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Formulae for the Drazin inverse of elements in a ring
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Abstract. This paper studies additive properties of the Drazin inverse in a ring R. Some necessary and
sufficient conditions for the Drazin invertible are given. Furthermore, we derive additive formulae under
conditions weaker than those used in some resent papers on the subject. These extend the main results of
Wei and Deng (J. Linear Multilinear Algebra, 59(12) (2011) 1319-1329) and Wang et al. (Filomat, 30(2016),
1185-1193)

1. Introduction

Throughout this paper, R is an associative ring with an identity. R~ denotes the set of all invertible
elements in R. A, A/, u and u’ always stand for nonzero complex numbers. The commutant of an element
a € Ris defined as comm(a) = {x € R : ax = xa}. Let us recall that the Drazin inverse of a € R is the element
b € R (denoted by aP) which satisfies the following equations [6]:

bab = b, ab = ba, ak = g 1p,

for some positive integer k. The smallest integer k is called the Drazin index of a, denoted by ind(a). If
ind(a) = 1, then b is called the group inverse of a and is denoted by a*. The subset of R composed of Drazin
invertible elements will be denote by RP. The conditions in the definition of Drazin inverse are equivalent
to:

bab = b, ab = ba, a—a’bis nilpotent.

The notation a™ means 1 — aa® for any Drazin invertible element a € R. Observe that by the definition of
the Drazin inverse, aa™ = a™a is nilpotent.

The Drazin inverse has applications in a number of areas such as singular linear systems [23], the theory
of finite Markov chains [11, 15, 16], numerical analysis [8, 10, 14, 20, 22] and so on [1, 2]. Drazin first studied
the Drazin inverse of the sum of two Drazin invertible elements in a ring in his ccelebrated paper in [6].
In this paper, Drazin was able to deduce a formula for the Drazin inverse of a + b when ab = ba = 0. The
general question of how to express the Drazin inverse of a + b as a function of 4, b and the Drazin inverses
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of a and b without side conditions, is very difficult and remains open. Hartwig et al. [9], expressed (A + B)P
under the one-side condition AB = 0, where A, B are complex square matrices. This result was extended to
bounded linear operators on an arbitrary complex Banach space by Djordjevi¢ and Wei in [7]. Later, it was
extended for morphisms on arbitrary additive categories by Chen at al. in [5]. More related results can be
found in [3, 12, 13, 17, 18, 24].

The motivation for this article was the result in Wang et al. [19], Wei and Deng [21] and Zhuang et al.
[25]. In [19], the authors proved that a — b € RP if and only if aa®(a — b)bbP € RP, if ab = Aba for some
nonzero complex A. In [21], the authors considered the relations between the Drazin inverse of A + B and
1+ APB for two commutative complex matrices A and B. In [25], Zhuang et al. extended the result in [21] to
aring R, and it was proved thata+ b € RP if and only if 1 +aPb € RP. In this paper, our main contributions
are to generalize the results of [19] and [21, 25] for the Drazin inverse (ab)” and (a + b)P under the weaker
conditions.

The paper is organized as follows. In section 2, we will deduce some lemmas. In section 3, we
investigate Drazin invertibility of the product of 2, b € RP which will be repeatedly used in the sequel. Then
we characterize the relations of a — b, aa”(a — b), (a — b)bbP and aaP(a — b)bb®. In section 4, we introduce some
new conditions and give the explicit expressions for (a + b)P.

2. Preliminaries
The following lemmas are required in what follows.
Lemma 2.1. Leta,b € RP. If a*b = Aba?, then aaPb = baaP.
Proof. Assume k=ind(a). Let p = aa". By hypothesis, we have
pb —pbp = @01 - aa®) = @P)*a?*Va?b(1 - aa®)
— A(ﬂD)zkﬂz(kil)bﬂz(l _ ﬂﬂD) — .. = Ak(ﬂD)zkbﬂzk(l _ ﬂﬂD)
— Ak(ﬂD)Zkbﬂ2k(1 _ aaD)Z — /\k(aD)Zkb(ﬂk _ ﬂkJrlﬂD)z.

From the definition of the Drazin inverse, we obtain a* — a*1a” = 0, and so pb — pbp = 0. Hence pb = pbp.

Likewise, bp = pbp. Accordingly, aab = pb = bp = baa®, as desired. [
Analogously to Lemma 2.1, we have the following result.
Lemma 2.2. Leta,b € RP. If b*a = pab?, then bbPa = abbP.
Lemma 2.3. Let a,b € R with aba = Aab. Then for any positive integer i, the following hold:

(1) a*'b = A'a'ba = Aaba'. (2.1)

(i-D)i

(2) (@ab)' = A= a'l'. (2.2)

Proof. (1) From aba = Aa’b, we have
a7 =a e’ = A'aaba = A dlba.
Also, we have that
a*b = A7 Yalba = A7a %0 ba
= A2 2aba® = A 20" 3a%ba®
= A3 30ba® = - = A7abd'.

(2) Under the assumption of this lemma, we have
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(ab)’ = (ab)"~*abab = A(ab)*a’b* = A'*(ab)a’p’

(i-1)i

= ..o= ALS kgipt = A5 g,

0
Lemma 2.4. Leta,b € RP. Ifaba = Aa*b = A'ba® and bab = pb*a = y’ab?, then
(1) abaP® = A7*aPab.
(2) bat® = y‘lbDba.
Proof. Assume k = max{ind(a), ind(b)}.
(1) By hypotheses, we get
aP (@*p) @D o (A *aba*y = A7%aP (aba**)aP
20 A~k aP (A g gb)aP = A(aP a1 YabaP
= Ad*aba® = Aa"'baP.
It follows that
Pab = (@) dab = @) (@Pa+1b) = A(@P)kak+ ba?
=A@ @Pd b)Yl = A2(@P) 1 p(aP)?
o= AR (g ) Dy
@1 AL abak) @Dy
= Aaba®.
(2) The proof is similar to (1). O
Lemma 2.5. Leta,b € RP. Ifaba = Aa*b = A'ba® and bab = ub*a = y’ab?, then
(1) baPb = Ab?aP.
(2) abPa = ya2bD.

