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Abstract. In this paper, at first we characterize f -cosymplectic manifolds admitting conformal vector
fields. Next, we establish that if a 3-dimensional f -cosymplectic manifold admits a homothetic vector
field V, then either the manifold is of constant sectional curvature − f̃ or, V is an infinitesimal contact
transformation. Furthermore, we also investigate Ricci-Yamabe solitons with conformal vector fields on
f -cosymplectic manifolds. At last, two examples are constructed to validate our outcomes.

1. Introduction

A vector field V on a Riemannian manifold satisfying the equation

£V1 = 2σ1, (1)

σ being a smooth function and £ is the Lie-derivative, is called a conformal vector field. If V is not Killing,
it is termed as non-trivial. If σ vanishes, then the conformal vector field V is named Killing. V is called
homothetic, if σ is constant. A finite dimensional Lie algebra is formed by the set of all proper conformal
vector field and all Killing vector fields on a manifold. Although homothetic vector fields form a group, the
Lie algebra structure does not. conformal vector field have been studied by many authors such as ([10]-[13],
[17], [21]-[23]) and many others.

Killing, conformal and homothetic vector fields have wide applications in differential geometry as well
as in mathematical physics.

If r, R, S indicate the scalar curvature, the curvature tensor and the Ricci tensor, respectively, then the
conformal vector field V satisfies the following relations [32]:

(£V∇)(U1,V1) = (U1σ)V1 − (V1σ)U1 − 1(U1,V1)Dσ, (2)

(£VR)(U1,V1)W1 = 1(∇U1 Dσ,W1)V1 − 1(∇V1 Dσ,W1)U1 (3)
+1(U1,W1)∇V1 Dσ − 1(V1,W1)∇U1 Dσ,
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* Corresponding author: Arpan Sardar
Email addresses: arpansardar51@gmail.com (Arpan Sardar), uc de@yahoo.com (Uday Chand De), yjsuh@knu.ac.kr (Young Jin

Suh)



A. Sardar et al. / Filomat 37:17 (2023), 5649–5658 5650

(£VS)(U1,V1) = −(2m − 1)1(∇U1 Dσ,V1) − (△σ)1(U1,V1), (4)

£Vr = −4m(△σ) − 2rσ (5)

for all vector fields U1,V1,W1 on N2m+1, where Dσ and △σ = divDσ respectively denote the gradient and
Laplacian of σ.

A vector field V satisfying the relation

£Vη = ρη, (6)

ρ being a scalar function, is named an infinitesimal contact transformation. It is named as infinitesimal
strict contact transformation, if ρ vanishes identically.

In [21], Sharma and Blair characterized (k, 0)-contact manifolds admitting a non-Killing conformal vec-
tor field. Also in 2010, Sharma and Vrancken[23] investigated (k,µ)-contact metric manifolds admitting
non-Killing conformal vector field. Very recently, De, Suh and Chaubey[7] studied conformal vector field
on almost co-Kähler manifolds. In 2022 [27], Wang investigated almost Kenmotsu (k,µ)′-manifolds with
conformal vector field in dimension three.

Guler and Crasmareanu [15] presented the Ricci-Yamabe flow of type (α1, β1), which is a scalar com-
bination of Ricci and Yamabe flow[16]. The Ricci-Yamabe flow is an evolution for the metrics on a semi-
Riemannian manifold defined as [15]

∂
∂t
1(t) = −2α1S(t) + β1r(t)1(t), 10 = 1(0). (7)

A Ricci-Yamabe soliton (in short, RYS) on a Riemannian manifold (N, 1) is defined by

£V1 + 2α1S + (2λ1 − β1r)1 = 0, (8)

where £ being Lie-derivative and α1, β1,λ1 ∈ R.
This soliton turns into
(i) Ricci soliton if α1 = 1, β1 = 0,
(ii) Yamabe soliton if α1 = 0, β1 = 1,
(iii) Einstein soliton if α1 = 1, β1 = −1.
Several authors have studied Ricci solitons, Yamabe solitons and Ricci-Yamabe solitons, including ([8],

[9], [24] – [26], [28] – [31]) and many others.
Because of their link to general relativity, there has also been a significant surge in interest in investi-

gating Ricci solitons and their generalizations in many geometrical situations. Recently, in perfect fluid
spacetimes, many authors investigated many type of solitons like Ricci solitons [6], gradient Ricci solitons
[6], η-Ricci solitons [2], Yamabe solitons [5], gradient η-Einstein solitons([6]), gradient Schouten solitons [6],
Ricci-Yamabe solitons ([20], [25]), respectively.

