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Available at: http://www.pmf.ni.ac.rs/filomat

Formulae for the Drazin inverse of elements in a ring
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Abstract. This paper studies additive properties of the Drazin inverse in a ring R. Some necessary and
sufficient conditions for the Drazin invertible are given. Furthermore, we derive additive formulae under
conditions weaker than those used in some resent papers on the subject. These extend the main results of
Wei and Deng (J. Linear Multilinear Algebra, 59(12) (2011) 1319-1329) and Wang et al. (Filomat, 30(2016),
1185-1193)

1. Introduction

Throughout this paper, R is an associative ring with an identity. R−1 denotes the set of all invertible
elements in R. λ, λ′, µ and µ′ always stand for nonzero complex numbers. The commutant of an element
a ∈ R is defined as comm(a) = {x ∈ R : ax = xa}. Let us recall that the Drazin inverse of a ∈ R is the element
b ∈ R (denoted by aD) which satisfies the following equations [6]:

bab = b, ab = ba, ak = ak+1b,

for some positive integer k. The smallest integer k is called the Drazin index of a, denoted by ind(a). If
ind(a) = 1, then b is called the group inverse of a and is denoted by a#. The subset of R composed of Drazin
invertible elements will be denote by RD. The conditions in the definition of Drazin inverse are equivalent
to:

bab = b, ab = ba, a − a2b is nilpotent.

The notation aπ means 1 − aaD for any Drazin invertible element a ∈ R. Observe that by the definition of
the Drazin inverse, aaπ = aπa is nilpotent.

The Drazin inverse has applications in a number of areas such as singular linear systems [23], the theory
of finite Markov chains [11, 15, 16], numerical analysis [8, 10, 14, 20, 22] and so on [1, 2]. Drazin first studied
the Drazin inverse of the sum of two Drazin invertible elements in a ring in his ccelebrated paper in [6].
In this paper, Drazin was able to deduce a formula for the Drazin inverse of a + b when ab = ba = 0. The
general question of how to express the Drazin inverse of a + b as a function of a, b and the Drazin inverses
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of a and b without side conditions, is very difficult and remains open. Hartwig et al. [9], expressed (A+B)D

under the one-side condition AB = 0, where A,B are complex square matrices. This result was extended to
bounded linear operators on an arbitrary complex Banach space by Djordjević and Wei in [7]. Later, it was
extended for morphisms on arbitrary additive categories by Chen at al. in [5]. More related results can be
found in [3, 12, 13, 17, 18, 24].

The motivation for this article was the result in Wang et al. [19], Wei and Deng [21] and Zhuang et al.
[25]. In [19], the authors proved that a − b ∈ RD if and only if aaD(a − b)bbD

∈ R
D, if ab = λba for some

nonzero complex λ. In [21], the authors considered the relations between the Drazin inverse of A + B and
1+ADB for two commutative complex matrices A and B. In [25], Zhuang et al. extended the result in [21] to
a ring R , and it was proved that a+ b ∈ RD if and only if 1+ aDb ∈ RD. In this paper, our main contributions
are to generalize the results of [19] and [21, 25] for the Drazin inverse (ab)D and (a ± b)D under the weaker
conditions.

The paper is organized as follows. In section 2, we will deduce some lemmas. In section 3, we
investigate Drazin invertibility of the product of a, b ∈ RD which will be repeatedly used in the sequel. Then
we characterize the relations of a− b, aaD(a− b), (a− b)bbD and aaD(a− b)bbD. In section 4, we introduce some
new conditions and give the explicit expressions for (a ± b)D.

2. Preliminaries

The following lemmas are required in what follows.

Lemma 2.1. Let a, b ∈ RD. If a2b = λba2, then aaDb = baaD.

Proof. Assume k=ind(a). Let p = aaD. By hypothesis, we have

pb − pbp = (aD)2ka2kb(1 − aaD) = (aD)2ka2(k−1)a2b(1 − aaD)

= λ(aD)2ka2(k−1)ba2(1 − aaD) = · · · = λk(aD)2kba2k(1 − aaD)

= λk(aD)2kba2k(1 − aaD)2 = λk(aD)2kb(ak
− ak+1aD)2.

From the definition of the Drazin inverse, we obtain ak
− ak+1aD = 0, and so pb − pbp = 0. Hence pb = pbp.

Likewise, bp = pbp. Accordingly, aaDb = pb = bp = baaD, as desired.

Analogously to Lemma 2.1, we have the following result.

Lemma 2.2. Let a, b ∈ RD. If b2a = µab2, then bbDa = abbD.

Lemma 2.3. Let a, b ∈ R with aba = λa2b. Then for any positive integer i, the following hold:

(1) ai+1b = λ−1aiba = λ−iabai. (2.1)

(2) (ab)i = λ
(i−1)i

2 aibi. (2.2)

Proof. (1) From aba = λa2b, we have

ai+1b = ai−1a2b = λ−1ai−1aba = λ−1aiba.

Also, we have that

ai+1b = λ−1aiba = λ−1ai−2a2ba

= λ−2ai−2aba2 = λ−2ai−3a2ba2

= λ−3ai−3aba3 = · · · = λ−iabai.

(2) Under the assumption of this lemma, we have
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(ab)i = (ab)i−2abab = λ(ab)i−2a2b2 = λ1+2(ab)i−3a3b3

= · · · = λ
∑k=i−1

k=0 kaibi = λ
(i−1)i

2 aibi.

Lemma 2.4. Let a, b ∈ RD. If aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2, then

(1) abaD = λ−1aDab. (2.3)

(2) babD = µ−1bDba.

Proof. Assume k = max{ind(a), ind(b)}.
(1) By hypotheses, we get

aD(ak+1b)
(2.1)
= aD(λ−kabak) = λ−kaD(abak+1)aD

(2.1)
= λ−kaD(λk+1ak+1ab)aD = λ(aDak+1)abaD

= λakabaD = λak+1baD.

It follows that

aDab = (aD)k+1akab = (aD)k(aDak+1b) = λ(aD)kak+1baD

= λ(aD)k−1(aDak+1b)aD = λ2(aD)k−1ak+1b(aD)2

= · · · = λk+1(ak+1b)(aD)k+1

(2.1)
= λk+1(λ−kabak)(aD)k+1

= λabaD.