Proof. It is enough to prove (1) since we can obtain (2) by the symmetry of 2 and b.
(1) By hypotheses, we obtain ab(aP)? = (abaP)aP @ 140 (abaP) @ A72(aP)2ab.

Since Aa’b = A’ba® implies that aaPb = baa® by Lemma 2.1, it follows that
baPb = b(aP)?ab = A*bab(aP)? = A%b(aba®)a®
@ A2b(A~1aPab)aP = AbbaPaaP = Ab%aP.

O

3. Main result 1

5625

2.3)

Under the conditions aba = Aa*b = A’ba® and bab = ub*a = p’ab?, Chen and Sheibani [4] considered the
relations of a + b, (a + b)bbP, aaP(a + b) and aaP(a + b)bb in a Banach algebra, but they did not deduce the

formulae of (a + b)P, [aaD (a+ b)]D, [(a + b)bbP ]D and [aaD (a + b)bbP ]D . In this section, we extend the results

D D
in [4] to a ring case. Moreover, we give explicit representations of (a — b)?, (aaP(a — b)] , [(a — b)bbP ] and

D
[aaP (@ - b)bbP]".
First, we start with a theorem that is an extension of [19, Lemma 2.2 (3)].
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Theorem 3.1. Leta,b € RP. Ifaba = Aa®b = A’ba® and bab = ub*a = ' ab?, then ab € RP and
(ab)P = bPaP = y‘lanD.

Proof. Letx = bPaP. We will prove thatab € RP and the Drazin inverse of abis x, i.e., (ab)x = x(ab), x(ab)x = x,
and (ab)* = (ab)**1x for some positive integer k.
First we give some useful equalities

(@b)a® = (aby~'aba® = 11 (ab)~'aPab = 1~ (ab)2abaab .
(2:3) /\_z(ﬂb)i_zaD(ﬂb)z - .= /\_iﬂD(llb)i,
so we have
atia® A5 [(@byaP] ) A [A-aP(aby| = 175 aP (aby'. (3.2)

Note that Aa?b = A’ba? and pb?a = p’ab® imply that aaPb = baa® and bbPa = abb® by Lemma 2.1 and Lemma
2.2.

(1) It can easily be verified that (ab)x = (abbP)aP = bP(baaP) = bPaPab = x(ab).

(2) We easily find that x(ab)x = bP(aPab)bPaP = bbP (aPabP)aP = bPbbPalaaP = bPaP = x.

(3) Take k = max{ind(a), ind(b)}. From the definition of the Drazin inverse, we have that

(ab)k+1x — ({Ilb)k+1bDlZD (2:2) /\@ak-f—l(blﬁlbD)aD — /\k(k;l) ak+1bkaD

k(k+1)

= V5 a@k k) B 2, [A‘

k(k+1)
2

aD(ab)k]

22) | Gobk ik
= aaP@ab)* = A7 aPd ek = A7 A

22 —(k=1)k

AL [AT(ab)k] = (ab).
Hence, (ab)P = bPaP. Similarly, we can check that (ab)P = u~1aPbP. O

Remark 3.2. Note that the conditions given in Theorem 3.1 are symmetric.

Corollary 3.3. [19, Lemma 2.2(3)] Let a,b € RP. If ab = Aba, then ab € RP and (ab)P = bPaP = A~1aPpP.

Proof. From ab = Aba, we have aba = A™'a?b = Aba? and bab = Ab*a = A~'ab?. This completes the proof by
Theorem 3.1. O

In 2017, Zhu and Chen [24] assumed the following two conditions ina,b € RD,
a*b = aba, b*a = bab. (3.3)
We observe that the conditions (3.3) and aba = Aa*b = A'ba?, bab = ub®a = p’ab* are independent.

Precisely, in the first example, the conditions (3.3) hold, but the conditions aba = Aa?b = A’ba?, bab = pb%*a =
u’ab?* are not applicable.

Example 3.4. Let R = M,(R), and take

1 0], [30 b
=1 0] o=l 0 e
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Since aba # A’ba® and bab # u’ab?, we know that the conditions of Theorem 3.1 do not hold. On the other
hand, we can observe that @b = aba and b%*a = bab. By [24, Theorem 3.1 |, (ab)P = aPbP.

1
From computing, we get a® = [ Lo ],bD = [ 5 0 ],anD = [ 8 ]and (ab)P = [

O_DD
1 0 00 ]‘”b'

0

[SSIEesI o
W=

1
But b0 =[ 3 8 ]¢ (ab)P.

Also, we construct matrices a and b such that aba = Aa?b = A'ba?, bab = pb*a = y’abz are met, but (3.3)
are not satisfied in the next example.

Example 3.5. Let R = M»(C), and take

”‘[ 0 i]’b_[Zi 0 ]GR'

After calculating, we get that aba = —a®b = —ba?, bab = —b*a = —ab®. Hence, the conditions of Theorem
3.1 hold. However, aba # a%b, bab # b%a.

0 DD — -3

], b”a” = [ o |

O NI=

By elementary computations, we obtain a?b” = [

Ni= O

1
2

_1
By Theorem 3.1, (ab)P = bPaP = u~1aPbP. Here (ab)P = [ (l) 02 = bPaP = —aPhP.
2
Now we start the first of our main theorems, which extends the result under the condition ab = Aba in

[19, Theorem 2.3].

