14 are analogues of Theorems 2.5-2.9 for a wider class of regions. Taking into account
Remark 2.4 , we can write analogues of these theorems for other more simple regions.

Remark 2.16. The given estimates in Theorems 2.5-2.14 are exact.

3. Some auxiliary results

Fora > 0 and b > 0, we use the notations “a < b” (order inequality), if 2 < cb and “a =< b” are equivalent
to c1a < b < cpa for some constants ¢, ¢1, ¢ (independent of a and b) respectively.

The following definitions of the K-quasiconformal curves are well-known (see, for example, [17], [33,
p-97] and [44]):

Definition 3.1. TheJordanarc (or curve) Lis called K—quasiconformal (K > 1), if there is a K—quasiconformal
mapping f of the region D D L such that f(L) is a line segment (or circle).

Let F(L) denotes the set of all sense preserving plane homeomorphisms f of the region D D L such that
f(L) is a line segment (or circle) and lets define

Ky :=inf{K(f) : f € F(L)},

where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve, if K; < o0, and L is
a K—quasiconformal curve, if K, < K.

Remark 3.2. It is well-known that, if we are not interested with the coefficients of quasiconformality of the
curve, then the definitions of “quasicircle” and “quasiconformal curve” are identical. However, if we are
also interested with the coefficients of quasiconformality of the given curve, then we will consider that if

the curve L is K—quasiconformal, then it is k—quasicircle with x = %
By the following Remark 3.2 for simplicity, we will use both terms, depending on the situation.
Forz e Cand M C C, we set

d(z, M) = dist(z, M) .= inf{|lz — (| : C € M}.

Let p := 171, i.e. w = ¢(z) be the univalent conformal mapping of G onto the B normalized by ¢(0) = 0,
¢@’(0) > 0.Fort>1,weset: L; := {z : |(p(z)‘ = t}, L1 =L, G :=intL;, Q := extL;.

Lemma 3.3. ([1]) Let L be a K—quasiconformal curve, zy € L, 22,23 € QN {z : |z = z1| < d(z1,Ly)}; w; = D(z)),
j=1,2,3. Then
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a) The statements |z1 — zp| < |21 — z3| and [wy — wy| < [w1 — w3 are equivalent.
and similarly so are |z — z5| < |z1 — z3] and w1 — ws| < |wy — ws].

b) If |z1 — zo| < |z1 — z3|, then

€
<

Wy — W3 ¢

w1 — w2

21— 23
21— 22

w1 — W3
w1 — Wy

=<

wheree <1, c > 1, 0 <ry <1, are constants, depending on G.
Lemma 3.4. Let G € Q(x) for some 0 < x < 1. Then
W (w1) — W(ws)| = lwy — waf*,
forall wy,w, € A.
This fact follows from [40, p.287, Lemma 9.9] and the estimation for the Y’ (see, for example, [19, Th.2.8]):
_d¥(7),L)

W’ (1)] < =1 (13)
Lemma 3.5. Let G € Q,, we have
d(t,Lg) > (R=-1* =n7¥,
where
= ar G =72 (14)
K { , a<jy,

and 6 =90(a, G), 1 < 06 < 2, is a certain number.

This fact follows easily from [34] and [19].

!
Let {z 7};':1 be a fixed the system of the points on L and the weight function / (z) defined as (1).

Lemma 3.6. ([4]) Let L be a rectifiable Jordan curve, h(z) defined as in (1). Then for arbitrary P,(z) € 9,, any R > 1
and n € N, we have:

m
IPull 2,0y < R Pull £ 1y, P> 0, (15)
where y is defined as in (3).

Remark 3.7. In case of hi(z) = 1, the estimation (15) has been proved in [31].

4. Proof of theorems

Proof. [Proof of Theorems 2.5 and 2.10] First of all, we give two theorem that we will use in this case, and

after than we give estimate for |P§,m) )|,z € G, for each m > 1.
Theorem A [6, Cor.2.3]Letp > 0; L € é(K), 0 < x < 1 and h(z) be defined by (1). Then for any P, € p,, n € N,
there exists a constant cg = co(L, p,y) > 0 such that the following is fulfilled:

1+))(1+k)

(
IPulloc < con 7 |[Pull,, (16)

where y := max {O,' Vi J= ﬁ}
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Theorem B [8, Th.2.4] Let p > 0; L € éa, 0 < a <1, and h(z) be defined by (1). Then, there exists a constant
c10 = c10(L, p, ) > 0 such that the following is fulfilled:

