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Abstract. Let T be a factor von Neumann algebra acting on complex Hilbert space with dim(T) > 2.
For any T,Ty,Ty,..., T, € T, define qi(T) = T, q2(T1,T2) = Ty o T, = ThT, + ToT; and q,(Ty,...,Ty) =
Gn-1(T1,...,Ty1) © Ty, for all integers n > 2. In this article, we prove that a map { : T — T satisfies
CGu(Ty, ..., Ty) = Yy gu(Ty, .., Ticy, U(T3), T, - .., Ty) for all Ty, ..., T, € T if and only if C is an additive
*-derivation.

1. Introduction and Preliminaries

Let T be a *-algebra over the complex field C. A map C : T — T is said to be an additive derivation
if (T + T») = (T1) + U(T) and {(T1T>) = C(T1)T, + T1{(T,) for all T1,T, € . It is said to be an additive
+-derivation if it is an additive derivation and {(T") = C(T)" forall T € T. The products T1 ¢ T, = T1 T2 + T2 T)
and [T1,T2]e = T1T, — ToT; denote the usual skew Jordan product and skew Lie product of elements
T1,T, € T, respectively. In recent years, many mathematicians devoted themselves to the study of these
type of new products. These new products are found playing an important role in some research topics, and
their study has attracted many authors” attention (see [2—4, 12-16, 18-20] and references therein). A map
C: T — T (not necessarily linear) is said to be a nonlinear skew Jordan derivation (resp. nonlinear skew Lie
derivation) if {(T1 e T2) = C(T1) @ T +T1 @ ((T?) (resp. C([T1, T2ls) = [C(T1), T2le +[T1,L(T2)]s) forall Ty, T> € .
In [20], Zhang proved that every nonlinear skew Jordan derivation on a factor von Neumann algebra is
an additive »-derivation. Yu and Zhang [18] proved that every nonlinear skew Lie derivation on a factor
von Neumann algbera is an additive *-derivation. Recently, Kong and Zhang [8] introduced the concept
of bi-skew Lie product of elements T;, T> € T defined as [T1, T2]o = T1T; — T,T; and proved that a map C
(not necessarily linear) on a factor von Neumann algebra T satisfies C([T1, T2].) = [C(T4), T2]o + [T1, C(T2)]o
for all Ty, T, € T if and only if C is an additive *-derivation. Motivated by the aforementioned works, we
define a new product called bi-skew Jordan product by T; o T = T1T; + T>T; of any two elements Ty, T, € T.
A map C: T — T (not necessarily linear) is said to be a nonlinear bi-skew Jordan derivation if it satisfies
U(T10T2) = U(T1) o To+T1 0 C(T2) for all T1, T, € T. The notion of bi-skew Jordan product can be extended in
a more natural way. For T, Ty, Ty, ..., T, € T, set g1(T) = T and q,(T1, T2, ..., Ty) = gu-1(T1, T2, ..., Tn-1) © Ty,
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for all integers n > 2. The polynomial 4,(T1, T2, ..., Ty) is called a bi-skew Jordan n-product, where n > 2.
A map C: T — T (not necessarily linear) is said to be a nonlinear bi-skew Jordan n-derivation if it satisfies
CGn(T1, ..., Tw) = Xy qu(T1, ..., Ticy, UT), Tisa, - .., Tpy) for all Ty, T, ... T, € T. A nonlinear bi-skew Jordan
2-derivation is called a nonlinear bi-skew Jordan derivation and a nonlinear bi-skew Jordan 3-derivation is
called a nonlinear bi-skew Jordan triple derivation. Nonlinear bi-skew Jordan 2-derivations, nonlinear bi-
skew Jordan 3-derivations and nonlinear bi-skew Jordan n-derivations are collectively known as nonlinear
bi-skew Jordan-type derivations.

