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Abstract. This article presents sufficient conditions for the positive definiteness of even-order weakly
symmetric tensors, based on some new Brauer-type Z-eigenvalue inclusion sets. In fact, these inclusion
sets are obtained using the partitions of the index set, which improves some of the existing results.

1. Introduction

The positive definiteness of a homogeneous polynomial

fA(x) = Axm = xT(Axm−1) =
n∑

i1,i2,...,im=1

ai1i2...im xi1 xi2 ...xim , (1)

whereA = (ai1i2...im ) ∈ R[m,n] is an m-order n-dimensional real tensor with i j ∈ [n] := {1, 2, . . . ,n} for j ∈ [m],
andAxm−1 is an n-vector in Rn,whose i-th component is

(Axm−1)i =

n∑
i2,i3,...,im=1

aii2...im xi2 ...xim ,

is widely used in spectral hypergraph theory [9], automatical control [7] and etc. For higher order tensors,
the following concept of Z-eigenvalues have been introduced in [8].

Definition 1.1. LetA ∈ R[m,n]. If there exists a nonzero real vector x and a real number λ such that

Axm−1 = λx and xTx = 1, (2)

then λ is called a Z-eigenvalue ofA and x a Z-eigenvector ofA associated with λ.
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A Z-identity tensor was defined in [4, 8] to propose a shifted power method for calculating Z-eigenpairs
and investigate an extension of the characteristic polynomial for symmetric even-order tensors, respectively
(for details, see [5, 10, 11]). In this article, we establish some Z-eigenvalue inclusion sets with parameters
by Z-identity tensors.

Definition 1.2. A tensor IZ =
(
ei1 i2...im

)
∈ R[m,n], with m being even is called a Z-identity tensor if

IZxm−1 = x, (3)

for any vector x ∈ Rn with xTx = 1.

Note that the even-order n dimension Z-identity tensor is not unique in general. For instance, each of the
following tensors is a Z-identity tensor:
Case I. Let I1 =

(
ei1 i2···im

)
∈ R[m,n],where

ei1 i2···im =

{
1 i1 = i2, i3 = i4, . . . , im−1 = im
0 otherwise (4)

Additionally, define
∏

m is the set of all permutations of (1, . . . ,m) and δ is the standard Kronecker delta,
i.e., δi j = 1 if i = j, and δi j = 0 if i , j.
Case II. Let I2 =

(
ei1 i2···im

)
∈ R[m,n],where

ei1 i2···im =
1

m!

∑
π∈
∏

m

δiπ(1) iπ(2) δiπ(3) iπ(4) . . . δiπ(m−1) iπ(m) . (5)

Recently, many people have focused on the Z-eigenvalue localization sets of higher order tensors (see for
instance [1, 2, 12]). Unfortunately, the inclusion sets always include zero and could not be used to determine
the positive definiteness of higher order tensors. In order to overcome this defect, Li et al. [5] presented a
Z-eigenvalue inclusion interval for even-order tensors as follows:

Theorem 1.3. [5, Theorem 2] Let A =
(
ai1 i2...im

)
∈ R[m,n] and I =

(
ei1 i2...im

)
∈ R[m,n] be a Z-identity tensor with m

being even. Then for any real vector µ =
(
µ1, . . . , µn

)T
∈ Rn

σZ (A) ⊆ G
(
A, µ
)
=
⋃
i∈[n]

(
Gi
(
A, µi

)
:=
{
z ∈ R :

∣∣∣z − µi

∣∣∣ ≤ ri
(
A, µi

)})
, (6)

where ri
(
A, µi

)
=

∑
i2,...im∈[n]

∣∣∣aii2...im − µieii2...im

∣∣∣. Further, σZ (A) ⊆
⋂
µ∈Rn
G
(
A, µ
)
.