(2) The proof is similar to (1).

Lemma 2.5. Let a, b ∈ RD. If aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2, then

(1) baDb = λb2aD.

(2) abDa = µa2bD.

Proof. It is enough to prove (1) since we can obtain (2) by the symmetry of a and b.

(1) By hypotheses, we obtain ab(aD)2 = (abaD)aD (2.3)
= λ−1aD(abaD)

(2.3)
= λ−2(aD)2ab.

Since λa2b = λ′ba2 implies that aaDb = baaD by Lemma 2.1, it follows that

baDb = b(aD)2ab = λ2bab(aD)2 = λ2b(abaD)aD

(2.3)
= λ2b(λ−1aDab)aD = λbbaDaaD = λb2aD.

3. Main result 1

Under the conditions aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2, Chen and Sheibani [4] considered the
relations of a + b, (a + b)bbD, aaD(a + b) and aaD(a + b)bbD in a Banach algebra, but they did not deduce the

formulae of (a + b)D,
[
aaD(a + b)

]D
,
[
(a + b)bbD

]D
and
[
aaD(a + b)bbD

]D
. In this section, we extend the results

in [4] to a ring case. Moreover, we give explicit representations of (a − b)D,
[
aaD(a − b)

]D
,
[
(a − b)bbD

]D
and[

aaD(a − b)bbD
]D

.
First, we start with a theorem that is an extension of [19, Lemma 2.2 (3)].
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Theorem 3.1. Let a, b ∈ RD. If aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2, then ab ∈ RD and

(ab)D = bDaD = µ−1aDbD.

Proof. Let x = bDaD. We will prove that ab ∈ RD and the Drazin inverse of ab is x, i.e., (ab)x = x(ab), x(ab)x = x,
and (ab)k = (ab)k+1x for some positive integer k.

First we give some useful equalities

(ab)iaD = (ab)i−1abaD (2.3)
= λ−1(ab)i−1aDab = λ−1(ab)i−2abaDab

(2.3)
= λ−2(ab)i−2aD(ab)2 = · · · = λ−iaD(ab)i,

(3.1)

so we have

aibiaD (2.2)
= λ−

(i−1)i
2

[
(ab)iaD

] (3.1)
= λ−

(i−1)i
2

[
λ−iaD(ab)i

]
= λ−

i(i+1)
2 aD(ab)i. (3.2)

Note that λa2b = λ′ba2 and µb2a = µ′ab2 imply that aaDb = baaD and bbDa = abbD by Lemma 2.1 and Lemma
2.2.

(1) It can easily be verified that (ab)x = (abbD)aD = bD(baaD) = bDaDab = x(ab).
(2) We easily find that x(ab)x = bD(aDab)bDaD = bbD(aDabD)aD = bDbbDaDaaD = bDaD = x.
(3) Take k = max{ind(a), ind(b)}. From the definition of the Drazin inverse, we have that

(ab)k+1x = (ab)k+1bDaD (2.2)
= λ

k(k+1)
2 ak+1(bk+1bD)aD = λ

k(k+1)
2 ak+1bkaD

= λ
k(k+1)

2 a(akbkaD)
(3.2)
= λ

k(k+1)
2 a
[
λ−

k(k+1)
2 aD(ab)k

]
= aaD(ab)k (2.2)

= λ
(k−1)k

2 aDak+1bk = λ
(k−1)k

2 akbk

(2.2)
= λ

(k−1)k
2

[
λ
−(k−1)k

2 (ab)k
]
= (ab)k.

Hence, (ab)D = bDaD. Similarly, we can check that (ab)D = µ−1aDbD.

Remark 3.2. Note that the conditions given in Theorem 3.1 are symmetric.

Corollary 3.3. [19, Lemma 2.2(3)] Let a, b ∈ RD. If ab = λba, then ab ∈ RD and (ab)D = bDaD = λ−1aDbD.

Proof. From ab = λba, we have aba = λ−1a2b = λba2 and bab = λb2a = λ−1ab2. This completes the proof by
Theorem 3.1.

In 2017, Zhu and Chen [24] assumed the following two conditions in a, b ∈ RD,

a2b = aba, b2a = bab. (3.3)

We observe that the conditions (3.3) and aba = λa2b = λ′ba2, bab = µb2a = µ′ab2 are independent.
Precisely, in the first example, the conditions (3.3) hold, but the conditions aba = λa2b = λ′ba2, bab = µb2a =
µ′ab2 are not applicable.

Example 3.4. Let R =M2(R), and take

a =
[

1 0
1 0

]
, b =

[
3 0
0 0

]
∈ R

D.
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Since aba , λ′ba2 and bab , µ′ab2, we know that the conditions of Theorem 3.1 do not hold. On the other
hand, we can observe that a2b = aba and b2a = bab. By [24, Theorem 3.1 ], (ab)D = aDbD.

From computing, we get aD =

[
1 0
1 0

]
, bD =

[
1
3 0
0 0

]
, aDbD =

[
1
3 0
1
3 0

]
and (ab)D =

[
1
3 0
1
3 0

]
= aDbD.

But bDaD =

[
1
3 0
0 0

]
, (ab)D.

Also, we construct matrices a and b such that aba = λa2b = λ′ba2, bab = µb2a = µ′ab2 are met, but (3.3)
are not satisfied in the next example.

Example 3.5. Let R =M2(C), and take

a =
[
−i 0
0 i

]
, b =

[
0 2i
2i 0

]
∈ R

D.

After calculating, we get that aba = −a2b = −ba2, bab = −b2a = −ab2. Hence, the conditions of Theorem
3.1 hold. However, aba , a2b, bab , b2a.

By elementary computations, we obtain aDbD =

[
0 1

2
−

1
2 0

]
, bDaD =

[
0 −

1
2

1
2 0

]
.

By Theorem 3.1, (ab)D = bDaD = µ−1aDbD. Here (ab)D =

[
0 −

1
2

1
2 0

]
= bDaD = −aDbD.

Now we start the first of our main theorems, which extends the result under the condition ab = λba in
[19, Theorem 2.3].

Theorem 3.6. Let a, b ∈ RD be such that aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2. Then the following conditions
are equivalent:

(1) a − b ∈ RD.
(2) c = aaD(a − b) ∈ RD.
(3) e = (a − b)bbD

∈ R
D.