The above studies encourage us to investigate conformal vector field on f -cosymplectic manifolds. Pre-
cisely, we establish the following results:

Theorem 1.1. If the Reeb vector field ζ of N2m+1 is a conformal vector field, then N2m+1 is locally the product of a
Kähler manifold and an interval or unit circle S1 and the Reeb vector field ζ is Killing.

Theorem 1.2. If a conformal vector field V in N2m+1 is pointwise collinear with the Reeb vector field ζ, then 1rad f
is pointwise collinear with ζ.

Theorem 1.3. If a 3-dimensional f -cm admits a homothetic vector field V, then either the manifold is of constant
sectional curvature − f̃ or, V is an infinitesimal contact transformation.
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As a corollary of the above theorem, we have:

Corollary 1.4. If a compact 3-dimensional f -cm without boundary admits a homothetic vector field V, then either
the manifold is of constant sectional curvature − f̃ or, V is an infinitesimal strict contact transformation.

Theorem 1.5. If a f -cm admits a Ricci-Yamabe soliton, then the soliton vector field is conformal if and only if the
manifold is an Einstein manifold.

2. Preliminaries

Let N2m+1 be an almost contact manifold (in short, acm) endowed with a triplet of almost contact
structure (ϕ, ζ,η), where ζ is the reeb vector field, ϕ is a (1, 1)-type tensor and η is 1-form, satisfying [3]

ϕ2V1 = −V1 + η(V1)ζ, η(ζ) = 1 (9)

for any vector field V1 and equation (9) immediately reveals that rank(ϕ) = 2m, ϕ(ζ) = 0 and η ◦ ϕ = 0.

If N2m+1 admits a Riemannian metric 1 such that

1(ϕU1, ϕV1) = 1(U1,V1) − η(U1)η(V1), 1(V1, ζ) = η(V1) (10)

for any vector fields U1,V1, then N2m+1 is named as an almost contact metric manifold (briefly, acmm).

A structure, named almost complex structure J on N ×R is given as

J(V1, b
d
ds

) = (ϕV1 − bζ,η(V1)
d
ds

),

where (V1, b d
ds ) indicates a tangent vector on N ×R, V1 and b d

ds being tangent to N and R respectively. An
acmm becomes normal if the structure J is integrable [19].

Let us define Φ(U1,V1) = 1(ϕU1,V1) for all U1,V1 ∈ χ(N). Then Φ is called the fundamental 2-form on
N. If the 1-form η and the fundamental 2-formΦ are closed, then an acmm is said to be almost cosymplectic
and if the acmm is normal then it is said to be cosymplectic. For a non-zero constant β, an acmm is said
to be an almost β-Kenmotsu if η is closed and dΦ = 2βη ∧ Φ. If β ∈ R, then an acmm is called an almost
β-cosymplectic[18]. In 2014, Aktan et. al.[1] extended the notion of almost β-cosymplectic manifold and
introduced an almost f -cosymplectic manifold as an acmm such that dΦ = 2 fη∧Φ and dη = 0 for a smooth
function f . If an almost f -cosymplectic manifold is normal, then it is said to be f -cosymplectic manifold
(in short, f -cm).

For an acmm we define h = 1
2 £ζϕ. For a normal f -cm, h = 0. The Levi-Civita connection ∇ is given by

[1]

(∇U1ϕ)V1 = f [1(ϕU1,V1)ζ − η(V1)ϕU1]. (11)

On a f -cm N2m+1, the following relations hold[1]:

∇V1ζ = − fϕ2V1, (12)

R(U1,V1)ζ = f̃ [η(U1)V1 − η(V1)U1], (13)

Qζ = −2m f̃ζ, (14)

the Ricci operator Q is defined by S(U1,V1) = 1(QU1,V1) and f̃ = ζ f + f 2.
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Lemma 2.1 ([4]). If ζ( f̃ ) = 0 in a f -cm, then f̃ = constant.

Lemma 2.2 ([4]). If a f -cm with ζ( f̃ ) = 0 is compact, then it becomes a β-cosymplectic manifold. In particular, if
f̃ = 0, then N is cosymplectic.

Remark 2.3 ([3]). A cm is locally the product of a Kahler manifold and an interval or unit circle S1.