Theorem 3.6. Leta, b € RP be such that aba = Aa*b = A'ba* and bab = ub®a = y’ab®. Then the following conditions
are equivalent:

(1)a—beRP.

(2) c = aaP(a - b) € RP.

3) e = (a — bbb € R,

(4) w = aaP(a — b)bbP € RP.

In this case,

(a-b)P =P —a™1 - bPaa™) 6P, (3.4)
(a-b)P = e +aP(1 - bb™aP)7 b, (3.5)
(a-b)P =wP +aP1 - bb™aP) 0™ — a™(1 - bPaa™)7 b, (3.6)

where cP = aaP(a — b)P,eP = (a — b)PbbP, wP = aaP(a — b)PbbP.

Proof. Recall that aa™ and bb™ are nilpotent and their indexes of nilpotency are the Drazin indexes of a and
b, respectively. Let s=index(a) and t=index(b).

(1) = (2) Since Aa*b = A’ba?, by Lemma 2.1, we get aaPb = baaP® which implies aa®(a — b) = (a — b)aaP.

D

Applying Corollary 3.3, we obtain aa”(a - b) € RP and [aaP(a — )|~ = aaP(a - b)P.

(2) = (1) Assume that c is Drazin invertible and let us define x = ¢ — a™(1 — bPaa™)"1bP.

By Lemma 2.5(2) and a™a* = 0, we get (bPaa™)* = y@ bPa™as(bP)*~ = 0. Thus, according to [12, Lemma
1.1], we get 1 — bPaa™ is invertible and

(1-bPaa™' =1+ bPad™ + GPaa™)? + - + VPaa™y .

Since aaPb = baaP it follows that a™b = ba™ and c(a — b) = (a — b)c. From these, by [6, Theorem 1 ], we get
a™bP = bPa™ and cP(a — b) = (a — b)cP.
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Since (1 — bPaa™)bP = bP(1 — aa™bP), combining a™b” = bPa™, we derive

(a = b)a™(1 — bPaa™)"1pP

= (a—b)a"b°(1 — aa™pP) ™!
(a - b)bPa™(1 — aa™bP)!
—bbP(1 — abP)a™(1 — aa™ ")
—bbP(1 — abPa™ — abPaa®)a™ (1 — aa™bP)~?
—bbP(1 — aa"bP)a™ (1 — aa™bP) ™!

= —bbPa"

So, we get

(a—b)x = (@=b)[c” —a™(1 - bPaa™) ] = (a - b)c” + bbPa™.
Similar to the above way, we also have [11“(1 - bPaa™)bP ] (a —b) = —bbPa™. So, it follows

x(@a—"b) = [cD —a"(1- bDaa”)‘lbD] (a—b) =cP(a—0b)+bbPa" (3.7)
and x(a — b) = (a — b)x.

Next, we give the proof of x(a — b)x = x. Let x(a — b) = x’ + x”/, where x’ = c”(a — b) and x”" = bPba™.
Observe that ¢ +a™(a — b) = aaP(a — b) + (1 — aaP)(a — b) = a — b. From a”c = ca™ = (a — b)aa®a™ = 0, we get
a™cP = cPa™ = (cP)?ca™ = 0. In view of the relations above and taking into account the following identities
xx' = [cD -a"(1- bDaa”)‘lbD] P@-1b)
= (Y@@ =b) = (") [c+a™(a—D)]
= CD
and
xx” = [cD —-a"(1- bDaa”)_lbD] bPba™
= [-a"(1 = bPaa™) 6P| 6P b
=—(1- bDaa”)’lbDa77
=x—cP,

we conclude that x(a — b)x = x(x" + x”) = x.
Finally, we will prove that (a — b) — (a — b)?x is nilpotent. Sincea —b = ¢ + a™(a — b), ca™ = 0 and a™c” = 0,
we have

(@—b)>2P =[c+a™a-b)cP = [c2 +2ca™(a—b)+a"(a— b)z] P =P =c—cc".

Also we have (a — b)bPba™ = (a — b)(1 — b™)a™ = aa™ — ba™ — aa™b™ + bb™a™.
From (3.7) and the above two equalities, we get

(a—b)—(a-b)’x

=(@-b)—(a-D) [cD(a —b)+ bbDa”]

=(@-b)—(c—cc™ +aa"™ —ba™ —aa"b"™ + bb™a™)

=@-b)- [(a —b)aa® + (a — b)a”™ — aa™b™ + bb™a™ — cc“]
)

=aa"b™ — bb™a™ + cc™.
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Note that (aa™b™ — bb"a™)F = (a — b)'a™b™ and (a — b)* = ¥, Aija/t'. Let k > 2 max(s,t}. Then we have
(aa™b™ — bb™a™)* = 0. Hence aa™b™ — bb™a™ is nilpotent.

Since cc™ and aa™b™ — bb™a™ are nilpotent and (aa™b™ — bb™a™)cc™ = cc™(aa"b™ — bb™a™) = 0, it follows from
[25, Lemma 1(2)] that aa™b™ — bb™a™ + cc™ is nilpotent. Therefore, we have proved a—b € RP and (a - b)P = x,
i.e., the expression (3.4).

(1) = (3) This is similar to (1) = (2).