The aim of this article is to describe the form of nonlinear bi-skew Jordan-type derivations on factor
von Neumann algebras. Several authors have made important contributions to the related topics (see
[1,5-7,9-11, 17] and references therein). The main motivation of our study actually comes from the papers
[1, 10]. Lin [10] investigated nonlinear skew Lie-type derivations on von Neumann algebras. Recently, in
[1], the authors proved that every nonlinear bi-skew Lie-type derivation on a factor von Neumann algebra
T with dim(%) > 2 is an additive *-derivation. Motivated by these results, in this paper, we prove that a
map on a factor von Neumann algebra T acting on a complex Hilbert space with dim(T) > 2 is a bi-skew
Jordan-type derivation if and only it is an additive *-derivation (Theorem 2.1).

Let R and C denote the fields of real numbers and complex numbers, respectively. A von Neumann
algebra T is a weakly closed, self adjoint algebra of operators on a Hilbert space H containing the identity
operator I. A von Neumann algebra T is said to be factor if its center is trivial. It is well known that a
factor von Neumann algebra is prime, that is, for any 11, T, € T, T1TT, = 0 implies either Ty =0 or T, = 0.
Let P; be a nontrivial projection in ¥ and write P, = I — P;. The following elementary lemma shall be used
frequently throughout the paper without further mentioning.

Lemma 1.1. Forany T € T, we have
(i) qu(T,Py,...,P1) =2""2(PyTPy + P1T*P1) + PiT*P» + P,TP;,
(i) Gu(T,Pa, ..., P2) = 2""2(PyTP; + PoT°P,) + P1TP; + P, T*Py,
(iii) qu(T,1,..., 1) =2"2(T+T),
() qu(T,5,...,5) = LT +T).

2. The Main Theorem
The main theorem of this article reads as follows.

Theorem 2.1. Let T be a factor von Neumann algebra acting on complex Hilbert space with dim(T) > 2. A map
C: T — T satisfies

Lgn(Tr, ., T) = ) u(Tr, o Ty, AT, Ti, -, Th) (1)
i=1

forall Ty, ..., T, € Tifand only if C is an additive *-derivation.

Proof. Let us choose an arbitrary nontrivial projection P; and write P, = I — P1. Then T can be written as
T = P1IP; + P1TIP; + P,TP; + PLrTIP;. Let It = {M eI M = M} and T~ = {N eI N = —N} Further,
write T = P;TP;, (i = 1,2) and T}, = {P1MP; + P,MP; : M € T¥}. Then, any M € T* can be written as
M = My + My + My, where M,',' € z;{,Mlz € IE.

Obviously, if C is an additive *-derivation, then it satisfies (1). Here we only need to prove the necessity
part which shall be established by checking the following series of claims. Taking Ty =T, =--- =T, = 0in
(1), the following claim is easy to obtain.

Claim 2.2. C(0) = 0.
Claim 2.3. For any M € T+, we have CL(M)* = {(M).
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For any M € T*, it follows from g, (M, %, .., %) = M that

oo )
ol b e o)
() oo ) (e or- el s (B

Therefore, ((M)* = C(M).

M)

Claim 2.4. For any M;; € I;,Mlz S itfz (l =1, 2), we have C(M,‘,‘ + M12) = C(Mﬁ) + C(Mlz).

For any My; € T}, M2 € T, assume that S = ((M11 + M12) — C(M11) — {(My2). Our aim is to show S = 0. It

is easy to see that 5* = S by Claim 2.3. On the one hand, we have

CGn(M11 + Mg, Py, ..., P2)) = qu(C(M11 +M12),Pa, ..., P2) + gu(Mi1 + Mo, C(P2), ..., Pa)
4. +qn(M11 +M12,P2/~- /C(PZ))

On the other hand, using the fact that g,(Mi1, P, ..., P2) = 0 and Claim 2.2, we get

C(gn(Mu1 + Mg, Py, ..., P2)) = CU(gu(Mu, Pa, ..., P2)) + C(gn(Mi2, Po, . .., P2))
Gn(C(Mn1) + CU(M12), Po, . .., P2) + qu(Ma1 + Maz, C(P2), ..., P2)
+ .. +qn(M11 +M12,P2/~-/C(P2))'