Lemma 2.4 ([4]). For a three-dimensional f -cm, we have

QV1 = ( f̃ +
r
2

)V1 + (−3 f̃ −
r
2

)η(V1)ζ (15)

and hence

S(U1,V1) = ( f̃ +
r
2

)1(U1,V1) − (3 f̃ +
r
2

)η(U1)η(V1). (16)

3. Proof of the Main Results

Proof of the Theorem 1.1.
Let the Reeb vector field ζ be a conformal vector field on N2m+1. Then equation (1) implies

(£ζ1)(U1,V1) = 2σ1(U1,V1), (17)

which means that

1(∇U1ζ,V1) + 1(U1,∇V1ζ) = 2σ1(U1,V1). (18)

Using (9) and (12) in (18), we have

f [1(U1,V1) − η(U1)η(V1)] = σ1(U1,V1). (19)

Setting U1 = V1 = ζ in the above equation implies

σ = 0. (20)

Making use of (20) and (19), we get

f [1(U1,V1) − η(U1)η(V1)] = 0, (21)

which means that f = 0. Therefore the manifold becomes a cosymplectic manifold. Hence from Remark 1,
we get the result.
Thus the proof is finished.

Proof of the Theorem 1.2.
Suppose V = bζ, where b is smooth function on N2m+1. Then from (1), we get

(£bζ1)(U1,V1) = 2σ1(U1,V1), (22)

which implies

1(∇U1 bζ,V1) + 1(U1,∇V1 bζ) = 2σ1(U1,V1). (23)

Using (12) in the above equation gives

(U1b)η(V1) + (V1b)η(U1) + 2 f b[1(U1,V1) − η(U1)η(V1)] = 2σ1(U1,V1). (24)
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Putting U1 = V1 = ζ in (24) provides

ζb = σ. (25)

Contracting (24) entails that

b f = σ. (26)

Again, putting V1 = ζ in (24) and using (25) and (26), we get

U1b = b fη(U1), (27)

which implies

db = b fη. (28)

Operating d on both sides of the previous equation and using Poincare Lemma(d2
≡ 0), we obtain

d(b f ) ∧ η = 0, (29)

which means that

b
2

[(U1 f )η(V1) − (V1 f )η(U1)] +
f
2

[(U1b)η(V1) − (V1b)η(U1)] = 0. (30)

Using (27) in (30) gives

b[(U1 f )η(V1) − (V1 f )η(U1)] = 0, (31)

which implies

(U1 f )η(V1) = (V1 f )η(U1). (32)

Hence the above equation implies

U1 f = (ζ f )η(U1), (33)

which means that 1rad f is pointwise collinear with ζ.
Hence the result follows.

Proof of the Theorem 1.3. Let the vector field V in N3 is homothetic. Then

(£V1)(U1,V1) = 2σ1(U1,V1), (34)

where σ is a constant, and from (4) and (5) we get

(£VS)(U1,V1) = 0 and £Vr = −2rσ. (35)

Definition of Lie-derivative infers that

(£Vη)U1 = £Vη(U1) − η(£VU1). (36)

Equation (34) and (36) together imply

η(£Vζ) = −σ and (£Vη)ζ = σ. (37)

From (15), we obtain

S(U1,V1) = ( f̃ +
r
2

)1(U1,V1) − (3 f̃ +
r
2

)η(U1)η(V1). (38)
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Now, we take Lie-derivative of the equation (38) along the homothetic vector field V entails that

(£VS)(U1,V1) = (V f̃ )[1(U1,V1) − 3η(U1)η(V1)] (39)

+
1
2

(£Vr)[1(U1,V1) − η(U1)η(V1)]

+( f̃ +
r
2

)(£V1)(U1,V1)

−(3 f̃ +
r
2

)[(£Vη)U1η(V1) + (£Vη)V1η(U1)].

Using (34) and (35) in (39), we infer

−(V f̃ )[1(U1,V1) − 3η(U1)η(V1)] (40)

+(3 f̃ +
r
2

)[(£Vη)U1η(V1) + (£Vη)V1η(U1)]

−2σ( f̃ +
r
2

)1(U1,V1) + rσ[1(U1,V1) − η(U1)η(V1)] = 0.

Setting V1 = ζ in (40) and using (37), we get

2(V f̃ )η(U1) − 2σ( f̃ +
r
2

)η(U1) + (3 f̃ +
r
2

)[(£Vη)U1 + ση(U1)] = 0. (41)

Putting U1 = ζ in (41) and using (37) entails that

V f̃ = −2σ f̃ . (42)

From the above two equations, we provide

(3 f̃ +
r
2

)[(£Vη)U1 − ση(U1)] = 0, (43)

which implies either 3 f̃ + r
2 = 0 or, 3 f̃ + r

2 , 0.

