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Abstract. In this research, we give a new version of Jensen inclusion for interval-valued functions, which
is called Jensen-Mercer inclusion. Moreover, we establish some new inclusions of the Hermite-Hadamard-
Mercer type for interval-valued functions. Finally, we give some applications of newly established inequal-
ities to make them more interesting for the readers.

1. Introduction

In literature, the well-known Jensen inequality [19] states that ifΠ is a convex function on [π1, π2], then

Π

 n∑
j=1

λ jκ j

 ≤ n∑
j=1

λ jΠ
(
κ j

)
(1)

where
n∑

j=1
λ j = 1.

The Hermite-Hadamard (H-H) inequality, discovered by C. Hermite and J. Hadamard (see, also, [11],
and [27, p.137]), is one of the most well-known inequalities in the theory of convex functions, with a
geometrical interpretation and a wide range of applications. The H-H inequality is stated as:

Π
(
π1 + π2

2

)
≤

1
π2 − π1

∫ π2

π1

Π (κ) dκ ≤
Π (π1) +Π (π2)

2
(2)
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where Π : I → R is a convex function over I and π1, π2 ∈ I with π1 < π2. In the case of concave mappings,
the above inequality satisfies in reverse order. We should point out that H-H inequality is a refinement
of the concept of convexity, and it follows obviously from Jensen’s inequality. In recent years, the H-H
inequality for convex functions has gotten a lot of attention, and a lot of refinements and generalisations
have been studied.

The following variant of Jensen inequality, known as the Jensen-Mercer, was demonstrated by Mercer
[17]:

Theorem 1.1. If Π is a convex function on [π1, π2], then the following inequality is true:

Π

π1 + π2 −

n∑
j=1

λ jκ j

 ≤ Π (π1) +Π (π2) −
n∑

j=1

λ jΠ
(
κ j

)
. (3)

In [14], the idea of Jensen-Mercer inequality has been used by Kian and Moslehian, and the following
H-H-Mercer inequality was demonstrated:

Π
(
π1 + π2 −

κ + γ

2

)
≤ Π (π1) +Π (π2) −

1
γ − κ

∫ γ

κ

Π (τ) dτ (4)

≤ Π (π1) +Π (π2) −Π
(κ + γ

2

)

Π
(
π1 + π2 −

κ + γ

2

)
≤

1
γ − κ

∫ γ

κ

Π (π1 + π2 − τ) dτ (5)

≤
Π (π1 + π2 − κ) +Π

(
π1 + π2 − γ

)
2

≤ Π (π1) +Π (π2) −
Π (κ) +Π

(
γ
)

2

where Π is convex function on [π1, π2] . For some recent studies linked to Jensen-Mercer inequality, one
can consult [1, 2, 8, 22].

In contrast, interval analysis is a well-known example of set-valued analysis, which is the study of
sets in the context of mathematical and general topology analysis. It was created as a solution to the
interval instability of deterministic real-world phenomena that can be found in many mathematical or
computer models. The technique of Archimede’s, which is related to computing the diameter of a circle,
is an old example of an interval enclosure. Moore, who is credited with being the first to use intervals
in computational mathematics, published the first book on interval analysis in 1966 (see, [20]). Following
the publication of his book, a number of scientists began to study the theory and applications of interval
arithmetic. Nowadays, due to its applications, interval analysis is a valuable method in different fields
that are intensely interested in ambiguous results. Computer graphics, experimental and computational
physics, error analysis, robotics, and many other areas have applications.

In addition, several significant inequalities (H-H, Ostrowski, and others) for interval-valued functions
have been studied in recent years. Chalco-Cano et al. obtained Ostrowski type inequalities for interval-
valued functions in [6, 7] using the Hukuhara derivative for interval-valued functions. We refer readers to
[5, 9, 10, 12, 13, 18, 23, 24, 28–30, 34, 35] for additional relevant results.