@420 1
ne a< s

IPalleo < c10lIPullyd 10 f 17)
ne, axj,

where 6 = 6(G), 1 < 6 < 2, is a certain number. _ _

Now, we will give estimate for |P,(1m) (2)|,z € G, for each m > 0 and for the regions of the classes Q(x) and
éa, respectively. Let z € L is an arbitrary fixed point; B(z,d(z, Lr)) := {& : |€ — z| < d(z, Lg)}. By the Cauchy
integral formulas for mth derivatives, we have:

(m) _ m! Pn(t) _
Pn (Z) = ﬁ f mdt, nm = 0, 1,2,...
9dB(z,d(z,LRr))

Then, applying well-known Bernstein-Walsh inequality [51, p.101], we obtain:

IPulloyy < |D(z)]" IPullcy» YPu € 9u; (18)
! |dt|

Pl < = max P, —_—

| n )| 27 zeaB(z,d(z,LR))l n®l |t =z

9B(z,d(z,Lr))
I 27td(z, L max,_= |Py(t)|
< ﬂmalen(t)l‘ nd(z, Lr) < G 1Pn()
27 teGr dm+1(Z, LR) dm(Z, LR)

If p = o0, we get:

Py ()] = IPalles , ¥z € L.

1
dm(z,Lg)

If 0 < p < o0, applying Theorems A and B and using the Lemmas 3.4, 3.5, for all Vz € L, we get:

1 m y+l 1
PO < n TR, nE <l TP,

pasy ’ 2L )1+
PG < 0 Pl <5y

Since z € L is arbitrary, we complete the proof of Theorems 2.5, Corollary 2.6 and Theorem 2.10, Corollary
211. O

Proof. [Proof of Theorems 2.7 and 2.12] Suppose that L € éa for some % <a<1,i=11be given and h(z)
defined as in (1). The Cauchy integral representation for the P, (z) in Gg, R = 1 + <2, gives:

P;(1m) (Z]') — %f(éjn_(z%, ze€Gg, m=0,1,2,...
Lr ]

Multiplying the numerator and the determinator of the integrand by h'/P(C), according to the Holder
inequality, we obtain:

1/q
1/p

f O PO 1AL| f 4 19

! -
b b Hl |C _ Zj|(q Dy, (C _ Zj|q<m+1)
j=

P,Sm) (Zj)‘

IA

: ]n,l X ]n,2-
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I
According Lemma 3.6 for any points {Z j} L € L, we have:

P (2)] < IPlz, - Ua2)" (20)

To estimate the integral [, 2, we introduce w; := ®(z;), ; := argw;, j = ﬁ Without loss of generality, we
will assume that ) < 2; L) := LN Q, L} := Lx N Q, j = 1,1, where O := W(A);

, , + +
A ={t:Re’9:R>1, P+ P1 g@<(’”2(’)2},
, . 1+ +
A, :{t:Re’Q:R>1, Lo 7 P = P se<—(p'"2(P1},

and for j = 2,1

, , 1+ P+
Aj::{t:Re’G:R>l,w semw},

where @y = 2 — ¢;.Then, we get:

l 1

| d| o
(]n,2)q = Zlf = Z f |C _ Zl|(ﬁl—1))/j+li(m+1) = Zl ]”2' 21)
1= j 1=

l =
(q-1)yj q(m+1) =
i Hl(C—Zf| e~z =
]:

i
since the points {z j} | € L are distinct. For simplicity of further calculations, we will estimate only for z;.

Let for the 61,0 < 01 < §g < %diam G, denote:

Ix1 =Ly N Qz1,01), I 5 = LMy, Frii= Oy ), i=1,2.

We get:
d d d
n = f (Jflc)lwza(mﬂ) - f (q|71C>|y1+q(m+1> " f (zlf)lmq(rm)' (22)
|C = z1] |IC = z1] IC—z [
Lk R ka

Applying the Lemma’s 3.4 and 3.5, we have:

[ E— AW(D), 1)l -
IC - Zl|(q—1))/1+q(m+1) V() — \I/(wl)|(q—1)7/1+Q(m+1) (7] - 1)
[ol(]

1 1
]R,l R,l)

|dT| |d|
" W (1) — W (w )|~ Dra+alm+)-1 = [(-1)y1-+q(m+1)-1](1+x)
T) — w1 T—w — _
ol ofl, | 1l

< plE@Dyeegem-1]a+.

|dC]| “1yy
f|c - I(q—1)7/1+q(m+1) < (51)07 th(m”)medlli,l <1, (24)
— 41

1
lR,Z

for L € Q(x), and

|dq] |dz| @=Ly +qm+1)-1
@Dy =1 T = ¢ ’
|C = zq [0 @

i, oy 1Tl
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forL € éa. Then, from (22), we get:

y1+1

I, < a5, (25)

Combining the relations (20)-(25), we obtain:
1Py )l <l 50 b
forL e é(K),‘
1P, GOl < 5 P,

forL € éa, and, we complete the proof of Theorems 2.7 and 2.12. O

Proof. [Proof of Theorems 2.8 and 2.13] For z € C and p > 0 consider the function:

! 7

H z—z] ’ yvi>-1,j=1,1

j=1

*:\._\

1 1
Since {z f}j=1 € L, then, the function g% (z) analytic in () (we take an arbitrary continuous branch of the g:’ (2)

and we maintain the same designation for this branch). We have:
!