(4) w = aaD(a − b)bbD
∈ R

D.
In this case,

(a − b)D = cD
− aπ(1 − bDaaπ)−1bD, (3.4)

(a − b)D = eD + aD(1 − bbπaD)−1bπ, (3.5)

(a − b)D = wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD, (3.6)

where cD = aaD(a − b)D, eD = (a − b)DbbD,wD = aaD(a − b)DbbD.

Proof. Recall that aaπ and bbπ are nilpotent and their indexes of nilpotency are the Drazin indexes of a and
b, respectively. Let s=index(a) and t=index(b).

(1) ⇒ (2) Since λa2b = λ′ba2, by Lemma 2.1, we get aaDb = baaD which implies aaD(a − b) = (a − b)aaD.

Applying Corollary 3.3, we obtain aaD(a − b) ∈ RD and
[
aaD(a − b)

]D
= aaD(a − b)D.

(2)⇒ (1) Assume that c is Drazin invertible and let us define x = cD
− aπ(1 − bDaaπ)−1bD.

By Lemma 2.5(2) and aπas = 0, we get (bDaaπ)s = µ
(s−1)s

2 bDaπas(bD)s−1 = 0. Thus, according to [12, Lemma
1.1 ], we get 1 − bDaaπ is invertible and

(1 − bDaaπ)−1 = 1 + bDaaπ + (bDaaπ)2 + · · · + (bDaaπ)s−1.

Since aaDb = baaD it follows that aπb = baπ and c(a − b) = (a − b)c. From these, by [6, Theorem 1 ], we get
aπbD = bDaπ and cD(a − b) = (a − b)cD.
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Since (1 − bDaaπ)bD = bD(1 − aaπbD), combining aπbD = bDaπ, we derive

(a − b)aπ(1 − bDaaπ)−1bD

= (a − b)aπbD(1 − aaπbD)−1

= (a − b)bDaπ(1 − aaπbD)−1

= −bbD(1 − abD)aπ(1 − aaπbD)−1

= −bbD(1 − abDaπ − abDaaD)aπ(1 − aaπbD)−1

= −bbD(1 − aaπbD)aπ(1 − aaπbD)−1

= −bbDaπ.

So, we get

(a − b)x = (a − b)
[
cD
− aπ(1 − bDaaπ)−1bD

]
= (a − b)cD + bbDaπ.

Similar to the above way, we also have
[
aπ(1 − bDaaπ)−1bD

]
(a − b) = −bbDaπ. So, it follows

x(a − b) =
[
cD
− aπ(1 − bDaaπ)−1bD

]
(a − b) = cD(a − b) + bbDaπ (3.7)

and x(a − b) = (a − b)x.
Next, we give the proof of x(a − b)x = x. Let x(a − b) = x′ + x′′, where x′ = cD(a − b) and x′′ = bDbaπ.
Observe that c+ aπ(a− b) = aaD(a− b)+ (1− aaD)(a− b) = a− b. From aπc = caπ = (a− b)aaDaπ = 0, we get

aπcD = cDaπ = (cD)2caπ = 0. In view of the relations above and taking into account the following identities

xx′ =
[
cD
− aπ(1 − bDaaπ)−1bD

]
cD(a − b)

= (cD)2(a − b) = (cD)2 [c + aπ(a − b)]

= cD

and

xx′′ =
[
cD
− aπ(1 − bDaaπ)−1bD

]
bDbaπ

=
[
−aπ(1 − bDaaπ)−1bD

]
bDbaπ

= −(1 − bDaaπ)−1bDaπ

= x − cD,

we conclude that x(a − b)x = x(x′ + x′′) = x.
Finally, we will prove that (a− b)− (a− b)2x is nilpotent. Since a− b = c+ aπ(a− b), caπ = 0 and aπcD = 0,

we have

(a − b)2cD = [c + aπ(a − b)]2 cD =
[
c2 + 2caπ(a − b) + aπ(a − b)2

]
cD = c2cD = c − ccπ.

Also we have (a − b)bDbaπ = (a − b)(1 − bπ)aπ = aaπ − baπ − aaπbπ + bbπaπ.
From (3.7) and the above two equalities, we get

(a − b) − (a − b)2x

= (a − b) − (a − b)
[
cD(a − b) + bbDaπ

]
= (a − b) − (c − ccπ + aaπ − baπ − aaπbπ + bbπaπ)

= (a − b) −
[
(a − b)aaD + (a − b)aπ − aaπbπ + bbπaπ − ccπ

]
= (a − b) − [(a − b) − aaπbπ + bbπaπ − ccπ]
= aaπbπ − bbπaπ + ccπ.
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Note that (aaπbπ − bbπaπ)k = (a − b)kaπbπ and (a − b)k =
∑

i+ j=k λi, ja jbi. Let k ≥ 2 max{s, t}. Then we have
(aaπbπ − bbπaπ)k = 0. Hence aaπbπ − bbπaπ is nilpotent.

Since ccπ and aaπbπ − bbπaπ are nilpotent and (aaπbπ − bbπaπ)ccπ = ccπ(aaπbπ − bbπaπ) = 0, it follows from
[25, Lemma 1(2)] that aaπbπ− bbπaπ+ ccπ is nilpotent. Therefore, we have proved a− b ∈ RD and (a− b)D = x,
i.e., the expression (3.4).

(1)⇒ (3) This is similar to (1)⇒ (2).
(3) ⇒ (1) Assume that e is Drazin invertible and let y = eD + aD(1 − bbπaD)−1bπ. Since µb2a = µ′ab2, by

Lemma 2.2, we have bbDa = abbD and bπa = abπ. From bbDa = abbD, it is easy to obtain that e(a− b) = (a− b)e
and

eD(a − b) = (a − b)eD. (3.8)

By Lemma 2.5(1) and btbπ = 0, we have (bbπaD)t = λ
(t−1)t

2 btbπ(aD)t = 0. It follows from [12, Lemma 1.1 ]
that 1 − bbπaD is invertible (1 − bbπaD)−1 = 1 + bbπaD + (bbπaD)2 + · · · + (bbπaD)t−1.