2. Interval Calculus and Inequalities

In this section, we provide notation and background information on interval analysis. The space of all
closed intervals of R is denoted by Ic and ∆ is a bounded element of Ic. We have the representation

∆ =
[
Θ1,Θ1

]
=
{
τ ∈ R : Θ1 ≤ τ ≤ Θ1

}
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whereΘ1,Θ1 ∈ R andΘ1 ≤ Θ1. L (∆) = Θ1−Θ1 can be used to express the length of the interval∆ =
[
Θ1,Θ1

]
.

The left and right endpoints of interval ∆ are denoted by the numbersΘ1 andΘ1, respectively. The interval

∆ is said to be degenerate whenΘ1 = Θ1, and the form∆ = Θ1 = [Θ1,Θ1] is used. Also, ifΘ1 > 0, we can say

∆ is positive, and ifΘ1 < 0, we can say ∆ is negative. I+c and I−c denote the sets of all closed positive intervals
and closed negative intervals of R, respectively. Between the intervals ∆ and Λ, the Pompeiu-Hausdorff
distance is defined by

dH (∆,Λ) = dH

([
Θ1,Θ1

]
,
[
Θ2,Θ2

])
= max

{∣∣∣Θ1 −Θ2

∣∣∣ , ∣∣∣Θ1 −Θ2

∣∣∣} . (6)

(Ic, d) is a complete metric space, as far as we know (see, [3]).
|∆| denotes the absolute value of ∆, which is the maximum of the absolute values of its endpoints:

|∆| = max
{∣∣∣Θ1

∣∣∣ , ∣∣∣Θ1

∣∣∣} .
The following are the concepts for fundamental interval arithmetic operations for the intervals ∆ and Λ:

∆ + Λ =
[
Θ1 + Θ2,Θ1 + Θ2

]
,

∆ −Λ =
[
Θ1 −Θ2,Θ1 −Θ2

]
,

∆ ·Λ = [min U,max U] where U =
{
Θ1 Θ2,Θ1 Θ2, Θ1Θ2,Θ1 Θ2

}
,

∆/Λ = [min V,max V] where V =
{
Θ1/Θ2,Θ1/Θ2,Θ1/Θ2,Θ1/Θ2

}
and 0 < Λ.

The interval ∆’s scalar multiplication is defined by

µ∆ = µ
[
Θ1,Θ1

]
=



[
µΘ1, µΘ1

]
, µ > 0;

{0} , µ = 0;[
µΘ1, µΘ1

]
, µ < 0,

where µ ∈ R.
The opposite of the interval ∆ is

−∆ := (−1)∆ = [−Θ1,−Θ1],

where µ = −1.
In general, −∆ is not additive inverse for ∆, i.e. ∆ − ∆ , 0.

Definition 2.1. [31] For some kind of the intervals∆,Λ ∈ Ic,we denote the the H-difference of∆ andΛ as theΩ ∈ Ic,
we have

∆ ⊖1 Λ = Ω⇔


(i) ∆ = Λ +Ω

or
(ii) Λ = ∆ + (−Ω) .

It seems beyond contraversy that

∆ ⊖1 Λ =


[
Θ1 −Θ2,Θ1 −Θ2

]
, if L (∆) ≥ L (Λ)[

Θ1 −Θ2,Θ1 −Θ2

]
, if L (∆) ≤ L (Λ) ,

where L (∆) = Θ1 −Θ1 and L (Λ) = Θ2 −Θ2.
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The definitions of operations generate a large number of algebraic properties, enabling Ic to be a quasilinear
space (see, [16]). The following are some of these characteristics (see, [3, 15, 16, 20]):

(1) (Law of associative under +) (∆ + Λ) + C = ∆ + (Λ + C) for all ∆,Λ,C ∈ Ic,
(2) (Additivity element) ∆ + 0 = 0 + ∆ = ∆ for all ∆ ∈ Ic,
(3) (Law of commutative under +) ∆ + Λ = Λ + ∆ for all ∆,Λ ∈ Ic,
(4) (Law of cancellation under +) ∆ + C = Λ + C =⇒ ∆ = Λ for all ∆,Λ,C ∈ Ic,
(5) (Law of associative under ×) (∆ ·Λ) · C = ∆ · (Λ · C) for all ∆,Λ,C ∈ Ic,
(6) (Law of commutative under ×) ∆ ·Λ = Λ · ∆ for all ∆,Λ ∈ Ic,
(7) (Multiplicativity element) ∆ · 1 = 1 · ∆ for all ∆ ∈ Ic,
(8) (The first law of distributivity) λ(∆ + Λ) = λ∆ + λΛ for all ∆,Λ ∈ Ic and all λ ∈ R,
(9) (The second law of distributivity) (λ + µ)∆ = λ∆ + µ∆ for all ∆ ∈ Ic and all λ, µ ∈ R.