Case I: If 3 f̃ + r
2 = 0, which means r = −6 f̃ . Hence (38) implies

S(U1,V1) = −2 f̃1(U1,V1), (44)

which is an Einstein manifold. In 3-dimension,

R(U1,V1)W1 = S(V1,W1)U1 − S(U1,W1)V1 + 1(V1,W1)QU1 (45)

−1(U1,W1)QV1 −
r
2

[1(V1,W1)U1 − 1(U1,W1)V1].

In view of (44) and (45), we get

R(U1,V1)W = − f̃ [1(V1,W1)U1 − 1(U1,W1)V1], (46)

which means that the manifold is of constant sectional curvature − f̃ .

Case II: If 3 f̃ + r
2 , 0, then (£Vη)U1 = ση(U1). Hence V is an infinitesimal contact transformation.

Hence the proof is completed.

Proof of the Corollary 1.1. It is well known that a homothetic vector field on a compact manifold with
out boundary is Killing[14]. Hence from (41) and (42), and using σ = 0, we get

(3 f̃ +
r
2

)(£Vη)U1 = 0,
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which implies either 3 f̃ + r
2 = 0 or (£Vη)U1 = 0.

Therefore the result follows.

Proof of the Theorem 1.4.
Assume that the f -cm N2m+1 admits a RYS with conformal vector field. Then from (8) we have

(£V1)(U1,V1) + 2α1S(U1,V1) + (2λ − β1r)1(U1,V1) = 0. (47)

If we take the soliton vector field is conformal, then using (1) in (47), we get

σ1(U1,V1) + α1S(U1,V1) + (λ −
β1

2
r)1(U1,V1) = 0, (48)

which implies

α1S(U1,V1) = −(σ + λ −
β1

2
r)1(U1,V1). (49)

Thus, N2m+1 is an Einstein manifold.
Again, if we take α1S(U1,V1) = −(α1 + λ −

β1

2 r)1(U1,V1), then from (47), we get

(£V1)(U1,V1) = −2(ψ + λ −
β1

2
r)1(U1,V1), (50)

where ψ = (α1+λ−
β
2 r)

α1
.

This completes the proof.

4. Examples

Example 1. We figure out the manifold N3 = {(x, y, z) ∈ R3
}, where (x, y, z) are the standard coordinates

in R3. Let

z1 = ez2 ∂
∂x
, z2 = ez2 ∂

∂y
, z3 =

∂
∂z

(51)

are the linearly independent vector fields of N3[1].
Then

[z1, z2] = 0, [z1, z3] = −2zz1, [z2, z3] = −2zz2. (52)

Let 1 be the Riemannian metric identified by

1(z1, z1) = 1(z2, z2) = 1(z3, z3) = 1

and

1(z1, z2) = 1(z2, z3) = 1(z1, z3) = 0.

Let η be the one-form defined by η(V1) = 1(V1, z3) for any vector field V1 on N3 and ϕ be the (1,1)-tensor
field defined by

ϕz1 = z2, ϕz2 = −z1, ϕz3 = 0.

Using the above relations, we acquire

ϕ2V1 = −V1 + η(V1)z3, η(z3) = 1,
1(ϕU1, ϕV1) = 1(U1,V1) − η(U1)η(V1) (53)
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for any U1, V1 ∈ χ(N3). In [1], the authors proved that N3 is a f -cm.
Using Koszul’s formula we get

∇z1 z1 = 2zz3, ∇z1 z2 = 0, ∇z1 z3 = −2zz1,

∇z2 z1 = 0, ∇z2 z2 = 2zz3, ∇z2 z3 = −2zz2,

∇z3 z1 = 0, ∇z3 z2 = 0, ∇z3 z3 = 0.

We can easily reach with the help of the above results

R(z1, z2)z3 = 0, R(z2, z3)z3 = (2 − 4z2)z2, R(z1, z3)z3 = (2 − 4z2)z1,

R(z1, z2)z2 = −4z2z1, R(z2, z3)z2 = (−2 + 4z2)z3, R(z1, z3)z2 = 0,

R(z1, z2)z1 = 4z2z2, R(z2, z3)z1 = 0, R(z1, z3)z1 = (−2 + 4z2)z3

and

S(z1, z1) = S(z2, z2) = 2 − 8z2, S(z3, z3) = 4 − 8z2.

We find r = 8(1 − 3z2), from the above results.