(3) = (1) Assume that e is Drazin invertible and let y = P + aP(1 — bb™aP)~'b". Since ub*a = y'ab?, by
Lemma 2.2, we have bbPa = abbP and b™a = ab™. From bbPa = abbP, it is easy to obtain that e(a — b) = (a — b)e
and

eP(a—b) = (a—b)eP. (3.8)
By Lemma 2.5(1) and b'b™ = 0, we have (bb™aP)" = A B (@P)t = 0. It follows from [12, Lemma 1.1 ]
that 1 — bb™aP is invertible (1 — bb™aP)™! = 1 + bb™aP + (bb™aP)? + - - - + (bb™aP)!"1.
Since b™a = ab™, we have that b™a" = aPb™ by [6, Theorem 1 ]. From this, we obtain
(a - b)aP (1 - bb™a) 1"
= aaP(1 - baP)b™(1 — bb™aP)!

= aaP(1 — bb™aP — bbbPaP)b™ (1 — bb™aP) ™! (3.9)
= aaP(1 - bb™aP)b™ (1 — bb™aP)~!
= aaPb™.

Hence, we have
(a-byy=@->b) [eD +aP(1 - bb”aD)’lb”] = (a - b)e® + aa®b™. (3.10)

Since aP(1 — bb™aP) = (1 — aPbb™)aP, then using the same way as in the proof of (3.9), we also obtain
[aP(1 = bb™aP)1b"] (a - b) = (1 - aPbb™)~'aPb"(a - b) = aaPb™. So, it follows

ya—b) = [¢P +aP(1 - bb"a) 0" | (a - b) = €P(a - b) + aa"b". (3.11)

Combining (3.8), (3.10) and (3.11), we get y(a — b) = (a — b)y.
We now prove that y(@ — b)y = y. Let y(a — b) = v’ + v, where y’ = eP(a — b) and y”’ = aaPb".
The following equality will be useful:

e+ (a—b)b"™ = (a—b)bb® + (a — b)(1 — bb°) = a - b. (3.12)
From b™e = eb™ = (a — b)bbPb™ = 0, we get b™eP = ePb™ = (eP)?eb™ = 0. Thus, we obtain
y'eP = (€P)? [e + (a - b)b™] = (eP)%e + (eP)*(a — b)b™ = €
and y”’eP = aaPbeP = 0. Similarly, it is easy to get y’a”(1 — bb™aP)~1b™ = 0.
So, we get
ya-by =y +y") [eD +aP(1 - bb”aD)‘lb”]
- y/eD + y/ﬂD(l _ bbnaD)—lbn
+ yneD + y”ﬂD(l _ bbnﬂD)_lbn
= 6P +aaPv™aP (1 - bb™aP)1p"
=eP +aP(1 - bb™aP) "
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Finally, let us prove that (a — b) — (a — b)*y is nilpotent. From eb™ = b™e = 0 and b™eP = 0, which together
with equality (3.12), we have

(a—=b)2%P =[e+(a-bb el = [ez +2@a-b)p"e+ (a— b)zb”] eP = e?eP = e —ee™ (3.13)
and

(a — b)aa®b™ = (a — b)(1 — a™)b™ = ab™ — bb™ — aa™b™ + bb™a™. (3.14)
Then by equalities (3.10), (3.12), (3.13) and (3.14), we obtain

(@a=b)—(@-b)y

=(a-b)—(@="b)[@a—Db)e” +aa"b"]
=(@—-"b)—(a—-Db)*P - (a—-b)aa"v"

=e+@—b)b" —e+ee™ —ab™ +bb"™ + aa™b™ — bb™a"™
=aa"b"™ — bb™a™ + ee".

The rest of the proof follows in much the same way as the proof of (2) = (1). Hence, a — b € RP and
(a—=b)P =eP +aP(1 - bb™aP) b7,

(3) = (4) Since aaP® commutes with a, b and bP, we get aaP(a — b)bb? = (a — b)bbPaa®. Thus, from
Corollary 3.3 it follows that w exists and wP = [aaD (a — b)bbP ]D = (aaP)P [(a - b)bbD]D = aaPeP.

(4) = (3) To check that e € RP, let p; = abbP, p, = b*bP. In view of Lemma 2.2, abbP = bbPa, and then we
may apply Corollary 3.3 to give p1,p, € RP and pP = aP(bbP)P = aPbbP.

It is easy to verify that pypop1 = Apips = A'pap?, papip2 = upspr = (' p1ps, therefore pr and p; satisfy the
conditions of Theorem 3.6.

In addition, p1p?(p1 — p2) = abbPaPbbP (abbP — b*bP) = aa(a — b)bbP € RP. Applying (2) = (1) to p; and
pa, we conclude that (2 — b)bbP = p; — p; € RP.

Further, the equality (2 — b)° = wP + aP(1 — bb™aP)~1b™ — a™(1 — bPaa™)"1bP appearing in (3.6) follows
from (2) = (1)and 3) = (1). O

Remark 3.7. (1) Let us observe that the expression for (a—b)P in [19, Theorem 2.3] (in this paper the expression (3.6)
). If we assume that c = aa®(a—b) (or e = (a — b)bbP) instead of w = aaP(a — b)bbP, we get a much simpler expression
for (a —b)P, i.e., the expression (3.4) (or the expression (3.5)).

(2) In Theorem 3.6, the conditions aba = Aa*b = A’ba* and bab = ub*a = u’ab?® are weaker than ab = Aba of [19,
Theorem 2.3]. Since ab = Aba, by the proof of Corollary 3.3 we get aba = Aa*b = A'ba® and bab = ub®a = p'ab>.
However, in general, the converse is false. The following example can illustrate this fact.

Example 3.8. Let R = M3(R), and take

0 01 0 0 O
a=|0 0 1|,b=|0 0 0 [erP
0 00 1 -1 0

Then we have aba = Aa?b = A’ba® and bab = ub*a = p'ab®. However,

1 -1 0 0 0O
ab=11 -1 0 |#Aba=]0 0 0 |.
0 0O

0 0 O
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4. Main result 2

The problem of finding (2 + b)P was studied in [25], where the authors gave some representations for
(a + b)P under the assumption ab = ba. In this section, we derive some new representations for (a + b)P
under the conditions a*b = aba and b%*a = bab = ab?, which weaker than ab = ba. Now, we begin with the
following lemma.