Aside from any of these characteristics, the distributive law does not always apply to intervals. As an
example, ∆ = [1, 2],Λ = [2, 3] and C = [−2,−1].

∆ · (Λ + C) = [0, 4],

whereas

∆ ·Λ + ∆ · C = [−2, 5].

Another distinct feature is the inclusion ⊆, which is described by

∆ ⊆ Λ⇐⇒ Θ1 ≥ Θ2 and Θ1 ≤ Θ2.

In [20], Moore given the definition of the Riemann integral for functions of interval-valued. IR([π1,π2]) and
R([π1,π2]) denote the set of all Riemann integrable interval-valued functions and real-valued functions
on [π1, π2], respectively. The following theorem defines a relationship between Riemann integrable (R-
integrable) functions and (IR)-integrable functions (see, [21, pp. 131]):

Theorem 2.2. For an interval-valued mapping Π : [π1, π2] → RI with Π(τ) =
[
Π(τ),Π(τ)

]
. The mapping

Π ∈ IR([π1,π2]) if and only if Π(τ), Π(τ) ∈ R([π1,π2]) and

(IR)

π2∫
π1

Π(τ)dτ =

(R)

π2∫
π1

Π(τ)dτ, (R)

π2∫
π1

Π(τ)dτ

 .
Zhao et al. defined the following convex interval-valued function in [32, 33]:

Definition 2.3. For all κ, γ ∈ [π1, π2] and τ ∈ (0, 1), the h-convex mapping Π : [π1, π2]→ R+
I

is stated as:

h(τ)Π(κ) + h(1 − τ)Π(γ) ⊆ Π(τκ + (1 − τ)γ). (7)

Where h : [c, d] → R is a non-negative mapping, h , 0, (0, 1) ⊆ [c, d]. We’ll show the set of all h-convex
interval-valued functions with SX(h, [π1, π2],R+

I
).

The standard definition of a convex interval-valued function is (7) with h (τ) = τ (see, [30]). In addition, if
we take h (τ) = τs into (7), then Definition 2.3 gives the definition of s-convex interval-valued function (see,
[4]).

In [32], Zhao et al., used the h−convexity of interval-valued functions and obtained the following H-H
inclusion:
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Theorem 2.4. If Π ∈ SX(h, [π1, π2],R+
I

) and h
(

1
2

)
, 0, then following inclusions are true:

1

2h
(

1
2

)Π (π1 + π2

2

)
⊇

1
π2 − π1

(IR)

π2∫
π1

Π(κ)dκ ⊇ [Π(π1) +Π(π2)]

1∫
0

h(τ)dτ. (8)

Remark 2.5. (i) The Inclusions (8) becomes the following for h(τ) = τ:

Π
(
π1 + π2

2

)
⊇

1
π2 − π1

(IR)

π2∫
π1

Π(κ)dκ ⊇
Π(π1) +Π(π2)

2
, (9)

which Sadowska have discovered in [30].

(ii) The Inclusions (8) becomes the following for h(τ) = τs:

2s−1Π
(
π1 + π2

2

)
⊇

1
π2 − π1

(IR)

π2∫
π1

Π(κ)dκ ⊇
Π(π1) +Π(π2)

s + 1
,

which Osuna-Gómez et al. have discovered in [25].

3. Main Results

We will study convex interval-valued functions and prove Jensen-Mercer inclusion for interval-valued
functions in this section. We also use the newly proven Jensen-Mercer inclusion to prove H-H type inclusion
for convex interval-valued function. In this section, we use Π =

[
Π,Π

]
and G =

[
G,G
]

for brevity.