As pointed out in [8] that an m-degree homogeneous polynomial f (x) defined by (1) is positive definite,
i.e., f (x) > 0 for any x ∈ Rn

\ {0} , if and only if the real symmetric tensorA is positive definite, and that an
even-order real symmetric tensor is positive definite if and only if all of its Z-eigenvalues are positive. Here,
a tensorA is said to be symmetric [8] if its entries ai1i2...im are invariant under any permutation of m indices
(ai1i2...im ), and weakly symmetric [1] if the associated homogeneous polynomial (1) satisfied∇Axm = mAxm−1.
It should be noted for m = 2, symmetric tensors and weakly symmetric tensors are the same. It’s worth
noting that a symmetric tensor must be a weakly symmetric tensor, but not vice versa. Therefore, some
conclusions that are valid for symmetric tensors maybe not be applicable for weakly symmetric tensors.

Recently, several significant results have arisen to solve the problem of deciding positive-definiteness
of an even-order symmetric tensor based on their special structure [3, 5, 6, 10]. For even-order real weakly
symmetric tensors, Shen et al. [11] proposed two Brauer-type inclusion sets for identified the positive
definiteness. In this paper, by improving the existing the Brauer-type inclusion sets, we will propose some
sufficient conditions for the positive definiteness of even-order weakly symmetric tensors.

The rest of this paper is organized as follows: In Section 2, we establish some new Brauer-type Z-
eigenvalue inclusion sets of even-order tensors. Moreover, by an example we show that the inclusion
sets are more precise than existing results. In Section 3 based on the inclusion sets, we obtain some
sufficient conditions to identify the positive definiteness of even-order weakly symmetric tensors. Finally,
the numerical example shows the validity of our results.
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2. Some new Brauer-type Z-eigenvalue inclusion intervals for even-order tensors

In this section, we present some new Brauer-type Z-eigenvalue inclusion sets by categorizing the
elements of tensors, and show that this inclusion sets are sharper than existing results.

By partitioning the index set, we shall use the following notations and conventions.

Λi :=
{
(i2, . . . , im) : (I1)ii2 ...im = 1, i2, . . . , im ∈ [n]

}
, i ∈ [n],

Λi :=
{
(i2, . . . , im) : (I1)ii2 ...im = 0, i2, . . . , im ∈ [n]

}
, i ∈ [n].

∆ :=
{
(i2, . . . , im) : i2 , . . . , im, or only two of i2, . . . , im ∈ [n] are the same

}
,

∆ := {(i2, . . . , im) : (i2, . . . , im) < ∆, i2, . . . , im ∈ [n]} .

Ω j :=
{
(i2, . . . , im) : ik = j for some k ∈ {2, . . . ,m}, where j, i2,..., im ∈ [n]

}
,

Ω j :=
{
(i2, . . . , im) : ik , j for any k ∈ {2, . . . ,m}, where j, i2,..., im ∈ [n]

}
.

ForA =
(
ai1 i2...im

)
∈ R[m,n], i , j andK ∈

{
Λi,∆,Ω j

}
the following notations are used repeatedly in our proofs.

ri (A) =
∑

i2,...,im∈[n]

∣∣∣aii2...im

∣∣∣, r j
i (A) = ri (A) −

∣∣∣ai j j... j

∣∣∣ ,
rKi (A) =

∑
i2,...,im∈K

∣∣∣aii2,...,im

∣∣∣, rKi (A) =
∑

i2,...,im∈K

∣∣∣aii2,...,im

∣∣∣,
rKi
(
A, µi

)
=
∑

i2,...,im∈K

∣∣∣aii2,...,im − µieii2...im

∣∣∣,
rKi
(
A, µi

)
=
∑

i2,...,im∈K

∣∣∣aii2,...,im − µieii2...im

∣∣∣,
βi = max

i2,...,im∈Λi

{∣∣∣aii2 ...im − µieii2 ...im

∣∣∣} ,
Mi(A, µi) = βi +

1

(m − 2)
m−2

2

rΛi∩∆
i (A) + rΛi∩∆

i (A),

MΩi
i (A, µi) = βi +

1

(m − 2)
m−2

2

rΛi∩∆∩Ωi
i (A) + rΛi∩∆∩Ωi

i (A),

M j
i (A, µi) = βi +

1

(m − 2)
m−2

2

r jΛi∩∆

i (A) + r jΛi∩∆

i (A).