Lemma 4.1. [24, Lemma 2.4] Let a,b € RP with a*b = aba and b*a = bab. Then
(1) {ab,a"b,ab®,aPbP} C comm(a). 4.1)
(2) {ba, ba, baP,bPaP} C comm(b). (4.2)

Lemma 4.2. Let a,b € RP with a®b = aba and b*a = bab = ab®. Then for any positive integer i, the following hold:

(1) ab® = bPa. (4.3)

(2) baPb = aPb* = b?aP. (4.4)

(3) aPbbaP = baPaPb = (aPb)* = (P)*V*. (4.5)

@) (an)iH — an(baD)i — (aD)i+1bi+1' (4.6)

(5) (baP)(@Pb)*t = (aPb)*2. 4.7)
(42)

Proof. (1) Since b®a = ab?, applying Lemma 2.2, we have abb? = bbPa. Then bPa = bPbbPa "= bPbabP =

abPhbP = abP.
(2) From b?a = ab?, by [6, Theorem 1 ], b?aP = aPb?. Hence, we have baPb @D gD = 4Dp2,

(3) Itis easy to check that a”bbaP Y paPpaP X paPaPp and aPpbaP 2 aPpaPp X (aP)?p2.
(4) We will prove this result using mathematical induction on k + 1. It is just (3) for i = 1. Now, we will
assume that it holds for k, i.e., (aPb)**! = aPb(baP)* = (aP)*16**1. Fori =k + 1,

(@Pb)F2 = aPb(aPb)* = aPbaPb(baP)* (45 aPbbaP (baP)k = aPb(baP)+!
and
(an)k+2 — an(an)k-H — an(ﬂD)k+1bk+1 (4=1) (ﬂD)k+1ﬂDbbk+1 — (EZD)k+2bk+2.

(5) Under the assumption of this lemma, we have ba(a”b)"*! = baPaPb(aPb) &’ (aPb)2(a by = (@Pby*2. [

Lemma 4.3. Let a,b € RP with a®b = aba and b*a = bab = ab®. If a; = aa™b™ and ay = a"bb", then a; — ay is
nilpotent.

Proof. Firstly, we prove that a; = aa™b™ is nilpotent. In view of Lemma 2.2, bb® commutes with a and 4P it
follows that b™a = ab™ and b™aP = aPb™ and, thus

b a™ = b™(1 — aa®) = b™ — b™aa® = b™ — aaPb"™ = a"b". (4.8)

In the rest of the proof, we will use frequently that {bbP,b™,a,aP,a™} is a commutative family. Hence, we

get aa™b™ = b™aa™. Since aa™ is nilpotent, aa™b™ = a; is nilpotent by [25, Lemma 1(1)].
Secondly, we will show that a, = a™bb™ is nilpotent. As

@67 = a"bba™bb" = a"b7b(1 — aab)bb”
= b (b — baaPb)b™ ) 4 b (1% = babal)p"
= (B2 — ab?aP)" L (P — aaPp?)b"

= a0 a B L R = a (b
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By induction, (a™bb™)" = a™(bb™)" for every integer n > 1. Since bb™ is nilpotent, a™bb™ = a, is nilpotent.
Finally, we shall prove that a; —a, is nilpotent. Since {bbP, b7, a,aP,a™} is a commutative family, we derive
Maa; = aa"b™a"bb™aa"b™ = a"b™a" (ab)aa™b™b"™

) b e aaa™ (bbb = a™b"a" aa(a" b )bb™

=a"(b"a"a)ab™a"bb™ = aa"b™aa"b"a"bb"™
= a%az
and
ara1a, = a"bb™aa"b™a"bb™ = a"b" baa"a"bb™ b™
= a"b"ba(1 - aa”)bb™b" = a"b™ [bab — baa(a®b)| b
= 4| (ba)b — (0a®)baa| 6™ E am b bbaa™ b

= (e )aa b b D A b ba ™ b(aa b
=a"bb"a"bb"aa"b"
= a%al.

Therefore, we can prove that a%az = mara; and ara1a; = a%al.

As a; and a; are nilpotent, aa™b™ — a™bb™ = a; — a; is nilpotent by [24, Lemma 2.2 (2)]. O

Lemma 4.4. Let a,b € RP with a?b = aba and b*a = bab = ab? and w = aaP(a — b)bbP € RP. Suppose by = ww™
and by = aa™b™ — a™bb"™. Then by + by is nilpotent.

Proof. First, we will give some useful equalities. By the proof of Lemma 4.3, we have that {(bbP, b7, a,aP,a™} is
a commutative family. This means thata™w = wa™ = aaP(a—b)bbPa™ @ a(a—b)aPbbPa™ = a(a—b)bbPaPa™ = 0
and wb™ = b™w = b™aaP(a — b)bb® = aa®(a — b)bb™b" = 0.

Next, we will prove that by + b, is nilpotent. Using the previous equations, we obtain that

biby = ww™(aa™b™ — a"bb™) = wwa™(ab™ — bb™) =0

and byby = (aa™b™ — a™bb™)ww™ = (aa™ — a™b)b™ww™ = 0. Hence, b1b; = byb; = 0.
By Lemma 4.3, a; — a2 = b, is nilpotent. Since by and b, are nilpotent, and b; commutes with b, then by
using [25, Lemma 1(2)], it follows that b; + b, is nilpotent. O

We are now ready to prove the other of our main results.

Theorem 4.5. Let a,b € RP be such that a*b = aba, b*a = bab = ab® and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1)a—beRP.