3.1. Convex interval-valued functions
Definition 3.1. [30] A function Π : [π1, π2] → I+c is said to be a convex interval-valued, if for all κ, γ ∈ [π1, π2]
and τ ∈ (0, 1), we have

τΠ(κ) + (1 − τ)Π(γ) ⊆ Π(τκ + (1 − τ)γ).

Lemma 3.2. [30] A function Π : [π1, π2] → I+c is said to be a convex interval-valued if and only if Π is a convex
function on [π1, π2] and Π is a concave function on [π1, π2] .

Theorem 3.3 (Jensen’s Inclusion). LetΠ be a convex interval-valued function on [π1, π2], then following inclusion
is true:

Π

 n∑
j=1

λ jκ j

 ⊇ n∑
j=1

λ jΠ
(
κ j

)
(10)

where
n∑

j=1
λ j = 1.

Proof. Since Π =
[
Π,Π

]
is convex interval-valued function, therefore Π and Π are convex and concave

functions, respectively. Hence, from convexity of Π,we have

Π

 n∑
j=1

λ jκ j

 ≤ n∑
j=1

λ jΠ
(
κ j

)
(11)
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and from concavity of Π,we get

Π

 n∑
j=1

λ jκ j

 ≥ n∑
j=1

λ jΠ
(
κ j

)
. (12)

We get the resulting inclusion (10) by combining (11) and (12).

Our goal is to show that there is a new variant of inclusion (10).

Theorem 3.4. Let Π be a convex interval-valued function on [π1, π2] such that L (Π (π2)) ≥ L (Π (π0)) for all
π0 ∈ [π1, π2], then following inclusion is true:

Π

π1 + π2 −

n∑
j=1

λ jκ j

 ⊇ Π (π1) +Π (π2) ⊖1
n∑

j=1

λ jΠ
(
κ j

)
(13)

where
n∑

j=1
λ j = 1.

Proof. Using the strategies used in the proof of Theorem 3.3 and inequality (3), one can easily prove the
necessary inclusion (13).

3.2. H-H-Mercer Inclusion
Theorem 3.5. Let Π : [π1, π2] → I+c be a convex interval-valued function such that L (Π (π2)) ≥ L (Π (π0)) for all
π0 ∈ [π1, π2]. Then

Π
(
π1 + π2 −

κ + γ

2

)
⊇

1
γ − κ

(IR)
∫ γ

κ

Π (π1 + π2 − τ) dτ (14)

⊇
Π (π1 + π2 − κ) +Π

(
π1 + π2 − γ

)
2

⊇ Π (π1) +Π (π2) ⊖1
Π (κ) +Π

(
γ
)

2
.

Proof. From convexity of Π, we have

Π
(
π1 + π2 −

κ1 + γ1

2

)
⊇

1
2
[
Π (π1 + π2 − κ1) +Π

(
π1 + π2 − γ1

)]
(15)

for all κ1, γ1 ∈ [π1, π2] . By setting π1 + π2 − κ1 = τ (π1 + π2 − κ) + (1 − τ)
(
π1 + π2 − γ

)
and π1 + π2 − γ1 =

(1 − τ) (π1 + π2 − κ) + τ
(
π1 + π2 − γ

)
, τ ∈ [0, 1] in (15), we get an inclusion

Π
(
π1 + π2 −

κ + γ

2

)
(16)

⊇
1
2
[
Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))]
.

We obtain the first inclusion in (14) by integrating the inclusion (16) with respect to τ over [0, 1] and using
the change of variables.

On the other hand, from convexity of Π, we have

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
⊇ τΠ (π1 + π2 − κ) + (1 − τ)Π

(
π1 + π2 − γ

)
(17)

and

Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
⊇ (1 − τ)Π (π1 + π2 − κ) + τΠ

(
π1 + π2 − γ

)
. (18)
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By adding the above inclusions and from inclusion (13), we have

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
(19)

⊇ Π (π1 + π2 − κ) +Π
(
π1 + π2 − γ

)
⊇ 2 [Π (π1) +Π (π2)] ⊖1

[
Π (κ) +Π

(
γ
)]
.

We obtain the second and third inclusions in (14) by integrating the inclusion (19) with respect to τ over
[0, 1] and using the change of variables.