Since bπa = abπ, we have that bπaD = aDbπ by [6, Theorem 1 ]. From this, we obtain

(a − b)aD(1 − bbπaD)−1bπ

= aaD(1 − baD)bπ(1 − bbπaD)−1

= aaD(1 − bbπaD
− bbbDaD)bπ(1 − bbπaD)−1

= aaD(1 − bbπaD)bπ(1 − bbπaD)−1

= aaDbπ.

(3.9)

Hence, we have

(a − b)y = (a − b)
[
eD + aD(1 − bbπaD)−1bπ

]
= (a − b)eD + aaDbπ. (3.10)

Since aD(1 − bbπaD) = (1 − aDbbπ)aD, then using the same way as in the proof of (3.9), we also obtain[
aD(1 − bbπaD)−1bπ

]
(a − b) = (1 − aDbbπ)−1aDbπ(a − b) = aaDbπ. So, it follows

y(a − b) =
[
eD + aD(1 − bbπaD)−1bπ

]
(a − b) = eD(a − b) + aaDbπ. (3.11)

Combining (3.8), (3.10) and (3.11), we get y(a − b) = (a − b)y.
We now prove that y(a − b)y = y. Let y(a − b) = y′ + y′′, where y′ = eD(a − b) and y′′ = aaDbπ.
The following equality will be useful:

e + (a − b)bπ = (a − b)bbD + (a − b)(1 − bbD) = a − b. (3.12)

From bπe = ebπ = (a − b)bbDbπ = 0, we get bπeD = eDbπ = (eD)2ebπ = 0. Thus, we obtain

y′eD = (eD)2 [e + (a − b)bπ] = (eD)2e + (eD)2(a − b)bπ = eD

and y′′eD = aaDbπeD = 0. Similarly, it is easy to get y′aD(1 − bbπaD)−1bπ = 0.
So, we get

y(a − b)y = (y′ + y′′)
[
eD + aD(1 − bbπaD)−1bπ

]
= y′eD + y′aD(1 − bbπaD)−1bπ

+ y′′eD + y′′aD(1 − bbπaD)−1bπ

= eD + aaDbπaD(1 − bbπaD)−1bπ

= eD + aD(1 − bbπaD)−1bπ

= y.
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Finally, let us prove that (a − b) − (a − b)2y is nilpotent. From ebπ = bπe = 0 and bπeD = 0, which together
with equality (3.12), we have

(a − b)2eD = [e + (a − b)bπ]2 eD =
[
e2 + 2(a − b)bπe + (a − b)2bπ

]
eD = e2eD = e − eeπ (3.13)

and

(a − b)aaDbπ = (a − b)(1 − aπ)bπ = abπ − bbπ − aaπbπ + bbπaπ. (3.14)

Then by equalities (3.10), (3.12), (3.13) and (3.14), we obtain

(a − b) − (a − b)2y

= (a − b) − (a − b)
[
(a − b)eD + aaDbπ

]
= (a − b) − (a − b)2eD

− (a − b)aaDbπ

= e + (a − b)bπ − e + eeπ − abπ + bbπ + aaπbπ − bbπaπ

= aaπbπ − bbπaπ + eeπ.

The rest of the proof follows in much the same way as the proof of (2) ⇒ (1). Hence, a − b ∈ RD and
(a − b)D = eD + aD(1 − bbπaD)−1bπ.

(3) ⇒ (4) Since aaD commutes with a, b and bD, we get aaD(a − b)bbD = (a − b)bbDaaD. Thus, from

Corollary 3.3 it follows that wD exists and wD =
[
aaD(a − b)bbD

]D
= (aaD)D

[
(a − b)bbD

]D
= aaDeD.

(4)⇒ (3) To check that e ∈ RD, let p1 = abbD, p2 = b2bD. In view of Lemma 2.2, abbD = bbDa, and then we
may apply Corollary 3.3 to give p1, p2 ∈ R

D and pD
1 = aD(bbD)D = aDbbD.

It is easy to verify that p1p2p1 = λp2
1p2 = λ′p2p2

1, p2p1p2 = µp2
2p1 = µ′p1p2

2, therefore p1 and p2 satisfy the
conditions of Theorem 3.6.

In addition, p1pD
1 (p1 − p2) = abbDaDbbD(abbD

− b2bD) = aaD(a − b)bbD
∈ R

D. Applying (2)⇒ (1) to p1 and
p2, we conclude that (a − b)bbD = p1 − p2 ∈ R

D.
Further, the equality (a − b)D = wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD appearing in (3.6) follows

from (2)⇒ (1) and (3)⇒ (1).

Remark 3.7. (1) Let us observe that the expression for (a−b)D in [19, Theorem 2.3] (in this paper the expression (3.6)
). If we assume that c = aaD(a− b) (or e = (a− b)bbD) instead of w = aaD(a− b)bbD, we get a much simpler expression
for (a − b)D, i.e., the expression (3.4) (or the expression (3.5)).

(2) In Theorem 3.6, the conditions aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2 are weaker than ab = λba of [19,
Theorem 2.3]. Since ab = λba, by the proof of Corollary 3.3 we get aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2.
However, in general, the converse is false. The following example can illustrate this fact.

Example 3.8. Let R =M3(R), and take

a =

 0 0 1
0 0 1
0 0 0

 , b =

 0 0 0
0 0 0
1 −1 0

 ∈ RD.

Then we have aba = λa2b = λ′ba2 and bab = µb2a = µ′ab2. However,

ab =

 1 −1 0
1 −1 0
0 0 0

 , λba =

 0 0 0
0 0 0
0 0 0

 .
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4. Main result 2

The problem of finding (a + b)D was studied in [25], where the authors gave some representations for
(a + b)D under the assumption ab = ba. In this section, we derive some new representations for (a ± b)D

under the conditions a2b = aba and b2a = bab = ab2, which weaker than ab = ba. Now, we begin with the
following lemma.