L 7]/ 7 (2) Vi
[77@)] Z[H(Z_Zj) ] =gpz le_fzj;

=1

|7 @P.@)] =[5 @] Pu@) + 7 @P,(2)

and so:

P ar = -[7 @] P+ [ p) - L0 (Z)ZZ —+lotore]
Therefore,

h(z)

! p
P, <) IPa@) [Z e |] '@
]

since h(z) = )g(z)|.
Integrating over the Lg and using Lemma 3.6, we get:

1

/ 1 1 7\p
s e LU {f [ @P.)] | |dz|} (26)
zely (z - zj| .
< m” ”-Ep(hLR '[g] (2) n(z)” |dz]
Lr
1 , ;
< mlanllmuw{ f |[gﬁ(z)Pn(z)]| Idz|}
Lr
L 1
< —L)” nll 2,00y + J(n) < m” allz, 0y + (1),

d(zj,



P. Ozkartepe et al. / Filomat 37:17 (2023), 5701-5715 5710

where [(n) defined as follows:

1

Jon) = { [l erel| W}p : 27)
Lr

Therefore, it is necessary to calculate the integral J(n). Let

O(z) -
Bi(z) == ———; B(z) := B;
@)= — @(z,)@(z) (2) = H (@)

I
denote a Blaschke function [51, Ch.10] with respect to the {z]-}jzl. Clearly, B(zj) = 0, |B(z)l =1 forallz € L

and |B(z)| < 1 forall z € Q.
For p > 0, let us set:

! ! 4
Gz : = ch(z) = H(%) > -1, =1

1

Py (2) ( 9@) ) Pu(z)
Otl(z)  \Bz)®(z)] Pr+l(z)’

Hyp(@) : =G(2) € Q.

The function G(z) is analytic in Q) continuous on Q (we take an arbitrary continuous branch of the G(z) and

we maintain the same designation for this branch). The function H,, is analytic in Q, continuous on Q.
Then,

H,,(z) : = [—19;7(2)13”1 (? l
B? (z)®"" 1 (2)
[g%(Z)Pn (Z)]/ [%} + [g%(Z)Pn (Z)] [%} , z€Q.
Br (z)®""Fr (2) Br (z)®@""Fr (2)
Therefore
1 ’ 1 1 % Pn ' 1 ’
7 @P.@] = [Bv(z)@”“*v(z)]{[%} - |97 @P. )] [;]}
By (2)®@"" T (2) By (2)®@"" v (2)

and

|[g%(Z)Pn (Z)H = |[B;(z)¢)"”+;(z)]|{ l "" |[9%(Z)Pn (Z)“

[ 7' @)P, (2)
Bi ()" (2)

|

el
B%(Z)(D"Jrhll’(z)

{M + |l @P. @) [%] ‘
BE(Z)(DM—H—E(Z) BE(Z)(I)"+1+;’(Z)
= @)+ ,z€Lg,
where
Ao LOPE o1

B’%(Z)q)n+1+llj(z), " ) B%(Z)®n+l+%(z)'
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and, so,

[ @P. ]| =

4, + |7 @r. @)

B (2)

P zelLg. (28)

The function A,(z) is analytic in ) and is continuous on Q, Cauchy integral representations for A,(z) at
the all points z € Q, we have:

1 [ AQ
A(z) = i) C-27 dc, z € Q.
L

For z € Lg, we get:

; TR FQPS Q) | 1
FPE)| < - [FEe +1+p(z)‘f 7@OP @) |
n J B om0 -4
1 1 1
ke | gg |11
P _ P I R I
< | [row@raal | [ A5t =i [ ] e g=t
L L L
|4
q
1 P P |4c]
gP(Z)PVl (Z)' < ”P"”Lp(h,L) [! m
Integrating the last inequality over the curve Lg, we have:
14
q
. p i
" (2)Py (2)] ldz| = “Pn|p f f dz
fg() | o il
LR LR L
|dz| 1
< IPIf, f < [IP.If, .
L) Y infeer 1€ - 2115 LD e 1 — 2/ D5
So,
1Pl = IP] : = 1Pl (29)
n =B ey AT L)
Let us estimate B;l(z)| . Cauchy integral representations for B;,(z), z € (), gives:
B.(z) = _Zme 1 1+1+l (« E_ZCZ)Z’ z€Q.
J B Q"1 (0)
So, for z € Lg, we have:
1 d d 1
mmgf : : ”st'qzs . (30)
) [Br@artifie-zr ) -z Tl L)
Now, integrating the (28) over the curve Lg, according Lemma 3.6, (29) and (30), we obtain:
1 dls ’ P 1 P ’ p
77 @P.@][ Wz < [ |a@f e+ | o @P. @ B 14z (31)
Lr Lr Lg
1 1
P v
— ”Pn”.ﬁp(h,L) dp(L, LR) + dp(L, LR) ”P””L,,(h,LR)