Comparing the above expressions for {(g,(Mi1 + Mo, Py, ..., P»), it follows that 4,(S, P, ..., P») = 0. This
together with the fact that S* = S leads us to S1p = Sp1 = S = 0.
Again, on the one hand,

C(gn(M11 + My, P — Py, Py,...,P1))
= gu(C(M11 + Mi2), P2 = P1, Py, ..., P1) + gu(Mi1 + Mip, C(P2 = P1), Py,...,P1)
+-oo+qu(Myy + My, Py = Py, Py, ..., C(Py)).

On the other hand, using the fact that g,(Mi2, P, — P1, Py, ..., P1) = 0 and Claim 2.2, we obtain

C(gn(Mi1 + Mz, P, = Py, Py,...,P1))

= U@qu(M11,Py =Py, Py, ..., P1)) + U(gn(M12, P2 = Py, Py, ..., P1))
qn(C(M11) + C(M12), Py — Py, Py, ..., P1) + gu(M11 + M2, {(P2 — P1), Py, ..., P1)
+ -+ gy (M1 + Mag, P — Py, Py, ..., 0(P1)).

The last two expressions for C(g,(Mi1 + My, P, — P1, Py, ..., P1)) imply that g,(S, P, = P1, Py, ..., P1) = 0. This
together with the fact 5* = S gives 511 = 0. Hence, S = 0, that is, C(M11 + M12) = C(Mi1) + C(Mi2).
Symmetrically, we can prove the other cases.

Claim 2.5. For any M; € T}, M1z € T}, (i = 1,2), we have {(Mi1 + M1z + Mp) = ((Mn1) + ((M12) + {(Mp).

i’

SetS = C(Mll + M, +M22) - C(Mll) - C(Mu) - C(Mzz) for M € zfl,Mu € 3:'1"2, M>, € 1;2. One the one hand,
we have

C(gn(M11 + Mg + My, Py, ..., P2))

= gu(C(M11 + Mz + M), P, ..., P2) + (M1 + Miz + My, U(P2), P, ..., P2)
+ o+ g (My1 + Mag + Moo, C(P2), Py, ..., C(P2)).
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On the other hand, using the fact that g,(Mi1, P, ..., P2) = 0 and Claims 2.2, 2.4, we find that
C(gn(M11 + Mz + My, Py, ..., P2))
= C(gn(Mu1, Py, ..., Ps)) + Ugn(Miz + M2y, Py, ..., P3))
= gu(C(M11) + C(M12) + C(M22), Po, ..., P2) + qn(Ma1 + Map + Moy, C(P2), ..., P2)
+ -+ gy (M1 + Mig + Moo, Py, ..., C(P2)).
Comparing these two expressions for C(g,(Mi11 + M1z + Mo, Py, ..., P2)), we get q,(S, Py, ..., P2) = 0. This
together with the fact that S* = S yields S1» = Sy1 = S» = 0.
Again, on the one hand
C(gn(Mi1 + M1 + My, Py, ..., P1))
= qu(C(M11 + Mi2 + M), Py, ..., P1) + qu(My1 + Myp + Mp, C(Py), Py, ..., P1)
+-o -+ gy (M1 + Mg + Moy, Py, ..., C(P1)).
On the other hand, using the fact that g,(Mp, P1, ..., P1) = 0 and Claims 2.2, 2.4, we obtain

C(gn(Mi1 + M1 + M, Py, ..., P1))
= C(gn(Mi1 + M, Py, ..., P1)) + UGu(Mp, Py, ..., P1))
= gu(C(M11) + C(M12) + C(M22), Py, ..., P1) + o (Ma1 + Map + Moy, C(P1), ..., P1)
+-o -+ gy (M1 + Mig + Moy, Py, ..., C(P1)).