(2) & =1—aPh e RV,

(3) w = aaP(a — b)bb" € RP.

In this case,

s—1
(ﬂ _ b)D — aDED _ a”b(aDED)z _ Z(bD)Hlaian, (49)
i=0
s—1 ) ) t—1 ) )
({1 _ b)D — wD _ Z(bD)Hlazan + Z(lZD)Hlblbﬂ _ llnb({lD)2, (410)
i=0 i=0

where EP = a™ + a*aP(a — b)P, wP = aaP(a — b)PbbP.
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Proof. (1) = (3) Assume thata —b € RP, letw = cl, y = aa®(a — b)Pbb", where ¢ = aaP(a - b), | = bbP. We will
prove that w = aaP(a — b)bbP € RP and wP = y. By Lemma 4.1, we have aaPaaP(a — b) = aaP(a — b)aa® and

(a = b)aa®(a —b) = aaP — aaP(ab) — ba*a® + ba(ab)
@ a*aP — abaaP — baaP + (baP)ba
42 34D — abaa® — baaP + b?aa®
= (a® — ab — ba + b*)aa®

= (a — b)%aaP.

D
By [24, Theorem 3.1], it follows that c € RP and P = [aaD (a— b)] =aaP(a - b)P.
By the proof of Lemma 4.3, we have that {(bbP, b7, a,aP,a™} is a commutative family. Then we get

cl = aa®(a — b)bb® = aaPbbP(a — b) = bbPaa(a - b) = Ic.

Thus, utilizing Corollary 3.3, we obtain w € RP and
WP = [aa®(@ - b)pbP] = [aaP(a - 1)) BVP)° = aa(a - b)PBLP = .

(3) = (1) Assume that w is Drazin invertible and let us define
s—1 4 ' t—1 4 .
x = ZUD _ Z(bD)Hlazan + Z({ZD)Hlblbn _ anb(aD)Z =X — Xy + X3,
i=0 i=0

where x; = wP, x, = Y0 (WP)* '™, x3 = Y125 (aP) 06" — a"b(aP)>.
Next, we will prove that x is the Drazin inverse of a — b, i.e., we will prove that x(a — b) = (a — b)x,
x(a — b)x = x and (a — b) — (a — b)*x is nilpotent.
Step 1 First we prove that x(a — b) = (a — b)x. In light of Lemma 4.1, we have
(a = b)a"b@P)?* = (a—-b)(1 — aaP)b(a")?
= ab(a")? — bb(a")* - (a - b)aa"b(a")*

@ aaPba® — bb(aP)* - (a - b)aa®aPbaP

= aaPbaP — baPbaP — (a — b)aPba®

= (a — b)aPba® — (a — b)aPbaP
=0.

Hence
s—1 ) . -1 ) .
({1 _ b)x — ({1 _ b) [ZUD _ Z(bD)Hlalan + Z(ﬂD)Hlblbn _ a”b(aD)z}
i=0 i=0
e (4.11)
— (ﬂ _ b) [ZUD _ Z(bD)Hlaian + Z(aD)Hlblbnl
i=0 i=0

=71 — 22+ 23,
where z; = (a — bywP, z, = (a —b) ¥, (bP)*a'a™, z3 = (a — b) Y. 15(aP)*1b'b".
Second we show x1(a — b) = z;, x2(a — b) = z, and x3(a — b) = z3. Since w = aaP(a — b)bbP, we have
w=1-a"(a-b)(1-0D")and

a-b=w+@-b)b" +a"(a-b)—a"(a-Db)b". (4.12)
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From Lemma 4.2, we have abP = bPa, which together with bbPa = abbP, and then we have
w(a — b) = aa®(a — b)bb®(a — b) = (a — b)aa®(a - b)bb® = (a - b)w.

Accordingly, by [6, Theorem 1], we get x1(a — b) = wP(a — b) = (a — bywP = z;.
By elementary computations, we obtain

bPa"b = bbP — bPa(@@Pb) 2 bbP — (BPaP)ba 2 P — bbPaa® = bbPa". (4.13)

So we have

s—1 s-1
x@-b)—z, = Z(bD)i+1aia“(a —b)—(a—0D) Z:(bD)”la’d77

i=0 i=0
s=1 s—1 s—1 s=1

— Z(bD)i+1ai+1an _ Z(bD)Hlaianb —a Z(bD)Hlaian +b Z(bD)Hlaian
i=0 i=0 i=0 i=0

s—1 s—1 s—1 s—1
(4;) Z(bDa)iJrlan _ bD Z(bDa)ianb _ Z(bDa)iJrlan + bbD Z(bDa)iaﬂ
i=0 i=0 i=0

i=0
s—1 s—1

DY WPabPae + Y (tPaybbPa
i=0 i=0

= 0.

Hence, x,(a — b) = z,.
Next, we will prove that x3(a — b) = z3. Also, the following equalities will be useful: taking into account
the following identities

baPb™ — aPbb™ = baP (1 - bbP) — aPb(1 - bbP)
= baP — (baPb)bP — aPb + PP
) b — aPB26° - aPb + aPbP°
= baP — aPb
and
= a™baP(a — b)a® = a™(baPa — baPb)a”

(4.4)
='a

a*b(aP)?(a - b)
"(baPa — aPv*)aP = a™baPaa® — a"aPb?aP

= (1 - aa®)baP = ba® - a(aPb)a”