Lemma 4.1. [24, Lemma 2.4] Let a, b ∈ RD with a2b = aba and b2a = bab. Then

(1) {ab, aDb, abD, aDbD
} ⊆ comm(a). (4.1)

(2) {ba, bDa, baD, bDaD
} ⊆ comm(b). (4.2)

Lemma 4.2. Let a, b ∈ RD with a2b = aba and b2a = bab = ab2. Then for any positive integer i, the following hold:

(1) abD = bDa. (4.3)

(2) baDb = aDb2 = b2aD. (4.4)

(3) aDbbaD = baDaDb = (aDb)2 = (aD)2b2. (4.5)

(4) (aDb)i+1 = aDb(baD)i = (aD)i+1bi+1. (4.6)

(5) (baD)(aDb)i+1 = (aDb)i+2. (4.7)

Proof. (1) Since b2a = ab2, applying Lemma 2.2, we have abbD = bbDa. Then bDa = bDbbDa
(4.2)
= bDbabD =

abDbbD = abD.

(2) From b2a = ab2, by [6, Theorem 1 ], b2aD = aDb2. Hence, we have baDb
(4.2)
= b2aD = aDb2.

(3) It is easy to check that aDbbaD (4.4)
= baDbaD (4.1)

= baDaDb and aDbbaD (4.2)
= aDbaDb

(4.1)
= (aD)2b2.

(4) We will prove this result using mathematical induction on k + 1. It is just (3) for i = 1. Now, we will
assume that it holds for k, i.e., (aDb)k+1 = aDb(baD)k = (aD)k+1bk+1. For i = k + 1,

(aDb)k+2 = aDb(aDb)k+1 = aDbaDb(baD)k (4.5)
= aDbbaD(baD)k = aDb(baD)k+1

and

(aDb)k+2 = aDb(aDb)k+1 = aDb(aD)k+1bk+1 (4.1)
= (aD)k+1aDbbk+1 = (aD)k+2bk+2.

(5) Under the assumption of this lemma, we have baD(aDb)i+1 = baDaDb(aDb)i (4.5)
= (aDb)2(aDb)i = (aDb)i+2.

Lemma 4.3. Let a, b ∈ RD with a2b = aba and b2a = bab = ab2. If a1 = aaπbπ and a2 = aπbbπ, then a1 − a2 is
nilpotent.

Proof. Firstly, we prove that a1 = aaπbπ is nilpotent. In view of Lemma 2.2, bbD commutes with a and aD it
follows that bπa = abπ and bπaD = aDbπ and, thus

bπaπ = bπ(1 − aaD) = bπ − bπaaD = bπ − aaDbπ = aπbπ. (4.8)

In the rest of the proof, we will use frequently that {bbD, bπ, a, aD, aπ} is a commutative family. Hence, we
get aaπbπ = bπaaπ. Since aaπ is nilpotent, aaπbπ = a1 is nilpotent by [25, Lemma 1(1)].

Secondly, we will show that a2 = aπbbπ is nilpotent. As

(aπbbπ)2 = aπbπbaπbbπ = aπbπb(1 − aaD)bbπ

= aπbπ(b2
− baaDb)bπ

(4.1)
= aπbπ(b2

− babaD)bπ

= aπbπ(b2
− ab2aD)bπ

(4.4)
= aπbπ(b2

− aaDb2)bπ

= aπbπaπb2bπ
(4.8)
= aπaπbπb2bπ = aπ(bbπ)2.
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By induction, (aπbbπ)n = aπ(bbπ)n for every integer n ≥ 1. Since bbπ is nilpotent, aπbbπ = a2 is nilpotent.
Finally, we shall prove that a1−a2 is nilpotent. Since {bbD, bπ, a, aD, aπ} is a commutative family, we derive

a1a2a1 = aaπbπaπbbπaaπbπ = aπbπaπ(ab)aaπbπbπ

(4.1)
= aπbπaπaaaπ(bbπ)bπ = aπbπaπaa(aπbπ)bbπ

= aπ(bπaπa)abπaπbbπ = aaπbπaaπbπaπbbπ

= a2
1a2

and

a2a1a2 = aπbbπaaπbπaπbbπ = aπbπbaaπaπbbπbπ

= aπbπba(1 − aaD)bbπbπ = aπbπ
[
bab − baa(aDb)

]
bπbπ

(4.1)
= aπbπ

[
(ba)b − (baD)baa

]
bπbπ

(4.2)
= aπbπbbaaπbπbπ

= aπbπb(baπ)aaπbπbπ
(4.2)
= aπbπbaπb(aaπbπ)bπ

= aπbbπaπbbπaaπbπ

= a2
2a1.

Therefore, we can prove that a2
1a2 = a1a2a1 and a2a1a2 = a2

2a1.
As a1 and a2 are nilpotent, aaπbπ − aπbbπ = a1 − a2 is nilpotent by [24, Lemma 2.2 (2)].

Lemma 4.4. Let a, b ∈ RD with a2b = aba and b2a = bab = ab2 and w = aaD(a − b)bbD
∈ R

D. Suppose b1 = wwπ

and b2 = aaπbπ − aπbbπ. Then b1 + b2 is nilpotent.

Proof. First, we will give some useful equalities. By the proof of Lemma 4.3, we have that {bbD, bπ, a, aD, aπ} is

a commutative family. This means that aπw = waπ = aaD(a−b)bbDaπ
(4.1)
= a(a−b)aDbbDaπ = a(a−b)bbDaDaπ = 0

and wbπ = bπw = bπaaD(a − b)bbD = aaD(a − b)bbπbD = 0.
Next, we will prove that b1 + b2 is nilpotent. Using the previous equations, we obtain that

b1b2 = wwπ(aaπbπ − aπbbπ) = wπwaπ(abπ − bbπ) = 0

and b2b1 = (aaπbπ − aπbbπ)wwπ = (aaπ − aπb)bπwwπ = 0. Hence, b1b2 = b2b1 = 0.
By Lemma 4.3, a1 − a2 = b2 is nilpotent. Since b1 and b2 are nilpotent, and b1 commutes with b2, then by

using [25, Lemma 1(2)], it follows that b1 + b2 is nilpotent.

We are now ready to prove the other of our main results.

Theorem 4.5. Let a, b ∈ RD be such that a2b = aba, b2a = bab = ab2 and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1) a − b ∈ RD.
(2) ξ = 1 − aDb ∈ RD.
(3) w = aaD(a − b)bbD

∈ R
D.

