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Golden Riemannian submersions
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Abstract. In this paper, we study a Golden Riemannian submersion between Golden Riemannian mani-
folds. Here, we investigate the geometric properties of such a submersion and obtain some results. Also,
we study the relations between the Ricci curvatures of any fibre, base and target manifolds of Golden
Riemannian submersion and using these relations obtain two sharp inequalities. Moreover, we give some
characterizations of Golden Riemannian submersion whose total space admits a Ricci soliton with the hori-
zontal or vertical potential field. Finally, we construct some examples of Golden Riemannian submersions.

The theory of Riemannian submersions is very interesting topic in Differential Geometry and Theoretical
Physics, since such theory has many applications in Kaluza-Klein theory, Yang-Mills theory, supergravity
and superstring theories (see [9]).

The Riemannian submersions goes back to five decades ago, when B. O’Neill and A. Gray studied
the basis of such theory, independently (see [12, 14]). From the geometric point of view, Riemannian
submersions are important tools in Riemannian geometry since the total space of such submersions carry
additional structures (of contact, complex, quaternionic type, etc.) Hence, the geometry of Riemannian
submersions have been studied and developed in the last three decades (see papers, [3, 9, 18, 20, 21]).

On the other hand, the number ϕ = (1+
√

5)
2 is a solution of the equation x2

− x − 1 = 0 which is called a
Golden ratio. The notion of Golden ratio has occupied in many different areas such as arts, architecture,
music, philosophies and besides it is also appears in Nature. Being inspired by the Golden ratio ϕ, the
concept of Golden manifold was introduced in [7] with a (1, 1)−tensor field Φ on such a manifold satisfies
Φ2
− Φ − I = 0 and they obtained the eigenvalues of Φ are Golden ratios ϕ and 1 − ϕ. In [19], the authors

defined Golden maps between Golden Riemannian manifolds and gave some properties of the induced
structure on their submanifolds. Moreover, the authors studied two types of submersions whose total space
is an almost trans-1-Golden manifold (see [22]). Nowadays, there are several works on Golden Riemannian
manifolds in literature and they are still in progress (see [1, 4, 10, 11, 17]).

The notion of Ricci soliton is firstly appeared after Hamilton was introduced the Ricci flows and showed
that the self-similar solutions of such flows are Ricci solitons (see [13]).

From a mathematical point of view, a Riemannian manifold (M, 1) is called a Ricci soliton, if

Lσ1 + Ric + k1 = 0 (1)
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is satisfied, where Lσ denotes the Lie-derivative with respect to the vector field σ which is called potential
field, Ric is the Ricci tensor on M and k is a constant. Such a Ricci soliton is denoted by (M, 1, σ, k). Moreover,
if the constant k is positive, zero or negative, then the Ricci soliton (M, 1, σ, k) is said to be expanding, steady
or shrinking, respectively. Ricci solitons became popular after Perelman used them to solve the Poincare
conjecture in [16] and since then, the theory of Ricci solitons has been studied intensively in many different
areas (more details, see [5, 6, 8, 15]).

Our purpose is to study in the present paper a class of submersions between Golden Riemannian
manifolds which is called Golden Riemannian submersion. Here, we characterize the Golden Riemannian
submersions between such manifolds by investigating the Φ−invariance of horizontal and vertical distri-
butions and the fundamental tensor fields T and A of such distributions in Sect. 3. Also, we investigate
the Ricci curvatures of any fibre, base and target manifolds of Golden Riemannian submersion and present
the relations among them. Using these relations, we obtain sharp inequalities for Golden Riemannian
submersion. Moreover, we deal with the total space of such a submersion admits a Ricci soliton and study
here the necessary conditions for Ricci soliton to be either shrinking or expanding, depending on whether
the potential field is horizontal or vertical. In Sect. 4, we give some examples of Golden Riemannian
submersion.

1. Preliminaries

In this section, we recall the following notations:

Let (M, 1) be a Riemannian manifold. A non-null tensor field Φ of type (1, 1) on M is called a Golden
structure, if it satifies

Φ2 = Φ + I, (2)

where I is the identity transformation on the Lie algebra Γ(TM) of the differentiable vector fields on M.