@D baP — aPaaPb = ba® — aPb,

we have (baPb™ — aPbb™) — a™b(aP)*(a — b) = 0. Using the above relations and ab™ = b™a, we conclude

t—1 t—1
x3(a=b)—z3=|Y @)™ —a"b@")?|(a-b) - (a—D) Z(aD)f“bib“
i=0 i=0

t— t—1

-1 -1

(aD)i+1bibnb " Z(aD)”lbib”a —a Z(aD)iHbibn +b Z(aD)H—lbibn
i=0 i=0

-1

1
= —a"b(a")*(a - b) -
i=0 i=0
t

i=0 i=0

t—1 t-1 t—1
L b@ P —b) - Y @by +aP Y (@ b)bra — aa® Y @PbYb" +ba® Y @by
i=0 i=0
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i1 t—1 . t—1 ) t—1 ) t—1 .
@ —a"b(aP)*(a - b) - Zl(an)”lb7T + Z‘(an)laan7T - Z‘(an)laan7T + baP Zl(an)’b77
i=0 i=0 i=0 i=0
t—1 ) t—1 )
= baP Z(an)‘b” - Z(a%)'“b” — a"b(aP)(a - b)
i=0 i=0

t—1 t—1
= [ban” + Z(a%)iﬂb”} - [anbﬂ + Z(a%)iﬂb”} — a"b(@P)(a - b)
i=1 i=1

= (baPb™ — aPbb™) — a"b(a")*(a - b) = 0.
Consequently, x3(a — b) = z3. It follows that x(a — b) = (a — b)x.
Step 2 We give the proof of x(a — b)x = x. By the proof of Lemma 4.4, we have a"w = wa™ = 0 and wb™ =
b™w = 0. Hence, from equality (4.11), wPa™ = a™wP = a"w(wP)* = 0 and wPb™ = b™wP = b"w(w")* = 0, we
obtain

s—1 t—1
x(a — b)x = x(a — b) [wD - Z‘(17'3)"”L11}177 + Z(aD)"”b"b”l
i=0 i=0

s—1 -1 2
— (11 _ Z’J)[ZUD _ Z(bD)Hlaian + Z(aD)Hlbibnl
i=0 i=0

s=1 -1
= (- H@")? - @@= by Y Py aa™ + (@ — byw® Y (aP)*bb"
i=0 i=0

s—1 s=1 t—1 t—1

+ (tl _ b) Z(bD)i+1aian Z(bD)Hlaiun + (ﬂ _ b) Z(aD)Hlbibn Z(aD)Hlbibn
i=0 i=0 i=0 i=0

=mq + my + m3 + my + ms,

where
s—1
mo = @=0)@"?, my == ) ),
i=0
my = (Ll _ b)wD (HD)1+1bzbn, My = (ﬂ _ b) Z(bD)Hlalan Z(bD)Hlaian,
i=0

i=0

[y

I
o

-1 t-1
ms = (a—b) Z(aD)iJrlbibn Z({ZD)iHbibn_
i=0 i=0
Now we prove my + 1y + m3 + my + Ms = X.
Since ab” = bPa, we may apply [6, Theorem 1 ] to give a®bP = bPaP. So, we have
BPa™ = bP — bPaPa = b° — @PbP)a ) b — aaPbP = amP. (4.14)
From the equality (4.12), a™wP = 0 and b™wP = 0, we derive
(a-b)wP =[w+ (@a—b)b™ +a"(a—b)—a"(a—b)b"]w"

4.15
= ww® +a™(a - b)w® = ww® + a"wP @ - b) = wwP. (*15)

Thus m; = (a — b)(wP)? = [(a - b)wD] wP = wwPwP = wP. From the equalities (4.14) and wPa™ = 0, we
deduce that

s—1 s—1
my = —(a—byw” Y (B°)*1a'a™ = ~(a - bwPa™ Y (B°)*1a’ = 0.
i=0

i=0
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By the proof of Lemma 4.3, we have b™aP = aPb™. Combining b™aP = aPb™ and wPb™ = 0, we get

= -1
ms = (a—byw® Y @)"'b'b" = (a - byw’b" Z(aD)"“bf =0.
i=0 i=0
Secondly, we have to prove ny = — Y35 (b°)*'a'a™ and ms = Y. /25 (@P)*'b'b"™ — a"b(aP)?, respectively.

In view of Lemma 4.1 and Lemma 4.2, we have the following equality:
(aPb — baP)aPb™ = —a"b(aP)?. (4.16)

Using the above relations and a°a™ = 0, we get

s=1
(Ll _ b)Z bD i+1 z at Z(bD)Hl i m
i=0
s=1 s—1
=_p Z(bD)Hl Z(bD)H-lu a® + HZ(bD)Hl i m Z(bD)l+l i m
i=0 i=0
s—1 s—1 s—1
_ |:bbDﬂn + Z(bDa)ian Z(bD)Hlaian +a Z(bD)Hlaian Z(bD)H-laian
i=1 i=0 i=0 i=0
s—1 s—1 et 5—1 s—1
— _bbDan Z(bD)H—luian _ Z(bDa)ian Z(bD)Hlazan +a Z(bD)Hlaian Z(bD)Hlaian
i=0 i=1 i=0 i=0 i=0
114 s—1 4 ' s—1 . s—1 . 4 s—1 . 4 s—1 4 '
( = ) _ Z(bD)Hlazan _ Z‘(bD{l)lan Z(bD)Hlaraw +a Z(bD)Hlalan Z(bD)Hlazan
i=0 i=1 i=0 i=0 i=0
13 s—1 ) ) s—1 ) s—1 -1 ) )
(ﬁ) _ Z(bD)Hlalan _ Z(abD)zan Z(bD)Hlazan + Z(abD)Hl 4 Z(bD)Hlazan
i=0 i=1 i=0 i=0
s—1 s—1 s—1 s—1 s—1
_ Z(bD)iHaian _ Z(abD)ian Z(bD)ma P [Z(abD)ian + (abD)san Z(bD)Hlaian
i=0 i=1 i=0 i=1 i=0

s—1

s—1 s—1
(453) _ Z(bD)Hlaian bD) Z(bD)Hl zan + Z(abD)z b4 Z(bD)Hl 1arc + (bD)s s Z(bD)Hlaian
i=0 i=0

i=1
s5—1
_ Z(bD)Hlaian
i=0

Similarly, one can show that
-1

-1 -1
ms = (El _ b) Z(HD)H—lbibn Z(aD)Hlbibn — Z(HD)i+1bibn + (an _ bﬂD)ﬂDbn
i=0 i=0

i=0

t=1
(426) Z({ZD)Hlbibn _ a”b(aD)z.
i=0

So, we get x(a — b)x = x.