Using the two expressions for C(g,(M11+Mi2+Mu, P1, ..., P1)), we getq,(S, P1, . . ., P1) = 0. This together with
the fact that S* = S implies that S1; = 0. Hence, S = 0, that is, C(M11 + M1z + M) = ((M11) + C(Miz) + C(Mp2).

Claim 2.6. For any My, M}, € T},, we have (M1, + M/,) = {(M2) + {(M7,).

For any M1z, M, € T, observe that

! I I ! ! !
qn (P1 + Mip, Py + M12’ E, ey E) =My + 1\/112 + M12M12 + M12M12.

Since M12M;2 +M;2M12 S Efl + 1;2, write, MleiZ +M12M12 = M1+ My, for some My, € Z_{l and M», € 13'2

Applying Claims 2.4 and 2.5, we have

C(Myz + M7,) + C(M11) + C(Mp2)
= (M2 + M, + M1 + Mp)

1 1
c(qn (Pl + M, Py + My, 5, —))

2
1 T
= qH(C(Pl+M12)/P2+M12/§/"'/§)+qn(P1+M12/C(P2+M12)r§/"'/§)

I I
+"'+qn(P1 + My, Py +M12,§,...,C(§))

I
+qn (Pl + My, P> +M12,C(§), )
I I I
Sevey) (P Miz CPD) 4 TMy) 5,5
) I

= Py + CMi2), P+ My, 5,
+qn (P1 + Mo, Py +M’12,C(§), '3 +- gy (P1 + M, Py + M3, 5 C(é))

-l Bl o D)o )
A

= (M) + C(Miz) + C(Mleiz + MizMu)

= (M) + C(M7,) + C(M11 + Ma)

= ((Mip) + C(M],) + C(Mi1) + C(My).

I
2
I
2
I
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Thus, (M2 + M},) = ((M12) + C(M},) for any My, M}, € T*.
Claim 2.7. For any M;;, M; € T}, (i = 1,2), we have C((M;; + M) = C(M;;) + C(M).
Let S = (M1 + M7,) — C(M11) — C(M,) for My1, M7, € T],. On the one hand, we have

C(ql’l(Mll + MilIPZI cee /PZ)) = (C(Mll + M‘,ll) Py, ... /PZ)) + %(Mll + Mil/ C(PZ)/ P, .. 'IPZ)
+ qn(Mll + M111P2/ ey C(PZ))

On the other hand, using the fact that g,(M11, Py, ..., P2) = (M7, P2, ..., P2) = 0 and Claim 2.2, we obtain

C(@nMur + My, Py, P2)) = C@Gu(Mu1, P, ..., P2)) + C(gu(Miy, Pa, ..., P2))
%(C(Mll) + C(M 1) PZ/- . -/PZ) + %(Mll +M,11/ C(P2), . '1P2)
“+ My + MYy, P, ..., C(P2)).

Comparing these two expressions for ((q,(M11 + Mj, P2, ..., P2)), we have that g,(S, P,,...,P2) = 0. This
together with the fact that S* = S leads us to S12 = S»;1 = S» = 0. Next we show that S;; = 0. Let

M12 = T12 + T for any le € 112 Then Gn (M111M12/ P ,%), Gn (MI11/M12/ %, . ,2) € it* On the one
hand, we have

, I I
C(Qn (Mll + M]l/M12/ E/ ey E))
I I I
= gy (C(Mll + M), M, = T ) + G (Mn + M11,C(M12) E)
I I , I I
+q‘rl (Mll + M111M12/ ( ) 2) +oeeet Qn (Mll + M111M121 Er o /C(E)) .
On the other hand, Claim 2.6 gives
, I
C(qn (Mll + Mj,, My, 5 ))
I , I I
= C(Qn (M11/M12/ E/“ ))‘i‘C(Qn (M111M12/ E//E))
I , I I
= g (COM) + COMG), Mz 3,5 ) (M + M COM) 5,5
, I I , I I
+I7n (Mll + Mll/Mlzr C(E)/ ey E) +oeee+ ql’l (Mll + M111M12/ E/ ce /C(E)) .