Here, we note that the metric 1 is Φ compatible if

1(ΦX,Y) = 1(X,ΦY) (3)

is satisfied, for any X,Y vector fields on M. If we substitute ΦX into X in (3), it becomes

1(ΦX,ΦY) = 1(Φ2X,Y) = 1((Φ + I)X,Y))
= 1(ΦX,Y) + 1(X,Y),

for any X,Y vector fields on M. Then, the Riemannian metric 1 in Eq. (3) is called Φ−compatible and
(M,Φ, 1) is called an almost Golden Riemannian manifold. Also, M is called a Golden manifold if it has
an integrable almost Golden structure. Recall that the structure Φ is integrable if the Nijenhuis tensor NΦ
vanishes, where

NΦ(X,Y) = Φ2[X,Y] + [ΦX,ΦY] −Φ[ΦX,Y] −Φ[X,ΦY],

for all X,Y vector fields on M (see [2]).

It is known that the integrability of Φ is equivalent to the existence of a torsion-free affine connection
with respect to which the equation ∇Φ = 0 holds (see [7, 10]).

On the other hand, some basic notations about Riemannian submersions from [9] as follows:

A mapF : (M, 1)→ (M̄, 1̄) is called a C∞-submersion between Riemannian manifolds (Mm, 1) and (M̄n, 1̄),
if F has a maximal rank at any point of M. For any x ∈ M̄, F −1(x) is closed r-dimensional submanifold
of M, such that r = m − n. For any p ∈ M, the distribution kerF∗p which is integrable. Also, TpF

−1(x)
are r−dimensional subspaces of kerF∗p and it follows that kerF∗p = TpF

−1(x). Hence, kerF∗p is called the
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vertical space of any point p ∈M.
Denote the complementary distribution of kerF∗ by (kerF∗)⊥, the one has

Tp(M) = kerF∗p ⊕ (kerF∗p)⊥

where (kerF∗p)⊥ is called the horizontal space of any point p ∈M.

Let F : (M, 1) → (M̄, 1̄) be a submersion between Riemannian manifolds. At any point p ∈ M, we say
that F is a Riemannian submersion if F∗p preserves the length of the horizontal vectors.

LetF : (M, 1)→ (M̄, 1̄) be a Riemannian submersion, and denote by∇ and ∇̄ the Levi-Civita connections
of M and M̄, respectively. If X, Y are the basic vector fields, F -related to X̄, Ȳ, one has:

(i) 1(X,Y) = 1̄(X̄, Ȳ) ◦ F ,
(ii) h[X,Y] is the basic vector field F -related to [X̄, Ȳ],
(iii) h(∇XY) is the basic vector field F -related to ∇̄X̄Ȳ,
(iv) for any vertical vector field V, [X,V] is the vertical.

A Riemannian submersion F : (M, 1) → (M̄, 1̄) determines two tensor fields T andA on M, which are
called the fundamental tensor fields or the invariants of Riemannian submersion F and they are defined
by

T (E,F) = TEF = h∇vEvF + v∇vEhF,
A(E,F) = AEF = v∇hEhF + h∇hEvF,

where v and h are the vertical and horizontal projections, respectively and ∇ is a Levi-Civita connection of
M, for any E,F ∈ Γ(TM). Indeed, the fundamental tensors T andA satisfy the followings:

TVW = TWV, (4)
AXY = −AYX = 1

2 v[X,Y], (5)

for any V,W ∈ kerF∗p and X,Y ∈ (kerF∗p)⊥.

We here note that the vanishing of the tensor field A means the horizontal distribution (kerF∗)⊥

is integrable. On the other hand, the vanishing of the tensor field T means any fibre of Riemannian
submersion F is totally geodesic submanifold of M. Also, any fibre of Riemannian submersion F is totally
umbilical if and only if

TVW = 1(V,W)H, (6)

where H denotes the mean curvature vector field of any fibre in M, for any V,W ∈ kerF∗.