In this case,

(a − b)D = aDξD
− aπb(aDξD)2

−

s−1∑
i=0

(bD)i+1aiaπ, (4.9)

(a − b)D = wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ − aπb(aD)2, (4.10)

where ξD = aπ + a2aD(a − b)D,wD = aaD(a − b)DbbD.
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Proof. (1)⇒ (3) Assume that a− b ∈ RD, let w = cl, y = aaD(a− b)DbbD, where c = aaD(a− b), l = bbD. We will
prove that w = aaD(a − b)bbD

∈ R
D and wD = y. By Lemma 4.1, we have aaDaaD(a − b) = aaD(a − b)aaD and

(a − b)aaD(a − b) = a3aD
− aaD(ab) − ba2aD + ba(aDb)

(4.1)
= a3aD

− abaaD
− ba2aD + (baD)ba

(4.2)
= a3aD

− abaaD
− ba2aD + b2aaD

= (a2
− ab − ba + b2)aaD

= (a − b)2aaD.

By [24, Theorem 3.1], it follows that c ∈ RD and cD =
[
aaD(a − b)

]D
= aaD(a − b)D.

By the proof of Lemma 4.3, we have that {bbD, bπ, a, aD, aπ} is a commutative family. Then we get

cl = aaD(a − b)bbD = aaDbbD(a − b) = bbDaaD(a − b) = lc.

Thus, utilizing Corollary 3.3, we obtain w ∈ RD and

wD =
[
aaD(a − b)bbD

]D
=
[
aaD(a − b)

]D
(bbD)D = aaD(a − b)DbbD = y.

(3)⇒ (1) Assume that w is Drazin invertible and let us define

x = wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ − aπb(aD)2 = x1 − x2 + x3,

where x1 = wD, x2 =
∑s−1

i=0 (bD)i+1aiaπ, x3 =
∑t−1

i=0(aD)i+1bibπ − aπb(aD)2.
Next, we will prove that x is the Drazin inverse of a − b, i.e., we will prove that x(a − b) = (a − b)x,

x(a − b)x = x and (a − b) − (a − b)2x is nilpotent.
Step 1 First we prove that x(a − b) = (a − b)x. In light of Lemma 4.1, we have

(a − b)aπb(aD)2 = (a − b)(1 − aaD)b(aD)2

= ab(aD)2
− bb(aD)2

− (a − b)aaDb(aD)2

(4.1)
= aaDbaD

− bb(aD)2
− (a − b)aaDaDbaD

(4.2)
= aaDbaD

− baDbaD
− (a − b)aDbaD

= (a − b)aDbaD
− (a − b)aDbaD

= 0.

Hence

(a − b)x = (a − b)

wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ − aπb(aD)2


= (a − b)

wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ


= z1 − z2 + z3,

(4.11)

where z1 = (a − b)wD, z2 = (a − b)
∑s−1

i=0 (bD)i+1aiaπ, z3 = (a − b)
∑t−1

i=0(aD)i+1bibπ.
Second we show x1(a − b) = z1, x2(a − b) = z2 and x3(a − b) = z3. Since w = aaD(a − b)bbD, we have

w = (1 − aπ)(a − b)(1 − bπ) and

a − b = w + (a − b)bπ + aπ(a − b) − aπ(a − b)bπ. (4.12)
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From Lemma 4.2, we have abD = bDa, which together with bbDa = abbD, and then we have

w(a − b) = aaD(a − b)bbD(a − b) = (a − b)aaD(a − b)bbD = (a − b)w.

Accordingly, by [6, Theorem 1], we get x1(a − b) = wD(a − b) = (a − b)wD = z1.
By elementary computations, we obtain

bDaπb = bbD
− bDa(aDb)

(4.1)
= bbD

− (bDaD)ba
(4.2)
= bbD

− bbDaaD = bbDaπ. (4.13)

So we have

x2(a − b) − z2 =

s−1∑
i=0

(bD)i+1aiaπ(a − b) − (a − b)
s−1∑
i=0

(bD)i+1aiaπ

=

s−1∑
i=0

(bD)i+1ai+1aπ −
s−1∑
i=0

(bD)i+1aiaπb − a
s−1∑
i=0

(bD)i+1aiaπ + b
s−1∑
i=0

(bD)i+1aiaπ

(4.3)
=

s−1∑
i=0

(bDa)i+1aπ − bD
s−1∑
i=0

(bDa)iaπb −
s−1∑
i=0

(bDa)i+1aπ + bbD
s−1∑
i=0

(bDa)iaπ

(4.2)
= −

s−1∑
i=0

(bDa)ibDaπb +
s−1∑
i=0

(bDa)ibbDaπ

= 0.

Hence, x2(a − b) = z2.
Next, we will prove that x3(a− b) = z3. Also, the following equalities will be useful: taking into account

the following identities

baDbπ − aDbbπ = baD(1 − bbD) − aDb(1 − bbD)

= baD
− (baDb)bD

− aDb + aDb2bD

(4.4)
= baD

− aDb2bD
− aDb + aDb2bD

= baD
− aDb

and

aπb(aD)2(a − b)
(4.1)
= aπbaD(a − b)aD = aπ(baDa − baDb)aD

(4.4)
= aπ(baDa − aDb2)aD = aπbaDaaD

− aπaDb2aD

= (1 − aaD)baD = baD
− a(aDb)aD

(4.1)
= baD

− aDaaDb = baD
− aDb,

we have (baDbπ − aDbbπ) − aπb(aD)2(a − b) = 0. Using the above relations and abπ = bπa, we conclude

x3(a − b) − z3 =

 t−1∑
i=0

(aD)i+1bibπ − aπb(aD)2

 (a − b) − (a − b)
t−1∑
i=0

(aD)i+1bibπ

= −aπb(aD)2(a − b) −
t−1∑
i=0

(aD)i+1bibπb +
t−1∑
i=0

(aD)i+1bibπa − a
t−1∑
i=0

(aD)i+1bibπ + b
t−1∑
i=0

(aD)i+1bibπ

(4.6)
= −aπb(aD)2(a − b) −

t−1∑
i=0

(aDb)i+1bπ + aD
t−1∑
i=0

(aDb)ibπa − aaD
t−1∑
i=0

(aDb)ibπ + baD
t−1∑
i=0

(aDb)ibπ
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(4.1)
= −aπb(aD)2(a − b) −

t−1∑
i=0

(aDb)i+1bπ +
t−1∑
i=0

(aDb)iaaDbπ −
t−1∑
i=0

(aDb)iaaDbπ + baD
t−1∑
i=0

(aDb)ibπ

= baD
t−1∑
i=0

(aDb)ibπ −
t−1∑
i=0

(aDb)i+1bπ − aπb(aD)2(a − b)

(4.7)
=

baDbπ +
t−1∑
i=1

(aDb)i+1bπ
 −
aDbbπ +

t−1∑
i=1

(aDb)i+1bπ
 − aπb(aD)2(a − b)

= (baDbπ − aDbbπ) − aπb(aD)2(a − b) = 0.
Consequently, x3(a − b) = z3. It follows that x(a − b) = (a − b)x.