Let V = (x + y)e−z2 z1 + (−x + y)e−z2 z2, λ = − 2
3 , α = 1

2 and β = 1
3 . By direct computations equation (47)

holds. Hence N3 defines a Ricci-Yamabe soliton.

Example 2. We figure out the manifold N5 = {(x1, x2, x3, x4, x5) ∈ R5
}, where (x1, x2, x3, x4, x5) are the

standard coordinates in R5. Let

z1 = x5
∂
∂x1

, z2 = x5
∂
∂x2

, z3 = −
1
x3

5

∂
∂x3

, z4 = −
1
x3

5

∂
∂x4

, z5 =
∂
∂x5

are the linearly independent vector fields of N5[1]. Therefore,

[z5, z1] =
1
x5

z1, [z5, z2] =
1
x5

z2, [z5, z3] = −
3
x5

z3, [z5, z4] = −
3
x5

z4.

The Riemannian metric 1 is defined by

1(zi, zj) = 1, i = j
0, i , j.

Let η be the one-form defined by η(V1) = 1(V1, z5) for any vector field V1 on N5 and ϕ be the (1,1)-tensor
field defined by

ϕz1 = z3, ϕz2 = z4, ϕz3 = −z1, ϕz4 = −z2, ϕz5 = 0.

Using the above relations, we acquire

ϕ2V1 = −V1 + η(V1)z5, η(z5) = 1,
1(ϕU1, ϕV1) = 1(U1,V1) − η(U1)η(V1) (54)

for any U1, V1 ∈ χ(N5). In [1], the authors proved that N5 is a f -cm with f = 1
x5

.
Using Koszul’s formula we get

∇z1 z1 =
1
x5

z5, ∇z1 z2 = 0, ∇z1 z3 = 0, ∇z1 z4 = 0, ∇z1 z5 = −
1
x5

z1,



A. Sardar et al. / Filomat 37:17 (2023), 5649–5658 5657

∇z2 z1 = 0, ∇z2 z2 =
1
x5

z5, ∇z2 z3 = 0, ∇z2 z4 = 0, ∇z2 z5 = −
1
x5

z2,

∇z3 z1 = 0, ∇z3 z2 = 0, ∇z3 z3 = −
3
x5

z5, ∇z3 z4 = 0, ∇z3 z5 =
3
x5

z3,

∇z4 z1 = 0, ∇z4 z2 = 0, ∇z4 z3 = 0, ∇z4 z4 = −
3
x5

z5, ∇z4 z5 =
3
x5

z4,

∇z5 z1 = 0, ∇z5 z2 = 0, ∇z5 z3 = 0, ∇z5 z4 = 0, ∇z5 z5 = 0.

We can easily reach with the help of the above results

R(z1, z2)z2 = −
1
x2

5

z1, R(z1, z3)z3 =
3
x2

5

z1, R(z1, z4)z4 =
3
x2

5

z1, R(z1, z5)z5 = −
2
x2

5

z1,

R(z1, z2)z1 =
1
x2

5

z2, R(z1, z3)z1 = −
3
x2

5

z3, R(z1, z4)z1 = −
3
x2

5

z4, R(z1, z5)z1 =
2
x2

5

z5,

R(z2, z3)z3 =
3
x2

5

z2, R(z2, z4)z4 =
3
x2

5

z2, R(z2, z5)z5 = −
2
x2

5

z2, R(z3, z4)z4 = −
9
x2

5

z3,

R(z3, z5)z5 = −
6
x2

5

z3, R(z4, z5)z5 = −
6
x2

5

z4, R(z2, z5)z2 =
2
x2

5

z5, R(z4, z5)z4 =
6
x2

5

z5,

R(z3, z5)z3 =
6
x2

5

z5, R(z5, z3)z5 =
6
x2

5

z3, R(z2, z4)z2 = −
3
x2

5

z4, R(z2, z3)z2 = −
3
x2

5

z3

and

S(z1, z1) = S(z2, z2) =
3
x2

5

, S(z3, z3) = S(z4, z4) = −
9
x2

5

, S(z5, z5) = −
16
x2

5

.

Hence,

r = S(z1, z1) + S(z2, z2) + S(z3, z3) + S(z4, z4) + S(z5, z5) = −
28
x2

5

.

Let V = 3x1z1 + 3x2z2 + x4
5x3z3 + x4

5x4z4 + x2
5z5 and σ = 2x5. By direct computations equation (1) holds.

Hence N5 defines a conformal vector field.
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