Remark 3.6. If we set Π = Π in Theorem 3.8, then inclusions (14) reduces to the inequality (5).

Remark 3.7. If we use κ = π1 and γ = π2 in Theorem 3.8, then inclusion (14) reduces to the inclusion (9).

Theorem 3.8. Let Π,G : [π1, π2]→ I+c be two convex interval-valued functions . Then

1
γ − κ

(IR)
∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ ⊇
1
3
M
(
π1, π2;κ, γ

)
+

1
6
N
(
π1, π2;κ, γ

)
(20)

where

M
(
π1, π2;κ, γ

)
= Π (π1 + π2 − κ)G (π1 + π2 − κ) +Π

(
π1 + π2 − γ

)
G
(
π1 + π2 − γ

)
and

N
(
π1, π2;κ, γ

)
= Π (π1 + π2 − κ)G

(
π1 + π2 − γ

)
+Π
(
π1 + π2 − γ

)
G (π1 + π2 − κ) .

Proof. From convexity of Π, we have

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
⊇ τΠ (π1 + π2 − κ) + (1 − τ)Π

(
π1 + π2 − γ

)
(21)

and

G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
⊇ τG (π1 + π2 − κ) + (1 − τ)G

(
π1 + π2 − γ

)
. (22)

We get the following inclusion by multiplying (21) and (22)

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(23)

⊇ τ2Π (π1 + π2 − κ)G (π1 + π2 − κ) + (1 − τ)2Π
(
π1 + π2 − γ

)
G
(
π1 + π2 − γ

)
+τ (1 − τ)Π (π1 + π2 − κ)G

(
π1 + π2 − γ

)
+ τ (1 − τ)Π

(
π1 + π2 − γ

)
G (π1 + π2 − κ) .

Likewise, we have

Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
(24)

⊇ (1 − τ)2Π (π1 + π2 − κ)G (π1 + π2 − κ) + τ2Π
(
π1 + π2 − γ

)
G
(
π1 + π2 − γ

)
+τ (1 − τ)Π (π1 + π2 − κ)G

(
π1 + π2 − γ

)
+ τ (1 − τ)Π

(
π1 + π2 − γ

)
G (π1 + π2 − κ) .

We get the following inclusion by adding (23) and (24)

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(25)
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+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
⊇

[
τ2 + (1 − τ)2

]
M
(
π1, π2;κ, γ

)
+ 2τ (1 − τ)N

(
π1, π2;κ, γ

)
.

We obtain the resulting inclusion (20) by integrating the inclusion (25) with respect to τ over [0, 1] and using
the change of variables.

Remark 3.9. In Theorem 3.8 if we set κ = π1 and γ = π2, then Theorem 3.8 becomes [32, Theorem 4.5 for h (t) = t].

Corollary 3.10. If we set Π = Π in Theorem 3.8, then we have the following inequality

1
γ − κ

∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ ≤
1
3
M
(
π1, π2;κ, γ

)
+

1
6
N
(
π1, π2;κ, γ

)
. (26)

Remark 3.11. If we set κ = π1 and γ = π2 in Corollary 3.10, then inequality (26) reduces to inequality (1) of [26,
Theorem 1].

Theorem 3.12. Let Π,G : [π1, π2]→ I+c be two convex interval-valued functions such that L (Π (π2)) ≥ L (Π (π0))
for all π0 ∈ [π1, π2]. Then

1
γ − κ

(IR)
∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ (27)

⊇ M (π1, π2) +N (π1, π2) ⊖1
1
2
[
M1
(
π1, π2;κ, γ

)
+N1

(
π1, π2;κ, γ

)
+M2

(
π1, π2;κ, γ

)
+N2

(
π1, π2;κ, γ

)]
+

1
3
M
(
κ, γ
)
+

1
6
N
(
κ, γ
)

where

M (u, v) = Π (u)G (u) +Π (v)G (v) ,

N (u, v) = Π (u)G (v) +Π (v)G (u) ,

M1
(
π1, π2;κ, γ

)
= Π (π1)G (κ) +Π (π2)

(
γ
)
,

N1
(
π1, π2;κ, γ

)
= Π (π1)G

(
γ
)
+Π (π2)G (κ) ,

M2
(
π1, π2;κ, γ

)
= Π (κ)G (π1) +Π

(
γ
)
G (π2)

and

N2
(
π1, π2;κ, γ

)
= Π (κ)G (π2) +Π

(
γ
)
G (π1) .