Also, for any E,F,G ∈ Γ(TM) one has

1(TEF,G) + 1(TEG,F) = 0, (7)
1(AEF,G) + 1(AEG,F) = 0. (8)

Using fundamental tensor fields T andA, the following formulas are given as

∇VW = TVW + ∇̂VW, (9)
∇VX = h∇VX + TVX, (10)
∇XV = AXV + v∇XV, (11)
∇XY = h∇XY +AXY (12)

for any V,W ∈ kerF∗ and X,Y ∈ (kerF∗)⊥.

Moreover, by using the properties of the fundamental tensor fields T andA, we have
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r∑
j=1

1(TUU j,TUU j) =
n∑

i=1

1(TUXi,TUXi), (13)

n∑
i=1

1(AXXi,AXXi) =
r∑

j=1

1(AXU j,AXU j), (14)

where {U j,Xi} 1≤ j≤r, 1≤i≤n is an orthonormal frame of M, for any horizontal and vertical vector fields X and
U, respectively.

On the other hand, one has the folloiwng formulas:

R(U,V,F,W) = R̂(U,V,F,W) − 1(TUW,TVF) + 1(TVW,TUF), (15)
R(X,Y,Z,H) = R̄(X̄, Ȳ, Z̄, H̄) ◦ F + 21(AXY,AZH) (16)

−1(AYZ,AXH) + 1(AXZ,AYH),

for any X,Y,Z,H ∈ (kerF∗)⊥ and U,V,F,W ∈ kerF∗.

2. Golden Riemannian Submersions between Golden Riemannian Manifolds

We give the following notion:

Definition 2.1. Let (M,Φ, 1) and (M̄, Φ̄, 1̄) be Golden Riemannian manifolds. A surjective map F : M → M̄ is
called a Golden Riemannian submersion if the followings are hold:

i) F is a Riemannian submersion,
ii) F is a (Φ, Φ̄)−holomorphic, i.e. F∗ ◦Φ = Φ̄ ◦ F∗.

Proposition 2.2. Let F : (M,Φ, 1)→ (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds. Then the horizontal and vertical distributions are Φ−invariant, i.e.

Φ(kerF∗) = kerF∗, Φ(kerF∗)⊥ = (kerF∗)⊥.

Proof. Let U1 be a vertical vector field. Since F is a (Φ, Φ̄)−holomorphic, one has

F∗(ΦU1) = Φ̄(F∗U1) = 0,

which gives ΦU1 is vertical vector field.
On the other hand, let X1 be a horizontal vector field. Then, using (3), we can write

1(ΦX1,U1) = 1(X,ΦU1) = 0,

which gives ΦX1 is also horizontal vector field. Hence, we obtain that Φ(kerF∗) ⊂ kerF∗ and Φ(kerF∗)⊥ ⊂
(kerF∗)⊥, and so

Φ(kerF∗) = kerF∗ and Φ(kerF∗)⊥ = (kerF∗)⊥.

Proposition 2.3. Let F : (M,Φ, 1)→ (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds and X1,X2 be basic vector fields on M which are F−related to X̄1, X̄2 on M̄, respectively. Then, one has

1. ΦX1 is the basic vector field which is F−related to Φ̄X̄1,
2. h(NΦ(X1,X2)) is the basic vector field which is F−related to N̄Φ̄(X̄1, X̄1),
3. h((∇X1Φ)X2) is the basic vector field which is F−related to (∇̄X̄1

Φ̄)X̄2.
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Remark 2.4. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds. From the Proposition 2.2, one has the vertical distribution kerF∗ is a Φ−invariant and so any fibre
inherits a Golden structure Φ from M. Hence, any fibre is a closed invariant submanifold of M.

Then, one has the following:

Proposition 2.5. Let F : (M,Φ, 1)→ (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds. If the Golden structure Φ is parallel on M, then Φ̄ is also parallel on M̄.

Proof. If the Golden structureΦ is parallel with respect to∇ on M, one has∇Φ = 0, where∇ is the Levi-Civita
connection on M. For any horizontal vector fields X1 and X2, we can write (∇X1Φ)X2 = 0. Then, it follows

∇X1ΦX2 = Φ∇X1 X2,

h(∇X1ΦX2) = h(Φ∇X1 X2).