Obviously, for any i ∈ [n] ,we have ri (A) = rKi (A) + rKi (A) and ri(A, µi) = rKi (A, µi) + rKi (A, µi).
To begin with, we need the following lemma.

Lemma 2.1. [10, Lemma 2.2] Let x2
1 + · · · + x2

n = 1, where xi ∈ R, i ∈ [n]. If y1, . . . , yk are arbitrary k entries of
x1, . . . , xn then

|y1||y2| . . . |yk| ≤
1

k
k
2

.

By modifying the Theorem 1.3, we have the following theorem.

Theorem 2.2. LetA ∈ R[m,n], with m being even. Then for any real vector µ =
(
µ1, . . . , µn

)T
∈ Rn

σZ
(
A, µ
)
⊆ Φ
(
A, µ
)
=
⋃
i∈[n]

(
Φi
(
A, µi

)
:=
{
λ ∈ R : |λ − µi| ≤Mi(A, µi)

})
.
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Proof. Let λ ∈ σZ (A) with a corresponding Z-eigenvalue x, then (2) holds. Let |xt| = max
i∈[n]
|xi| , and µt be an

arbitrary real number. By the th-equality of (2), one can obtain that(
λ − µt

)
xt =

∑
i2,...,im∈Λt

(
ati2,...,im − µteti2,...,im

)
xi2 . . . xim (7)

+
∑

i2,...,im∈Λt∩∆

ati2,...,im xi2 . . . xim +
∑

i2,...,im∈Λt∩∆

ati2,...,im xi2 . . . xim .

Taking modulus and using the triangle inequality for (7) give

|λ − µt| |xt| ≤ βt

∑
i2,...,im∈Λt

xi2 . . . xim +
∑

i2,...,im∈Λt∩∆

∣∣∣ati2,...,im

∣∣∣ ∣∣∣y1

∣∣∣ . . . ∣∣∣ym−2

∣∣∣ |xt| +
∑

i2,...,im∈Λt∩∆

∣∣∣ati2,...,im

∣∣∣ |xt|
m−1 ,

where
∣∣∣y1

∣∣∣ , . . . , ∣∣∣ym−2

∣∣∣ are taken by the following methods:

Case I. If i2 , . . . , im, then we can enlarge any one of
∣∣∣xi2

∣∣∣ , . . . , ∣∣∣xim

∣∣∣ to |xt| and keep the others (can be taken
as
∣∣∣y1

∣∣∣ , . . . , ∣∣∣ym−2

∣∣∣) unchanged;

Case II. If only two of i2, . . . , im are the same, then we can enlarge one of the two same elements to |xt| and
keep the others (can be taken as

∣∣∣y1

∣∣∣ , . . . , ∣∣∣ym−2

∣∣∣) unchanged.

Using Lemmas 2.1 and Eq. (3), we have

|λ − µt||xt| ≤ |xt|

βt +
1

(m − 2)
m−2

2

rΛt∩∆
t (A) + rΛt∩∆

t (A)

 , (8)

which implies that λ ∈ Φt
(
A, µ
)
⊆ Φ
(
A, µ
)
. Thus, we complete the proof.

In the next, we establish some Brauer-type Z-eigenvalue inclusion sets for even-order tensors.