Proof. From inclusion (13), we have

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
⊇ Π (π1) +Π (π2) ⊖1

[
τΠ (κ) + (1 − τ)Π

(
γ
)]

(28)

and

G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
⊇ G (π1) +G (π2) ⊖1

[
τG (κ) + (1 − τ)G

(
γ
)]
. (29)
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We get the following inclusion by multiplying (28) and (29)

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(30)

⊇ [Π (π1) +Π (π2)] [G (π1) +G (π2)] ⊖1 [Π (π1) +Π (π2)]
[
τG (κ) + (1 − τ)G

(
γ
)]

⊖1 [G (π1) +G (π2)]
[
τΠ (κ) + (1 − τ)Π

(
γ
)]
+
[
τΠ (κ) + (1 − τ)Π

(
γ
)] [
τG (κ) + (1 − τ)G

(
γ
)]
.

Likewise, we have

Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
(31)

⊇ [Π (π1) +Π (π2)] [G (π1) +G (π2)] ⊖1 [Π (π1) +Π (π2)]
[
(1 − τ)G (κ) + τG

(
γ
)]

⊖1 [G (π1) +G (π2)]
[
(1 − τ)Π (κ) + τΠ

(
γ
)]
+
[
(1 − τ)Π (κ) + τΠ

(
γ
)] [

(1 − τ)G (κ) + τG
(
γ
)]
.

We get the following inclusion by adding (30) and (31)

Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(32)

+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
⊇ 2 [M (π1, π2) +N (π1, π2)]

⊖1
[
M1
(
π1, π2;κ, γ

)
+N1

(
π1, π2;κ, γ

)
+M2

(
π1, π2;κ, γ

)
+N2

(
π1, π2;κ, γ

)]
+
[
τ2 + (1 − τ)2

]
M
(
κ, γ
)
+ 2τ (1 − τ)N

(
κ, γ
)
.

We obtain the resulting inclusion (27) by integrating the inclusion (32) with respect to τ over [0, 1] and using
the change of variables.

Remark 3.13. In Theorem 3.12, if we assume κ = π1 and γ = π2 , then Theorem 3.12 becomes [32, Theorem 4.5 for
h (t) = t].

Corollary 3.14. If we set Π = Π in Theorem 3.12, then we have the following inequality

1
γ − κ

∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ (33)

≤ M (π1, π2) +N (π1, π2) −
1
2
[
M1
(
π1, π2;κ, γ

)
+N1

(
π1, π2;κ, γ

)
+M2

(
π1, π2;κ, γ

)
+N2

(
π1, π2;κ, γ

)]
+

1
3
M
(
κ, γ
)
+

1
6
N
(
κ, γ
)
.

Remark 3.15. If we set κ = π1 and γ = π2 in Corollary 3.14, then inequality (33) reduces to inequality (1) of [26,
Theorem 1].
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Theorem 3.16. Let Π,G : [π1, π2]→ I+c be two convex interval-valued functions. Then

2Π
(
π1 + π2 −

κ + γ

2

)
G

(
π1 + π2 −

κ + γ

2

)
(34)

⊇
1
γ − κ

(IR)
∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ +
1
6
M
(
π1, π2;κ, γ

)
+

1
3
N
(
π1, π2;κ, γ

)
whereM

(
π1, π2;κ, γ

)
andN

(
π1, π2;κ, γ

)
are defined in Theorem 3.8.

Proof. From convexity of Π, we have

Π
(
π1 + π2 −

κ + γ

2

)
⊇

1
2
[
Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(35)

+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))]
and

G

(
π1 + π2 −

κ + γ

2

)
⊇

1
2
[
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
(36)

+G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))]
.