Using Proposition 2.3, the last statement is equivalent to

(∇̄X̄1
Φ̄X̄2) ◦ F = (Φ̄∇̄X̄1

X̄2) ◦ F ,

which gives (∇̄X̄1
Φ̄)X̄2 = 0, for any vector fields X̄1, X̄2 on M. Hence, we get the Golden structure Φ̄ is

parallel with respect to the Levi-Civita connection ∇̄ on M̄.

Assumption: From now on, we assume that the Golden structures Φ and Φ̄ are parallel on M and M̄,
respectively.

Theorem 2.6. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds. For any horizontal and vertical vector fields X1 and U1, respectively, one has:

(i)AΦX1 = AX1 ◦Φ on kerF∗,

(ii) TΦU1 = TU1 ◦Φ on (kerF∗)⊥.

Proof. Let X2 be a horizontal vector field. If we use the equalities (8) and (5), respectively in the following,
we have

1(AΦX1 U1,X2) = −1(AΦX1 X2,U1) = 1(AX2ΦX1,U1) = 1(ΦAX2 X1,U1)
= −1(ΦAX1 X2,U1) = −1(AX1 X2,ΦU1) = 1(AX1ΦU1,X2),

which follows
AΦX1 U1 = AX1ΦU1.

Similarly, for any vertical vector field U2 and using the equalities (7) and (4), respectively, we can write

1(TΦU1 X1,U2) = −1(TΦU1 U2,X1) = −1(TU2ΦU1,X1) = −1(ΦTU2 U1,X1)
= −1(TU2 U1,ΦX1) = −1(TU1 U2,ΦX1) = 1(TU1ΦX1,U2),

which gives
TΦU1 X1 = TU1ΦX1.

Therefore, (i) and (ii) are obtained.

The next lemma gives the relations the Ricci curvatures of any fibre, target manifold M and base manifold
M̄, as follows:
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Lemma 2.7. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds with totally umbilical fibres. Then, the Ricci curvature on M is given as

ric(ΦU1) = ˆric(ΦU1) + r∥H∥2 + r1(ΦH,H) − ∥ΦAXi U1∥
2 (17)

−div(H)∥ΦU1∥
2,

ric(ΦX1) = ¯ric(Φ̄X̄1) ◦ F − r1(∇ΦX1 H,ΦX1) + ∥ΦTU j X1∥
2 (18)

+2∥ΦAX1 Xi∥
2,

where ˆric and ¯ric denote the Ricci curvatures of any fibre and M̄, for any unit vertical and horizontal vector fields U1
and X1, respectively.

Proof. For any unit vertical vector field U1 on M, one has ΦU1 is vertical. Considering the equality (15), we
can write

ric(ΦU1) = ˆric(ΦU1) +
∑

j

{
1(TΦU1ΦU1,TU j U j) − 1(TΦU1 U j,TΦU1 U j)

}
+
∑

i

{
1(TΦU1 Xi,TΦU1 Xi) − 1(AXiΦU1,AXiΦU1) (19)

−1((∇XiT )(ΦU1,ΦU1),Xi)
}
,

where {U j,Xi}1≤ j≤r,1≤i≤n is an orthonormal frame of M.

Taking into account of the equality (13), above (19) becomes

ric(ΦU1) = ˆric(ΦU1) +
∑

j

1(TΦU1ΦU1,TU j U j) −
∑

i

{
1(AXiΦU1,AXiΦU1)

+1
(
(∇XiT )(ΦU1,ΦU1),Xi

)}
. (20)

On the other hand, since a Golden Riemannian submersion F has totally umbilical fibre and using the
equalities (2)-(4) and (6), one has∑

j

1(TΦU1ΦU1,TU j U j) = r1(TΦU1ΦU1,H) = r1(ΦTΦU1 U1,H) = r1(TΦU1 U1,ΦH)

= r1(TU1ΦU1,ΦH) = r1(ΦTU1 U1,ΦH) = r1(TU1 U1,Φ
2H)