P 1 .
L0 @(L, Ly)’

1Pl
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1

f 9" @P. @] [ 121 < m||mn£,,<h,m.
Lgr

Therefore, from (26), we get:

, 1 1 1 1
P < —"|IP + ———||P =||P + .
“ n”L,,(h,LR) = d(Z]‘, LR) ” n”L,,(h,L) d(L, LR) ” n”L,,(h,L) ” n”L;,(h,L) d(Z]', LR) d(L, LR)

Combining with Lemmas 3.4 and 3.5, respectively, we complete the proofs of Theorems 2.8 and 2.13.

5712

Therefore, we proved that (6) and (11) hold for m = 1. We verify that they also hold for each m > 2.

Suppose that it hold for some m = s > 2, as following:

1 _
p® < ———||Pully, z€G.
WPz, (n,Lr) AL LT IPxllp
We show that it also holds for m = s + 1. Then, after re-applying of the estimate (32), we have:
’ 1
(s+1) _ (s) (s)
175 e = NPT g < g5 1PY I
1 -y (1)
= Pl < ——=1IPS ™
d(L,Ly) [P e, L "
1
ees ﬁ mllpn”p.
Thus, by the method of induction, we can claim that what estimate is true forany m = 1,2, ... :
TR Py p———
T AL, Lr)T”

Now, if G be a k—quasidisk, then according to Lemma 3.4, we have:
ISz, 1) < 1" PNP I,
and if G € Q,, then according to Lemma 3.5, we have:
Py, iy < 1P,

and we complete the proofs. [

Proof. [Proofs of Theorems 2.9 and 2.14] A simple calculation gives:

1/q 1/g
1, = | [ralrelie| = | [Frel” el el
L L
1/q
_r _P 14
< max || | [l @l | = [P e
z€eL )

L

(32)

(33)

Let Tn(z) := P;m)(z), deg Ty = N < n —m. Using Theorem 2.5 and Theorem 2.10, form = 0,0 < x < 1, we

have:

B 14k
ITnlleo < eiN 7 STy,
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ﬂ
ITNlleo < c1N7 HIITnllp,
where 1 defined as in (14). Consequently,
Y 14k Y 14k
Pl < (= m) T IR, < ORI

PN < (1= m) PEPYY < e P
1Py Moo =< (=) FUIPy Pl < 7 SRy,

IA

respectively. Now, combining (33) and (34), we get:

Ly 1-2)(1+k (17E) L 1_1y(1 1+k

PO, =< o D@ p D plmy <y G (e )by plmy
-t -5 g 1_1y(

PO, =< ADRP T PO < G ey pley

Thus, we completed the proofs. [

5713

(34)

Proof. [Proof of Remark 2.16] Sharpness of the inequalities (4) and (8) can be argued as follows. These
inequalities can be interpreted as a combination of the well-known sharp Markov inequalities)’Pgﬂ)”Oo <
1" ||Pylleo, m > 1, with inequalities (16) and (17), respectively. And the sharpness of the last inequalities
can be verified to the following examples: For the polynomial T,(z) = 1 +z + ... + 2", h*(z) = ho(2),
W (z) = z=1, y >0,L:= {z:|z| = 1} and any n € N there exist c3 = c3(i",p) > 0, ¢; = c;(h™,p) > 0 such

that:

\%

1
a) Tl = cn? I Tllg,pe,y, P>1

m
b) ITlee = csn? TNz, 1y, P>y +1

Really, if L := {z : |z| = 1} ,then, L € @(O) and L € él.
a)h*(z)=1;, b)) =z-1)", y > 0.
Obviously,

n-1
T@I< Y [ =n =1 ITO)=n.
j=0

So,
Tz, = n.

On the other hand, according to [46, p. 236], we have:

1-1
Tl g,y <17, p>1,

and
1o

ITllg,ppy <7, p>y+1

Therefore,
1
a) T, = n=xn|Tlgwy, p>1
1= g padl
by Iy, = n=n-n"7 -nr <nv Tl g,y P>y + 1.
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