Theorem 2.3. LetA ∈ R[m,n] with m being even. Then for any real vector µ =
(
µ1, . . . , µn

)T
∈ Rn

a) σZ (A) ⊆ P
(
A, µ
)
=
⋃

i∈[n]

⋂
j∈[n],i, j

Pi, j
(
A, µ
)
,

b) σZ (A) ⊆ D
(
A, µ
)
=

 ⋃
i∈[n]

⋂
j∈[n],i, j

Xi, j
(
A, µ
)⋃  ⋃

i∈[n]

⋂
j∈[n],i, j

Yi, j
(
A, µ
),

where

Pi, j
(
A, µ
)
=
{
λ ∈ R :

(∣∣∣λ − µi

∣∣∣ −Mi
Ωi
(
A, µi

)) ∣∣∣λ − µ j

∣∣∣ ≤ rΩi
i

(
A, µi

)
M j

(
A, µ j

)}
,

Xi, j
(
A, µ
)
=
{
λ ∈ R :

(∣∣∣λ − µi

∣∣∣ −Mi
Ωi
(
A, µi

)) (∣∣∣λ − µ j

∣∣∣ −Mi
j

(
A, µ j

))
≤ rΩi

i

(
A, µi

)
|a ji...i|

}
,

Yi, j
(
A, µ
)
=
{
λ ∈ R :

(∣∣∣λ − µi

∣∣∣ −Mi
Ωi
(
A, µi

))
< 0,

(∣∣∣λ − µ j

∣∣∣ −Mi
j

(
A, µ j

))
< 0
}
.

Proof. Let λ ∈ σZ (A) with a corresponding Z-eigenvalue x. Let |xt| ≥ |xs| ≥ max
k∈[n]
k,s,k,t

|xk|, and µt be an arbitrary

real number.
a) By the th-equality of (2), one can obtain that(

λ − µt
)

xt =
∑

i2,...,im∈Ωt

(
ati2,...,im − µteti2,...,im

)
xi2 . . . xim +

∑
i2,...,im∈Ωt

(
ati2,...,im − µteti2,...,im

)
xi2 . . . xim .
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Similar to the proof of Theorem 2.2, we get

|λ − µt||xt| ≤

βt +
1

(m − 2)
m−2

2

rΛt∩∆∩Ωt
t (A) + rΛt∩∆∩Ωt

t (A)

 |xt| + rΩt
t
(
A, µt

)
|xs|

m−1 ,

which implies that(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

))
|xt| ≤ rΩt

t (A) |xs| . (9)

If |xs| = 0, by (9), we deduce
(
|λ| −Mt

Ωt
(
A, µt

))
≤ 0. Thus λ ∈ Pt,s

(
A, µ
)
⊆ P
(
A, µ
)
.

Otherwise, |xs| > 0. Using (8), we have∣∣∣λ − µs

∣∣∣ |xs| ≤Ms
(
A, µs

)
|xt|. (10)

Multiplying inequalities (9) and (10) yields,
(∣∣∣z − µt

∣∣∣ −Mt
Ωt
(
A, µt

)) ∣∣∣λ − µs

∣∣∣ ≤ rΩt
t (A) Ms

(
A, µs

)
, which

implies λ ∈ Pt,s
(
A, µ
)
⊆ P
(
A, µ
)
. Hence, the conclusion follows.

b) By characterization of (9), for any t, s ∈ [n], s , t,we have(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

))
|xt| ≤ rΩt

t (A) |xs| . (11)

If |xs| = 0, by (11), we deduce
(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

))
≤ 0.When

(∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
≥ 0,we have(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

)) (∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
≤ 0 ≤ rΩt

t
(
A, µt

)
|ast...t|,

which implies λ ∈
⋂

s∈[n],t,s
Xt,s
(
A, µ
)
⊆ D

(
A, µ
)

from the arbitrariness of s.When
(∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
< 0,

from the arbitrariness of s,we have λ ∈
⋂

s∈[n],t,s
Yt,s
(
A, µ
)
⊆ D

(
A, µ
)
.

Otherwise, |xs| > 0.Moreover, using (2), we have∣∣∣λ − µs

∣∣∣ |xs| ≤ |ast...t| |xm−1
t | +

∑
i2,...,im∈[n]
δti2 ...im=0

∣∣∣asi2,...,im − µsesi2,...,im

∣∣∣ ∣∣∣xi2

∣∣∣ . . . ∣∣∣xim

∣∣∣
≤ |ast...t| |xt| +

βs +
1

(m − 2)
m−2

2

rtΛs∩∆
s (A) + rtΛs∩∆

s (A)

 |xs|. (12)

When
(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

))
≥ 0 or

(∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
≥ 0 holds, multiplying (11) and (12) yields,(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

)) (∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
≤ rΩt

t
(
A, µt

)
|ast...t|,

which implies λ ∈
⋂

s∈[n],t,s
Xt,s (A) ⊆ D (A) from the arbitrariness of s.