= r1(TU1 U1,ΦH) + r1(TU1 U1,H),
= r∥U1∥

21(H,ΦH) + r∥U1∥
2
∥H∥2, (21)

where H is the mean curvature vector field of any fibre in M. Also, since U1 is unit vertical vector field,
above (21) gives∑

j

1(TΦU1ΦU1,TU j U j) = r1(H,ΦH) + r∥H∥2. (22)

Moreover, using the condition of totally umbilical, we get∑
i

1
(
(∇XiT )(ΦU1,ΦU1),Xi

)
=
∑

i

{
(∇Xi1)(ΦU1,ΦU1)1(H,Xi)

+1(∇Xi H,Xi)1(ΦU1,ΦU1)
}
,

which gives∑
i

1
(
(∇XiT )(ΦU1,ΦU1),Xi

)
=
∑

i

1(∇Xi H,Xi)∥ΦU1∥
2. (23)
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Putting (22) and (23) in (20), we get

ric(ΦU1) = ˆric(ΦU1) + r∥H∥2 + r1(ΦH,H) −
∑

i

{
1(ΦAXi U1,ΦAXi U1)

+1(∇Xi H,Xi)∥ΦU1∥
2
}
,

where {Xi}1≤i≤n is an orthonormal basis of the horizontal distribution (kerF∗)⊥.

Hence, the last equality is equivalent to (17) .

Similarly, for any unit horizontal vector field X1 on M, we get

ric(ΦX1) = ¯ric(Φ̄X̄1) ◦ F +
∑

j

{
1(TU jΦX1,TU jΦX1) − 1(AΦX1 U j,AΦX1 U j)

−1((∇ΦXT )(U j,U j),ΦX1)
}
+ 3
∑

i

1(AΦX1 X j,AΦX1 X j), (24)

where {U j,Xi}1≤ j≤r,1≤i≤n is an orthonormal frame of the target manifold M.

Using the equality (14) in (24), it gives

ric(ΦX1) = ¯ric(Φ̄X̄1) ◦ F +
∑

j

{
1(TU jΦX1,TU jΦX1) (25)

−1((∇ΦX1T )(U j,U j),ΦX1)
}
+ 2
∑

i

1(AΦX1 X j,AΦX1 X j).

Since F has totally umbilical fibres and using (6) in (25), it gives

ric(ΦX1) = ¯ric(Φ̄X̄1) ◦ F +
∑

j

1(TU jΦX1,TU jΦX1)

−r1(∇ΦX1 H,ΦX1) + 2
∑

i

1(AΦX1 X j,AΦX1 X j).

Then, using the parallelism of Golden structure Φ on M, it follows

ric(ΦX1) = ¯ric(Φ̄X̄1) ◦ F − r1(∇ΦX1 H,ΦX1) +
∑

j

{
1(ΦTU j X1,ΦTU j X1)

+2
∑

i

1(ΦAX1 Xi,ΦAX1 Xi),

which is nothing but (18).

Using above Lemma 2.7, we have sharp inequalities with the following:

Theorem 2.8. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion between Golden Riemannian
manifolds with totally umbilical fibres. Then, one has the following inequalities:

ric(ΦU1) ≤ ˆric(ΦU1) + r∥H∥2 + r1(ΦH,H) − div(H)∥ΦU1∥
2,

ric(ΦX1) ≥ ¯ric(Φ̄X̄1) ◦ F − r1(∇ΦX1 H,ΦX1) + ∥ΦTU j X1∥
2,

for any vertical vector field U1 and horizontal vector field X1. The equality cases of both above inequalities are satisfied
if and only if the horizontal distribution (kerF∗)⊥ is integrable.

The next lemma is about a Golden Riemannian submersion whose total manifold admits a Ricci soliton
with vertical potential field.
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Lemma 2.9. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion with totally geodesic fibres. If M
admits a Ricci soliton (M, 1, σ, k) with vertical potential field, then the relation between the Ricci tensor R̄ic and Ricci
curvature ¯ric on M̄ is given as

R̄ic(Φ̄X̄1, X̄1) ◦ F + ¯ric(X̄1) ◦ F + 2
∑

i

∥ΦAXi X1∥
2 + λ∥ΦX1∥

2 = 0, (26)

where {Xi}1≤i≤n is an orthonormal frame on (kerF∗)⊥ and X1 is any horizontal vector field which is F−related to X̄1.