The last two expressions for C(q,(M11 + M7;, M1, %, e, %)) imply that

I I
Qn(S/Mlzl E/ ey E

)=0.
Simplifying the last equation, we get ST1, + ST7, + T12S + T;,S = 0. Multiplying the above equation by P;
on the left and by P, on the right, we get P1ST1, + T12SP; = 0. Since S, = 0, we obtain S1; = 0 by using
the primeness of T. Thus S = 0, that is, (M1 + M};) = C(M11) + C(M],). Symmetrically, we can prove that
C(Mx + M%y,) = C((M22) + ((M),) for any M1p, M, € U7,

Using Claims 2.5, 2.6 and 2.7, the following claim is easy to obtain.

Claim 2.8. ( is additive on T*.

Claim 2.9. Forany N € T, we have {(N)* = —=C(N).
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Let us first show that C (%) = 0. Since g, (%, L. é) =1and( (é) = (%) by Claim 2.3, we have

I I\ I I I I I I 1 I
(3) = wlc(z)zomz)rm(zez)s) e rmlz ez

I

= nC(E)

ThuS,C(%)=0. Now using Claim 2.2 and the fact that g, (N, %,...,%)=Ofor any N € T7, we obtain

I I

(v ga))

I

092 el o)
2eng + zeovy),

0

Thus, we have C(N)* = —C(N) forany N € T".
Claim 2.10. ¢(I) =0, C(il) = 0.

Since C (%) =0 and (Cis additive on T+, we get {(I) = C(%) +C (%) =0.
Next we show that (il) = 0. Since C(I) = 0, using Claim 2.8, we find that

0 = 2"
= "'
= Cg.GLiL 1, ..., 1)
= q,(C@D,iL 1, ..., D) +q,@L C@D),1,...,I)
= gup1(=2iCAI) + 2iCED, 1, . .., I) + g1 (2IC@ED)" — 2iC@AD), L, ..., D)
= =2"N{C(D - D).

Thus C(il)* = C(il). Moreover, by Claim 2.9, we have C(il)* = —C(il). Therefore, ((il) = 0.
Claim 2.11. For any M € T*, we have C(iM) = iC(M).
Applying Claim 2.8, 2.9 and 2.10, we obtain

2"(M)

c@"'m)

= Ugu(M,iL1,...,T))
= g,(C(iM),iLI,...,T)
= qu-1(=2iC(AM), I, ..., ])
= =2"NC(M).

That is, C(iM) = i({(M) for any M € T+.
Claim 2.12. Forany T € T, we have {(T*) = {(T)"
Assume that T = M; + iM; for M1, M, € T*. As {(I) = 0, we have

C(qn(Ml +iM,, 1, ... ,I)) = Qn(C(Ml + iMz),I, .. ,I)
2" 2{C(My +iMy) + LMy +iMy)'}.
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On the other hand, using the fact that g,(iM, ], ...,I) = 0 and Claims 2.2, 2.11, we obtain

CgnMy +iMp,1,..., 1)) =

CgnMy, L,..., 1)) + C(gn(iMa, I, ..., 1))
4u(CM), I, ..., D) + 42 (iC(M), L, ..., T)
Gn(CM1) +il(Mp), I, ..., )

2" 1(My).

From the above two expressions for ((g,(M1 +iMy, 1, ..., 1)), we get

C(My +iMp) + LMy + iMp)* = 20(My)

for all M, M, € TF. Again invoking Claims 2.10, we have

C(Gn(My +iMa, il 1., 1)

On the other hand, using the fact q,(M,il,1,...,I) = 0 and Claims 2.2, 2.10 and 2.11, we have

C(gn(My +iMa, il 1,..., 1)

Comparing the last two expressions for ((g, (M1 +iMy,ilL, 1, ..., 1)), it follows that

gn(C(My +iMy),iL 1, ..., I)
Gu-1(—iC(M7 +iMp) +1iC(My +1iM)', 1., )
—2" (M + M) — (M + iMp)'Y).