When
(∣∣∣λ − µt

∣∣∣ −Mt
Ωt
(
A, µt

))
< 0 and

(∣∣∣λ − µs

∣∣∣ −Mt
s
(
A, µs

))
< 0 hold, from the arbitrariness of s, we

have λ ∈
⋂

s∈[n],t,s
Yt,s (A) ⊆ D (A) . Hence, the conclusion follows.

In the following example, we show the efficiency of our results.

Example 2.4. ([11, Example 1]) Consider the tensorA =
(
ai jkl

)
∈ R[4,2], with entries defined as follows:

a1111 = 10, a1122 = 9, a1121 = a1222 = −1, a2222 = 5, a2211 = 6, a2122 = a2111 = −1,

and other ai jkl = 0. By computations, we get that σZ(A) = {5, 10}. Taking Z-identity tensor I1. In the following,
setting µ1 = (10, 7)T, µ2 = (9, 5)T and µ3 = (9, 5.5)T, we compute Table 1 to show the comparisons different methods
with our results.



M. Zangiabadi et al. / Filomat 37:17 (2023), 5641–5647 5646

Table 1: The effect of parameters on the inclusion set
Inclusion set with Inclusion set with Inclusion set with
µ = (10, 7)T µ = (9, 5)T µ = (9, 5.5)T

Theorem 2 of [5] [2, 13] [2, 12] [2.5, 12]
Theorem 1 of [11] [2.595, 12.851] [2.522, 11.462] [3, 11.5]
Theorem 2 of [11] [2.595, 12.791] [2.618, 11.462] [3.541, 11.5]

Theorem 2.3 part (a) [4.078, 12.172] [3.078, 10.922] [4, 10.872]
Theorem 2.3 part (b) [4.264, 11.914] [3.264, 10.736] [4.197, 10.736]

3. Z-eigenvalues-based sufficient conditions for the positive definiteness of even-order tensors

In this section, as an application, some sufficient conditions for testing the positive (semi-)definiteness
of even-order weakly symmetric tensors are given.

Based on variational property of weakly symmetric tensors given in [11], the following result obtained.

Lemma 3.1. [11, Lemma 1] A =
(
ai1 i2...im

)
∈ R[m,n] be a weakly symmetric tensor. Then, fA(x) = Axm is positive

definite if and only if its Z-eigenvalues are positive.

Li et al. [5] proposed the following theorem to test the positive definiteness of polynomial systems via
Gershgorin-type Z-eigenvalue inclusion sets.

Theorem 3.2. Let A ∈ R[m,n] be a symmetric tensor with m ≥ 4 being even. If there exists a positive real vector
µ =
(
µ1, . . . , µn

)T
∈ Rn such that µi > ri

(
A, µi

)
for all i ∈ [n], thenA is positive definite.

Based on Theorems 2.2 and 2.3, the following Z-eigenvalues based sufficient conditions can be obtained.

Theorem 3.3. Let A ∈ R[m,n] be a weakly symmetric tensor with m ≥ 4 being even. Then A is positive (semi-
)definite, if there exists a positive real vector µ =

(
µ1, . . . , µn

)T
∈ Rn, such that at least one of the following conditions

holds:

a) µi > (≥)Mi
(
A, µi

)
∀i ∈ [n].

b)
(
µi −Mi

Ωi
(
A, µi

))
µ j > (≥)rΩi

i

(
A, µi

)
M j

(
A, µ j

)
∀i, j ∈ [n], i , j.

c)
(
µi −Mi

Ωi
(
A, µi

)) (
µ j −Mi

j

(
A, µ j

))
> (≥)rΩi

i

(
A, µi

)
|a ji...i|, ∀i, j ∈ [n], i , j,

and

µi > (≥)Mi
Ωi
(
A, µi

)
and µ j > (≥)Mi

j

(
A, µ j

)
, ∀i, j ∈ [n], i , j.