Step 2 We give the proof of x(a − b)x = x. By the proof of Lemma 4.4, we have aπw = waπ = 0 and wbπ =
bπw = 0. Hence, from equality (4.11), wDaπ = aπwD = aπw(wD)2 = 0 and wDbπ = bπwD = bπw(wD)2 = 0, we
obtain

x(a − b)x = x(a − b)

wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ


= (a − b)

wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ


2

= (a − b)(wD)2
− (a − b)wD

s−1∑
i=0

(bD)i+1aiaπ + (a − b)wD
t−1∑
i=0

(aD)i+1bibπ

+ (a − b)
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ + (a − b)
t−1∑
i=0

(aD)i+1bibπ
t−1∑
i=0

(aD)i+1bibπ

= m1 +m2 +m3 +m4 +m5,

where

m1 = (a − b)(wD)2, m2 = −(a − b)wD
s−1∑
i=0

(bD)i+1aiaπ,

m3 = (a − b)wD
t−1∑
i=0

(aD)i+1bibπ, m4 = (a − b)
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ,

m5 = (a − b)
t−1∑
i=0

(aD)i+1bibπ
t−1∑
i=0

(aD)i+1bibπ.

Now we prove m1 +m2 +m3 +m4 +m5 = x.
Since abD = bDa, we may apply [6, Theorem 1 ] to give aDbD = bDaD. So, we have

bDaπ = bD
− bDaDa = bD

− (aDbD)a
(4.1)
= bD

− aaDbD = aπbD. (4.14)

From the equality (4.12), aπwD = 0 and bπwD = 0, we derive

(a − b)wD = [w + (a − b)bπ + aπ(a − b) − aπ(a − b)bπ] wD

= wwD + aπ(a − b)wD = wwD + aπwD(a − b) = wwD.
(4.15)

Thus m1 = (a − b)(wD)2 =
[
(a − b)wD

]
wD = wwDwD = wD. From the equalities (4.14) and wDaπ = 0, we

deduce that

m2 = −(a − b)wD
s−1∑
i=0

(bD)i+1aiaπ = −(a − b)wDaπ
s−1∑
i=0

(bD)i+1ai = 0.
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By the proof of Lemma 4.3, we have bπaD = aDbπ. Combining bπaD = aDbπ and wDbπ = 0, we get

m3 = (a − b)wD
t−1∑
i=0

(aD)i+1bibπ = (a − b)wDbπ
t−1∑
i=0

(aD)i+1bi = 0.

Secondly, we have to prove m4 = −
∑s−1

i=0 (bD)i+1aiaπ and m5 =
∑t−1

i=0(aD)i+1bibπ − aπb(aD)2, respectively.
In view of Lemma 4.1 and Lemma 4.2, we have the following equality:

(aDb − baD)aDbπ = −aπb(aD)2. (4.16)

Using the above relations and asaπ = 0, we get

m4 = (a − b)
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ

= −b
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ + a
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ

= −

bbDaπ +
s−1∑
i=1

(bDa)iaπ
 s−1∑

i=0

(bD)i+1aiaπ + a
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ

= −bbDaπ
s−1∑
i=0

(bD)i+1aiaπ −
s−1∑
i=1

(bDa)iaπ
s−1∑
i=0

(bD)i+1aiaπ + a
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ

(4.14)
= −

s−1∑
i=0

(bD)i+1aiaπ −
s−1∑
i=1

(bDa)iaπ
s−1∑
i=0

(bD)i+1aiaπ + a
s−1∑
i=0

(bD)i+1aiaπ
s−1∑
i=0

(bD)i+1aiaπ

(4.3)
= −

s−1∑
i=0

(bD)i+1aiaπ −
s−1∑
i=1

(abD)iaπ
s−1∑
i=0

(bD)i+1aiaπ +
s−1∑
i=0

(abD)i+1aπ
s−1∑
i=0

(bD)i+1aiaπ

= −

s−1∑
i=0

(bD)i+1aiaπ −
s−1∑
i=1

(abD)iaπ
s−1∑
i=0

(bD)i+1aiaπ +

 s−1∑
i=1

(abD)iaπ + (abD)saπ
 s−1∑

i=0

(bD)i+1aiaπ

(4.3)
= −

s−1∑
i=0

(bD)i+1aiaπ −
s−1∑
i=1

(abD)iaπ
s−1∑
i=0

(bD)i+1aiaπ +
s−1∑
i=1

(abD)iaπ
s−1∑
i=0

(bD)i+1aiaπ + (bD)sasaπ
s−1∑
i=0

(bD)i+1aiaπ

= −

s−1∑
i=0

(bD)i+1aiaπ.

Similarly, one can show that

m5 = (a − b)
t−1∑
i=0

(aD)i+1bibπ
t−1∑
i=0

(aD)i+1bibπ =
t−1∑
i=0

(aD)i+1bibπ + (aDb − baD)aDbπ

(4.16)
=

t−1∑
i=0

(aD)i+1bibπ − aπb(aD)2.