Proof. If the Golden manifold M admits a Ricci soliton with vertical potential field σ, from the eq. (1) we
can write

1
2

(
Lσ1
)
(ΦX1,ΦX2) + Ric(ΦX1,ΦX2) + k1(ΦX1,ΦX2) = 0, (27)

for any horizontal vector fields X1,X2 on (kerF∗)⊥.

Also, from the definition of Lie-derivative and using the equalities (5), (8) and (11) one has

1
2

(
Lσ1
)
(ΦX1,ΦX2) =

1
2

(
1(∇ΦX1σ,ΦX2) + 1(∇ΦX2σ,ΦX1)

)
=

1
2

{
1(AΦX1σ,ΦX2) + 1(AΦX2σ,ΦX1)

}
=

1
2

{
− 1(AΦX1ΦX2, σ) − 1(AΦX2ΦX1, σ)

}
=

1
2

{
− 1(AΦX1ΦX2, σ) + 1(AΦX1ΦX2, σ)

}
= 0.

Then, the eq. (27) is equivalent to

Ric(ΦX1,ΦX2) + k1(ΦX1,ΦX2) = 0 (28)

for any horizontal vector fields X1, X2.

Considering the eq. (16) and putting in (28), it gives

R̄ic(Φ̄X̄1, Φ̄X̄2) ◦ F −
1
2

{
1(∇ΦX1 N,ΦX2) + 1(∇ΦX2 N,ΦX1)

}
+2
∑

i

1(AΦX1 Xi,AΦX2 Xi) +
∑

j

1(TU jΦX1,TU jΦX2) (29)

+k1(ΦX1,ΦX2) = 0,

where {Xi,U j}1≤i≤n;1≤ j≤r is an orthonormal frame on M.

Since F has totally geodesic fibres, above (29) is equivalent to

R̄ic(Φ̄X̄1, Φ̄X̄2) ◦ F + 2
∑

i

1(AΦX1 Xi,AΦX2 Xi) + k1(ΦX1,ΦX2) = 0. (30)

Particularly, choosing X1 = X2 in (30), it becomes

R̄ic(Φ̄X̄1, Φ̄X̄1) ◦ F + 2
∑

i

1(AΦX1 Xi,AΦX1 Xi) + k∥ΦX1∥
2 = 0. (31)
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On the other hand, considering (5) we can write∑
i

1(AΦX1 Xi,AΦX1 Xi) =
∑

i

1(AXiΦX1,AXiΦX1)

=
∑

i

1(ΦAXi X1,ΦAXi X1)

=
∑

i

∥ΦAXi X1∥
2.

Putting the last equality in (31), one has

R̄ic(Φ̄X̄1, Φ̄X̄1) ◦ F + 2
∑

i

∥ΦAXi X1∥
2 + k∥ΦX1∥

2 = 0.

Since M̄ is a Golden Riemannian manifold and using (2), it follows

R̄ic(Φ̄X̄1, X̄1) ◦ F + ¯ric(X̄1) ◦ F + 2
∑

i

∥ΦAXi X1∥
2 + k∥ΦX1∥

2 = 0,

is obtained.

Using Lemma 2.9, we have the following:

Theorem 2.10. Let F : (M,Φ, 1)→ (M̄, Φ̄, 1̄) be a Golden Riemannian submersion with totally geodesic fibres and
the Golden manifold M admits a Ricci soliton (M, 1, σ, k) with vertical potential field. If M̄ has positive or zero Ricci
tensor, then the Ricci soliton (M, 1, σ, k) is shrinking.

The next lemma provides a Golden Riemannian submersion whose total manifold admits a Ricci soliton
with horizontal potential field.

Lemma 2.11. Let F : (M,Φ, 1) → (M̄, Φ̄, 1̄) be a Golden Riemannian submersion with totally geodesic fibres and
M admits a Ricci soliton (M, 1, σ, k) with horizontal potential field. Then, the relation between Ricci tensor R̂ic and
Ricci curvature ˆric on any fibre of F is given as

R̂ic(ΦU1,U1) + ˆric(U1) −
∑

i

∥ΦAXi U1∥
2 + k∥ΦU1∥

2 = 0,

where {Xi}1≤i≤n is an orthonormal frame on (kerF∗)⊥ and U1 is any vertical vector field.