Cgn(My,iL1,..., D) + C(g.(iMy,iL, 1,. .., 1))
gn(C(M1) +iC(M2),iL T, ..., )

Gn-12C(M2), 1., T)

2" (My).

C(My +iMy) — C(M; +iMy)" = 2iC(My)

for all M;, M, € T*. Addition of (2) and (3) yields

C(M1 +iMy) = C(My) +iC(M2)

for all My, M, € T*.

5597

(4)

Now, we show that {(T*) = {(T)* for any T € T. Since C is additive on T+ and C(0) = 0, we have
C(—M) = =C(M) for any M € T*. Using (4) and Claims 2.3, 2.8, we find that

C(T)" = CMh)" = iC(M)" = C(M;) + C(=iMy) = C((My — iMp)") = {(T7)

forall T € T.

Claim 2.13. C is additive on <.

Let T = My +iM,, T' = M} +iM} € T for My, Mp, M}, M}, € T*. Using (4) and Claim 2.8, we have

T +1T)

C((My + M) +i(M; + M3))

= (M +M)) +iC(M, + M)
= {(My) +iC(My) + C(M]) +iC(M3)
= (M +iMy) + (M) +iM))

= UT)+UT).

Claim 2.14. Forany T € T, we have C(iT) = iC(T).
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Let T = M + iM, for M, M, € T*. Using Claims 2.11 and 2.13, we obtain
C@iT) C(iM; — M)
= C(iMy) — C(M2)
= iC(My) - C(M>)
= i{C(My) +il(M2)}
= iC(My +iMy)
= i(T).

Claim 2.15. C is an additive =-derivation on <.

In view of Claims 2.12 and 2.13, it suffices to show that ( is a derivation on T. First, we show that ( is a
derivation on T+, that is,

MM’ = (MM’ + MC(M') for all M, M’ € T*.

Using Claims 2.3, 2.10, 2.12 and 2.14, we see that

2"2L (MM’ + M’ M)
= [2"*(MM + M M))
= {@q.MM,1,...,1)
= gu(CM), M, L., 1) + q.(M,CM'), I, ..., T)
= g1 (CMM + M'CM), L, ..., ) + gua (MCM') + CMIM L, ..., 1)
= 2" UMM + M'TM)} + 2" HMCM) + L(M)M)

and

2"2i (MM’ — M’M)
= QMM —iM'M))
= g.(M, M, 1,...,1))
= g.(CAM), M, 1,...,I) + q,(iM, (M), I,....., T)
= gu1(iICMM' = iM'CM), 1, ..., I) + gu-1 (MCM') = iCM ML, ..., 1)

2"2HLM)M = M/T(M)} + 2" 2{MC(M') — C(M)MEY.

It follows from the last two equations that
MM’y = LM)M" + ML(M') forall M,M’ € T*.

Take any two arbitrary elements T = M; +iMp, T" = M] + iM} € T, where My, My, M|, M), € T*. Using
Claims 2.13 and 2.14, we get
oTT) C((MiM] = MoM)) + i(Mi M), + Mo M)
= C(MiM] — MoM)) +iC(MiM) + Mo M)
= (MiM)) = C(MaM)) +iC(M1M5) +iC(MaMy)
= (MM} + MiC(M)) = C(M2)M; — MaC(M3) + iC(M1)M; + iM1C(M3) + iC(M2)M]
+iM,C(M)

and

DT + TUT)

C(My +iMa)(M] +iM3) + (My + iMp)C(M] +iM3)
CM)M; + MiC(M7) = C(M2)M;, — MaC(M3) +iC(My)M;, + iMC(M) + iC(Ma)M]
+HM>C(M7).
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Thus, ((TT") = {(T)T" + TC(T") for all T, T’ € . Consequently, C is an additive *-derivation and the proof of
the theorem is completed. [J

Acknowledgements: The authors are indebted to the referee for his/her valuable comments and sugges-
tions.
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