So, we get x(a − b)x = x.
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Step 3 Now we will prove that (a − b) − (a − b)2x is nilpotent. According to the equality (4.11), we have

(a − b)2x =

wD
−

s−1∑
i=0

(bD)i+1aiaπ +
t−1∑
i=0

(aD)i+1bibπ
 (a − b)2

= wD(a − b)2
−

s−1∑
i=0

(bD)i+1aiaπ(a − b)2 +

t−1∑
i=0

(aD)i+1bibπ(a − b)2 = I1 + I2 + I3,

(4.17)

where I1 = wD(a − b)2, I2 = −
∑s−1

i=0 (bD)i+1aiaπ(a − b)2 and I3 =
∑t−1

i=0(aD)i+1bibπ(a − b)2. Using the expression
(4.15), we get

I1 = w(wD)2(a − b)2 = w
[
(a − b)wD

]2
= w(wwD)2 = w − wwπ. (4.18)

By Lemma 4.1 and Lemma 4.2, it is sufficient to prove

I2
(4.3)
= −

s−1∑
i=0

(bDa)i+1aaπ +
s−1∑
i=0

(bDa)i+1aπb + bD
s−1∑
i=0

(bDa)iaπba −
s−1∑
i=0

bD(bDa)iaπb2

(4.2)
= −

s−1∑
i=0

(bDa)i+1aaπ +
s−1∑
i=0

(bDa)i+1aπb +
s−1∑
i=0

(bDa)ibDaπba −
s−1∑
i=0

(bDa)ibDaπb2

(4.13)
= −

s−1∑
i=0

(bDa)i+1aaπ +
s−1∑
i=0

(bDa)i+1aπb +
s−1∑
i=0

(bDa)ibbDaaπ −
s−1∑
i=0

(bDa)ibbDaπb

= bbDaaπ +
s−1∑
i=0

(bDa)i+1aπb −
s−1∑
i=0

(bDa)ibbDaπb

(4.2)
= bbDaaπ +

s−1∑
i=0

(bDa)i+1aπb −
s−1∑
i=0

bbD(bDa)iaπb

= bbDaaπ − bbDaπb.

(4.19)

Similarly,

I3 = −aaDbbπ + aaDbπa. (4.20)

Combining (4.12), (4.17), (4.18), (4.19) and (4.20) gives

(a − b) − (a − b)2x
= [w + (a − b)bπ + aπ(a − b) − aπ(a − b)bπ] − (w − wwπ)

− (bbDaaπ − bbDaπb − aaDbbπ + aaDbπa)
= wwπ + aaπbπ − aπbbπ

= b1 + b2.

It follows from Lemma 4.4, (a − b) − (a − b)2x = b1 + b2 is nilpotent. Therefore, we have proved a − b ∈ RD

and (a − b)D = x, i.e., the expression (4.10).
(1)⇒ (2) To check that ξ ∈ RD, we write ξ as ξ = 1 − aDb = h1 + h2, where h1 = aπ, h2 = aD(a − b).
It follows from Lemma 4.1 that (aD)2(a − b) = aD(a − b)aD and (a − b)2aD = (a − b)aD(a − b). Utilizing [24,

Theorem 3.1] gets aD(a − b) = h2 ∈ R
D and hD

2 =
[
aD(a − b)

]D
= (aD)D(a − b)D = a2aD(a − b)D.

By Lemma 4.1, we have that aDb commutes with aaD. Then aD(a − b) ∈ comm(aπ) and h1h2 = h2h1 = 0. It
follows from [6, corollary 1] that ξD = aπ + a2aD(a − b)D.

(2)⇒ (1) Assume that ξ is Drazin invertible, similarly as in the proof of (3)⇒ (1), we have that a−b ∈ RD

and (a − b)D is represented as in (4.9).
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Using Theorem 4.5, we can verify the following corollary, which generalizes [25, Theorem 3].

Corollary 4.6. Let a, b ∈ RD be such that a2b = aba, b2a = bab = ab2 and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1) a + b ∈ RD.
(2) ξ′ = 1 + aDb ∈ RD.
(3) w′ = aaD(a + b)bbD

∈ R
D.

In this case,

(a + b)D = aDξ′D + aπb(aDξ′D)2 +

s−1∑
i=0

(bD)i+1(−a)iaπ, (4.21)

(a + b)D = w′D +
s−1∑
i=0

(bD)i+1(−a)iaπ +
t−1∑
i=0

(aD)i+1(−b)ibπ + aπb(aD)2,

where ξ′D = aπ + a2aD(a + b)D, w′D = aaD(a + b)DbbD.

Proof. By virtue of [3, Theorem 2.2], −b ∈ RD. Applying Theorem 4.5 to a and−b, we complete the proof.

Remark 4.7. (1) Given a, b ∈ R, the equality ab = ba of [25, Theorem 3] implies that a2b = aba, b2a = bab = ab2 of
Corollary 4.6. In addition, the expressions of (a + b)D from [25, Theorem 3] can be derived from (4.21).

(2) Let R =Mn(C), then Corollary 4.6 covers [21, Theorem 2].

Finally, to show that our conditions are strictly weaker than the assumption ab = ba, we construct
matrices a, b satisfying the conditions of Corollary 4.6, but ab = ba does not hold.

Example 4.8. Let R =M2(R), and take a =
[

0 1
0 1

]
, b =

[
0 1
0 0

]
∈ R

D.

Since ab , ba, the representations for (a+ b)D fail to apply in [25, Theorem 3]. On the other hand, we can
observe that a2b = aba and b2a = bab = ab2. Therefore, according to the formulae in Corollary 4.6, we get

(a + b)D =

[
0 2
0 1

]
.
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[7] D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse, J. Aust. Math. Soc. 73 (2002), 115–125.
[8] M. Hanke, Iterative consistency: a concept for the solution of singular systems of linear equations, SIAM J. Matrix Anal. Appl. 15 (1994),

569–577.
[9] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001), 207–217.

[10] S. Kirkland, M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, Boca Raton, 2012.
[11] S. Kirkland, M. Neumann, N. Sze, On optimal condition numbers for Markov chains, Numer Math. 110 (2008), 521–537.
[12] X. Liu, X. Qin, J. Benı́tez, Some additive results on Drazin inverse, Appl. Math. J. Chinese Univ. 30(4) (2015), 479–490.
[13] X. Liu, X. Yang, Y. Wang, A note on the formulas for the Drazin inverse of the sum of two matrices, Open Math. 17 (2019), 160–167.



X. Qin, L. Lu / Filomat 37:17 (2023), 5623–5639 5639

[14] S. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014), 575–580.
[15] C. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review 17 (1975), 443–464.
[16] C. Meyer, The condition of a finite Markov chain and perturbation bounds for the limiting probabilities, SIAM Journal on Algebraic

Discrete Methods 1 (1980), 273–283.
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