Proof. If the Golden manifold M admits a Ricci soliton with horizontal potential field σ, from the eq. (1)
one has

1
2

(
Lσ1
)
(ΦU1,ΦU2) + Ric(ΦU1,ΦU2) + k1(ΦU1,ΦU2) = 0 (32)

for any U1,U2 ∈ kerF . Also, from the calculation of Lie-derivative, we can write

1
2

(
Lσ1
)
(ΦU1,ΦU2) =

1
2

{
1(∇ΦU1σ,ΦU2) + 1(∇ΦU2σ,ΦU1)

}
=

1
2

{
1(TΦU1σ,ΦU2) + 1(TΦU2σ,ΦU1)

}
= −

1
2

{
1(TΦU1ΦU2, σ) + 1(TΦU2ΦU1, σ)

}
= −

1
2

{
1(TΦU1ΦU2, σ) + 1(TΦU1ΦU2, σ)

}
= 1(TΦU1σ,ΦU2).
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Then, the eq. (32) gives

1(TΦU1σ,ΦU2) + Ric(ΦU1,ΦU2) + k1(ΦU1,ΦU2) = 0, (33)

for any vertical vector fields U1,U2.

Using the eq. (15) in (33), we get

1(TΦU1σ,ΦU2) + R̂ic(ΦU1,ΦU2) +
∑

j

1(TU j U j,TΦU1ΦU2)

−

∑
i

{
1((∇XiT )(ΦU1,ΦU2),Xi) + 1(AXiΦU1,AXiΦU2)

}
+k1(ΦU1,ΦU2) = 0, (34)

where {Xi,U j}1≤i≤n;1≤ j≤r is an orthonormal frame on M.

Since F has totally geodesic fibres, above (34) is equivalent to

R̂ic(ΦU1,ΦU2) −
∑

i

1(AXiΦU1,AXiΦU2) + k1(ΦU1,ΦU2) = 0. (35)

In particular case, by choosing U1 = U2 in (35), it follows

R̂ic(ΦU1,ΦU1) −
∑

i

∥AXiΦU1∥
2 + k∥ΦU1∥

2 = 0. (36)

On the other hand, we can write∑
i

∥AXiΦU1∥
2 =

∑
i

1(AXiΦU1,AXiΦU1) =
∑

i

1(ΦAXi U1,ΦAXi U1)

= ∥ΦAXi U1∥
2.

Putting the last equality in (36), we have

R̂ic(ΦU1,ΦU1) −
∑

i

∥ΦAXi U1∥
2 + k∥ΦU1∥

2 = 0,

which gives

R̂ic(ΦU1,U1) + ˆric(U1) −
∑

i

∥ΦAXi U1∥
2 + k∥ΦU1∥

2 = 0.

Hence the proof is completed.

Theorem 2.12. Let F : (M,Φ, 1)→ (M̄, Φ̄, 1̄) be a Golden Riemannian submersion with totally geodesic fibres and
M admits a Ricci soliton (M, 1, σ, k) with horizontal potential field. If any fibre has zero Ricci tensor, then the Ricci
soliton (M, 1, σ, k) is expanding.
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3. Examples of Golden Riemannian Submersions

In this part, we construct some examples of Golden Riemannian submersions with the following:

Example 3.1. We consider tensor fields Φ and Φ̄ of type-(1,1) on Euclidean spaces R4 and R2 with the local
coordinates

Φ
( ∂
∂x1
,
∂
∂x2
,
∂
∂x3
,
∂
∂x4

)
=
(
ϕ
∂
∂x2
, ϕ
∂
∂x1
, ϕ
∂
∂x4
, ϕ
∂
∂x3

)
and

Φ̄
( ∂
∂y1
,
∂
∂y2

)
=
(
ϕ̄
∂
∂y1
, ϕ̄
∂
∂y2

)
respectively. Here, ϕ and ϕ̄ are the roots of the algebraic equation x2

− x − 1 = 0. Hence, one can see that (M,Φ, 1)
and (M̄, Φ̄, 1̄) are Golden Riemannian manifolds.