We get the following inclusion by multiplying (35) and (36)

Π
(
π1 + π2 −

κ + γ

2

)
G

(
π1 + π2 −

κ + γ

2

)
(37)

⊇
1
4
[
Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
+Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))]
⊇

1
4
[
Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))]
+

1
4
[{
τΠ (π1 + π2 − κ) + (1 − τ)Π

(
π1 + π2 − γ

)}
×
{
(1 − τ)G (π1 + π2 − κ) + τG

(
π1 + π2 − γ

)}
+
{
τG (π1 + π2 − κ) + (1 − τ)G

(
π1 + π2 − γ

)}
×
{
(1 − τ)Π (π1 + π2 − κ) + τΠ

(
π1 + π2 − γ

)}]
=

1
4
[
Π
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
G
(
τ (π1 + π2 − κ) + (1 − τ)

(
π1 + π2 − γ

))
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+Π
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))
G
(
(1 − τ) (π1 + π2 − κ) + τ

(
π1 + π2 − γ

))]
+

1
4

[
2τ (1 − τ)M

(
π1, π2;κ, γ

)
+
{
τ2 + (1 − τ)2

}
N
(
π1, π2;κ, γ

)]
.

We obtain the resulting inclusion (34) by integrating the inclusion (37) with respect to τ over [0, 1] and using
the change of variables.

Remark 3.17. If we assume κ = π1 and γ = π2 in Theorem 3.16, then Theorem 3.16 becomes [32, Theorem 4.6 for
h (t) = t].

Corollary 3.18. If we set Π = Π in Theorem 3.16, then we have the following inequality

2Π
(
π1 + π2 −

κ + γ

2

)
G

(
π1 + π2 −

κ + γ

2

)
(38)

≤
1
γ − κ

∫ γ

κ

Π (π1 + π2 − τ)G (π1 + π2 − τ) dτ +
1
6
M
(
π1, π2;κ, γ

)
+

1
3
N
(
π1, π2;κ, γ

)
Remark 3.19. If we set κ = π1 and γ = π2 in Corollary 3.18, then inequality (38) reduces to inequality (2) of [26,
Theorem 1].

4. Application to Special Means

For arbitrary positive numbers π1, π2 (π1 , π2), we consider the means as follows:

1. The arithmatic mean

A = A(π1, π2) =
π1 + π2

2
.

2. The geometric mean

G=G (π1, π2) =
√
π1π2.

3. The logarithmic mean

L = L (π1, π2) =
π1 − π2

lnπ2 − lnπ1
.

4. The identric mean

I = I (π1, π2) =

 1
e

(
π2
π1

) 1
π2−π1 , if π1 , π2,

π1, if π1 = π2,
π1, π2 > 0.

Proposition 4.1. For π1, π2 ∈ (e,∞), the following inclusion is true:[(
2A (π1, π2) −A

(
κ, γ
))−1 , ln

(
2A (π1, π2) −A

(
κ, γ
))]

(39)

⊇

[
L
−1 (π1 + π2 − κ, π1 + π2 − γ

)
, lnI

(
π1 + π2 − κ, π1 + π2 − γ

)]
⊇

[
A

(
(2A (π1, π2) − κ)−1 ,

(
2A (π1, π2) − γ

)−1
)
, ln G

(
2A (π1, π2) − κ, 2A (π1, π2) − γ

)]
⊇

[
2A (π1, π2) −A

(
κ−1, γ−1

)
, ln G2 (π1, π2) − ln G

(
κ, γ
)]
.
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Proof. We consider a convex interval-valued function Π : [π1, π2] ⊂ (e,∞) → I+c which is defined as
Π =

[
Π,Π

]
=
[

1
x , lnκ

]
such that Π (π2) ≥ Π (π0) for all π0 ∈ [π1, π2], then we have

Π
(
π1 + π2 −

κ + γ

2

)
=
[
Π
(
π1 + π2 −

κ + γ

2

)
,Π
(
π1 + π2 −

κ + γ

2

)]
(40)

=
[(

2A (π1, π2) −A
(
κ, γ
))−1 , ln

(
2A (π1, π2) −A

(
κ, γ
))]
,

1
γ − κ

(IR)
∫ π1+π2−κ

π1+π2−γ
Π (τ) dτ (41)