X. Qin, L. Lu / Filomat 37:17 (2023), 5623-5639 5637

Step 3 Now we will prove that (a — b) — (a — b)x is nilpotent. According to the equality (4.11), we have

s—1 -1
(a- b)zx S o Z(bD)Hlaian 4 z(aD)i+1bibn @a- b)2
i=0 i=0
s—1 . ) t—1 . )
= wP(a—b)? - Z(bD)’“u’a”(a e Z(aD)”lb’b“(a bR =1+ DL+

i=0 i=0

where I; = wP(a - b)%, I, = — Y, (0P)*'a'a™(a - b)? and Iz = Y.1(aP)*'bib™(a — b)2. Using the expression
(4.15), we get

(4.17)

2
I = w@P)(a-b)?=w [(a - b)wD] = w(ww”)? = w - ww". (4.18)
By Lemma 4.1 and Lemma 4.2, it is sufficient to prove

s—1 s—1 s—1 s—1
L 2 =Y @Paytaam + Y (WPayah + b0 Y (WPayatba - Y P (bPaya™t?

i=0 i=0 i=0 =0

s—1 s—1 s—1 s—1
DY 0Py aam + Y 0Py b+ Y (PaybPaba - Y (bPaybPan?
i=0 i=0 i=0 i=0

s—1 s—1 s—1 s—1
“2 Y 0Py e + Y Py amh + Y (1PaybbPaa - Y (bPaybbParh
i=0 i=0 i=0 i=0

(4.19)
s—1 ' s—1 )
= bbPaa™ + Z(bDa)’”a”b - Z(b%)lbb%ﬂb
i=0 i=0
w s—1 ‘ s—1 )
2 pPaa™ + Y (Pay b - Y bbP(HPa)ab
i=0 i=0
= bbPaa™ — bbPa™b.
Similarly,
Iy = —aa”bb™ + aaPb™a. (4.20)

Combining (4.12), (4.17), (4.18), (4.19) and (4.20) gives

(a-b)—(a-b)’x
=[w+@—-bb" +a"(a-b)—a"(a-bb"] — (w-ww™)
— (bbPaa™ — bbPa™b — aabb™ + aaPb™a)
= ww™ + aa"b™ — a"bb"
=by +by.
It follows from Lemma 4.4, (a — b) — (a — b)*x = by + b, is nilpotent. Therefore, we have proved a — b € RP
and (a — b)P = x, i.e., the expression (4.10).
(1) = (2) To check that & € RP, we write & as & = 1 — aPb = hy + hy, where hy = a™, hy = aP(a — b).
It follows from Lemma 4.1 that (a°)*(a — b) = aP(a — b)aP and (a — b)*a" = (a — b)aP(a — b). Utilizing [24,
Theorem 3.1] gets a”(a — b) = h, € RP and k) = [aD(a - b)]D = (@P)P(a - b)P = a%aP(a - b)P.
By Lemma 4.1, we have that a®b commutes with aa®. Then aP(a — b) € comm(a™) and hihy = hahy = 0. It
follows from [6, corollary 1] that EP = a™ + aaP(a — b)P.
(2) = (1) Assume that ¢ is Drazin invertible, similarly as in the proof of (3) = (1), we have thata—b € RP
and (a — b)P is represented as in (4.9). O
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Using Theorem 4.5, we can verify the following corollary, which generalizes [25, Theorem 3].

Corollary 4.6. Let a,b € RP be such that a®b = aba, b*a = bab = ab* and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1)a+beRP.

(2) & =1+aPb e RP.

(3) w’ = aaP(a + b)bbP € RP,

In this case,

s—1
@+bP = PP +a"b@PePy + Z(bD)i”(—a)iaﬂ, (4.21)
i=0

s—1 t—1
({1+Z’J)D — wlD +Z(bD)i+1(_a)ian +Z(HD)i+1(—b)ibn +a”b(aD)2,
i=0 i=0

where &P = a™ + a?aP(a + b)P, w'P = aaP(a + b)PbbP.
Proof. By virtue of [3, Theorem 2.2], b € RP. Applying Theorem 4.5 to a and —b, we complete the proof. [

Remark 4.7. (1) Given a,b € R, the equality ab = ba of [25, Theorem 3] implies that a*b = aba, b*a = bab = ab® of
Corollary 4.6. In addition, the expressions of (a + b)P from [25, Theorem 3] can be derived from (4.21).
(2) Let R = M,,(C), then Corollary 4.6 covers [21, Theorem 2].

Finally, to show that our conditions are strictly weaker than the assumption ab = ba, we construct
matrices a, b satisfying the conditions of Corollary 4.6, but ab = ba does not hold.

Example 4.8. Let R = My(R), and takeaz[ 8 } ] b:[ 8 (1) ]GRD.

Since ab # ba, the representations for (a + b)P fail to apply in [25, Theorem 3]. On the other hand, we can
observe that a?b = aba and b%a = bab = ab?. Therefore, according to the formulae in Corollary 4.6, we get

(a+b)D=[8 %]
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