Let F : (R4,Φ, 1)→ (R2, Φ̄, 1̄) be a map which is defined by

F (x1, x2, x3, x4) =
( 1
√

2
(x1 + x2),

1
√

2
(x3 + x4)

)
.

By the direct computations, we get

kerF∗ = Span
{
U1 =

1
√

2

( ∂
∂x1
−
∂
∂x2

), U2 =
1
√

2

( ∂
∂x3
−
∂
∂x4

)}
and

(kerF∗)⊥ = Span
{
X1 =

1
√

2

( ∂
∂x1
+
∂
∂x2

), X2 =
1
√

2

( ∂
∂x3
+
∂
∂x4

}
.

Also, it is easy to see that F∗p preserves the length of the horizontal vectors at each point p ∈M, that is

1(X1,X1) = 1̄(F∗X1,F∗X1) and 1(X2,X2) = 1̄(F∗X2,F∗X2),

which gives F is a Riemannian submersion.

On the other hand, we get

F∗(ΦX1) = F∗(ϕX1) = (ϕ̄X̄1) ◦ F = (Φ̄X̄1) ◦ F = Φ̄(F∗X1)

and similarly,

F∗(ΦX2) = F∗(ϕX2) = (ϕ̄X̄2) ◦ F = (Φ̄X̄2) ◦ F = Φ̄(F∗X2)

whereϕX1 andϕX2 are the basic vector fields,F−related to ϕ̄X̄1, ϕ̄X̄2, respectively. Hence,F is a Golden Riemannian
submersion.

Example 3.2. We consider tensor fields Φ and Φ̄ of type-(1,1) on Euclidean spaces R4 and R2 with the local
coordinates

Φ
( ∂
∂x1
,
∂
∂x2
,
∂
∂x3
,
∂
∂x4

)
=
(
ϕ
∂
∂x2
, (1 − ϕ)

∂
∂x1
, ϕ
∂
∂x4
, (1 − ϕ)

∂
∂x3

)
and

Φ̄
( ∂
∂y1
,
∂
∂y2

)
=
(
ϕ̄
∂
∂y2
, (1 − ϕ̄)

∂
∂y1

)
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respectively. Here, ϕ and ϕ̄ are the roots of the algebraic equation x2
− x − 1 = 0. Hence, one can see that (M,Φ, 1)

and (M̄, Φ̄, 1̄) are Golden Riemannian manifolds.

Let F : (R4,Φ, 1)→ (R2, Φ̄, 1̄) be a map which is defined by

F (x1, x2, x3, x4) =
(
x1sinα − x3cosα, x2sinα − x4cosα

)
.

By the direct computations, we get

kerF∗ = Span
{
U1 = cosα

∂
∂x1
+ sinα

∂
∂x3
, U2 = cosα

∂
∂x2
+ sinα

∂
∂x4

)}
and

(kerF∗)⊥ = Span
{
X1 = sinα

∂
∂x1
− cosα

∂
∂x3
, X2 = sinα

∂
∂x2
− cosα

∂
∂x4

}
.

Also, it is easy to see that F∗p preserves the length of the horizontal vectors at each point p ∈M, that is

1(X1,X1) = 1̄(F∗X1,F∗X1) and 1(X2,X2) = 1̄(F∗X2,F∗X2),

which gives F is a Riemannian submersion.

On the other hand, we get

F∗(ΦX1) = F∗(ϕX1) = (ϕ̄X̄1) ◦ F = (Φ̄X̄1) ◦ F = Φ̄(F∗X1)

and similarly,

F∗(ΦX2) = F∗(ϕX2) = (ϕ̄X̄2) ◦ F = (Φ̄X̄2) ◦ F = Φ̄(F∗X2)

whereϕX1 andϕX2 are the basic vector fields,F−related to ϕ̄X̄1, ϕ̄X̄2, respectively. Hence,F is a Golden Riemannian
submersion.
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