=

[
1
γ − κ

(R)
∫ π1+π2−κ

π1+π2−γ
Π (τ) dτ,

1
γ − κ

(R)
∫ π1+π2−κ

π1+π2−γ
Π (τ) dτ

]
=
[
L
−1 (π1 + π2 − κ, π1 + π2 − γ

)
, lnI

(
π1 + π2 − κ, π1 + π2 − γ

)]
,

Π (π1 + π2 − κ) +Π
(
π1 + π2 − γ

)
2

(42)

=

Π (π1 + π2 − κ) +Π
(
π1 + π2 − γ

)
2

,
Π (π1 + π2 − κ) +Π

(
π1 + π2 − γ

)
2


=
[
A

(
(2A (π1, π2) − κ)−1 ,

(
2A (π1, π2) − γ

)−1
)
, ln G

(
2A (π1, π2) − κ, 2A (π1, π2) − γ

)]
and

Π (π1) +Π (π2) ⊖1
Π (κ) +Π

(
γ
)

2
(43)

=
[
Π (π1) +Π (π2) ,Π (π1) +Π (π2)

]
−

Π (κ) +Π
(
γ
)

2
,
Π (κ) +Π

(
γ
)

2


=

Π (π1) +Π (π2) −
Π (κ) +Π

(
γ
)

2
,Π (π1) +Π (π2) −

Π (κ) +Π
(
γ
)

2


=
[
2A (π1, π2) −A

(
κ−1, γ−1

)
, ln G2 (π1, π2) − ln G

(
κ, γ
)]
.

We derive the necessary results from (40)-(43) and inclusions (14).

5. Conclusion

In this work, we proposed Jensen-Mercer inclusion for interval-valued functions and developed H-H-
Mercer type inclusion using the newly proposed Jensen-Mercer inclusion. We discussed the special cases
of recently proven findings and found some recent and old results in the literature. It’s a new problem that
future researchers will be able to prove similar inclusions for different kinds fractional operators.
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22 (1993), 39-51.
[5] H. Budak, T. Tunç and M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Amer.

Math. Soc. 148 (2020), 705-718.
[6] Y. Chalco-Cano, A. Flores-Franulic and H. Roman-Flores, Ostrowski type inequalities for interval-valued functions using gener-

alized Hukuhara derivative. Comput. Appl. Math. 31 (2012), 457–472.



T. Sitthiwirattham et al. / Filomat 37:17 (2023), 5553–5565 5565

[7] Y. Chalco-Cano,W. A. Lodwick, and W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration
for interval-valued functions. Soft Comput. 19 (2015), 3293–3300.

[8] H. H. Chu, S. Rashid, H. Hammouch and Y-M. Chu, New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities.
Alexadria Engineering 59 (2020), 3079-3089.

[9] T. M. Costa, Jensen’s inequality type integral for fuzzy interval-valued functions. Fuzzy Sets and Systems 327 (2017), 31–47.
[10] T. M. Costa and H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 420 (2017), 110–125.
[11] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria

University, 2000.
[12] A. Flores-Franulic, Y. Chalco-Cano, and H. Roman-Flores, An Ostrowski type inequality for interval-valued functions. IFSA

World Congress and NAFIPS Annual Meeting IEEE 35 (2013), 1459–1462.
[13] H. Kara, M. A. Ali and H. Budak, Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions

involving generalized fractional integrals. Math. Methods Appl. Sci. 44 (2021), 104-123.
[14] M. Kian and M.S. Moslehian, Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 26 (2013).
[15] V. Lupulescu, Fractional calculus for interval-valued functions. Fuzzy Sets and Systems 265 (2015), 63-85.
[16] S. Markov, On the algebraic properties of convex bodies and some applications. J. Convex Anal. 7 (2000), 129-166.
[17] A. McD. Mercer, A Variant of Jensen’s Inequality. J. Ineq. Pure and Appl. Math. (2003).
[18] F.-C. Mitroi, N. Kazimierz and S. Wasowicz, Hermite–Hadamard inequalities for convex set-valued functions. Demonstr. Math.

46 (2013), 655-662.
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