Proof. We prove that A is positive definite, and by a similar way one can prove that A is positive semi-
definite. Let λ be a Z-eigenvalue ofA.
a) Suppose that λ < 0. From Theorem 2.2, we have λ ∈ Φ(A), hence, there is an i0 ∈ [n] such that∣∣∣λ − µi0

∣∣∣ ≤Mi
(
A, µi0

)
.

On the other hand, for this index i0, by µi0 > 0 and λ < 0,we have∣∣∣λ − µi0

∣∣∣ ≥ µi0 ≥Mi
(
A, µi0

)
.

This is a contradiction, and hence λ > 0.When A is a weakly symmetric tensor and all Z-eigenvalues are
positive, we obtain thatA is positive definite (by Lemma 3.1).
b) Suppose that λ < 0. From Theorem 2.3, we have λ ∈ P

(
A, µ
)
. Thus, there exists i0 ∈ [n] such that(∣∣∣λ − µi0

∣∣∣ −Mi0
Ωi0
(
A, µi0

)) ∣∣∣λ − µ j0

∣∣∣ ≤ r
Ωi0
i0

(
A, µi

)
M j0

(
A, µ j0

)
∀ j0 , i0.
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On the other hand, it follows from µi0 > 0 and λ < 0 that(∣∣∣λ − µi0

∣∣∣ −Mi0
Ωi0
(
A, µi0

)) ∣∣∣λ − µ j0

∣∣∣ ≥ (µi0 −Mi0
Ωi0
(
A, µi0

))
µ j0 ≥ r

Ωi0
i0

(
A, µi

)
M j0

(
A, µ j0

)
∀ j0 , i0.

This is a contradiction. Therefore,A is positive definite.
c) The proof is obtained similar to the proof of part (b) and using Theorem 2.3.

Compared with Theorems 3 and 4 of [11], our conclusions can more accurately determine the positive
definiteness for even-order weakly symmetric tensors, as we show in the next example.

Example 3.4. LetA =
(
ai jkl

)
∈ R[4,2], be a weakly symmetric tensor with entries defined as follows:

a1111 = 6, a1211 = 3, a1221 = a1212 = 1, a1121 = a1112 = 0, a1122 = 4, a1222 =
2
3

;

a2111 = a2112 = a2121 = 1, a2211 = 4, a2221 = a2122 = 0, a2212 = 2, a2222 = 6.

By computations, we obtain that the minimum Z-eigenvalue is 4.9479. Hence, A is positive definite. Taking the
Z-identity tensor IZ as Case I or Case II, we cannot find positive real number µ1 such that

µ1 > r1(A, µ1) and µ1 > r2
1(A, µ1),

which shows that Theorem 3.2 of [5] and Theorems 3,4 of [11] fails to check the positive definiteness of weakly
symmetric tensorA. Setting µ = (6, 6)T, from part (a) of Theorem 3.3, we verify

µ1 = 6 > 5.1667 =M1
(
A, µ1

)
and µ2 = 6 > 5 =M2

(
A, µ2

)
,

which implies thatA is positive definite. The verification method of other parts are similar to part (a).

4. Conclusions

In this paper, we firstly presented a new Z-eigenvalue localization set Φ
(
A, µ
)

for even-order tensors,
which is a generalization of the set G

(
A, µ
)
. Then, by classifying the index set, we obtained some optimal

sets P
(
A, µ
)

and D
(
A, µ
)
. By Example 2.4, we showed that these are tighter than existing results. Based

on these sets, we attained some sufficient conditions for the positive (semi-)definiteness of even-order real
weakly symmetric tensors. Finally in Example 3.4, we indicated the efficiency of our results.
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