

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Contact screen transversal Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds

Nergiz (Önen) Poyraz^a

^aÇukurova University, Faculty of Arts and Sciences, Department of Mathematics, Adana, Turkey

Abstract. We study contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifolds of indefinite Sasakian manifolds. We prove existence and non-existence theorems and find the integrability conditions of integrability of various distributions. We derive some characterization theorems for a contact STCR-lightlike submanifold to be a STCR-lightlike product. Moreover, we find results for minimal contact STCR-lightlike submanifolds of indefinite Sasakian manifolds. We also give examples.

1. Introduction

Since the intersection of normal vector bundle and the tangent bundle is non-trivial, then in the study of lightlike submanifolds is more interesting and remarkably different from the study of non-degenerate submanifolds. Lightlike submanifolds have been developed in [5, 10].

Duggal and Bejancu [5] introduced CR-lightlike submanifolds of indefinite Kaehler manifolds and Duggal and Şahin [8] introduced contact CR-lightlike submanifolds of indefinite Sasakian manifolds. But CR-lightlike submanifolds exclude the complex and totally real submanifolds as subcases. Then, screen Cauchy-Riemann (SCR)-lightlike submanifolds of indefinite Kaehler manifolds [6] and contact SCR-lightlike submanifolds of indefinite Sasakian manifolds [8] were presented by Duggal and Şahin. But there is no inclusion relation between screen Cauchy-Riemann and CR submanifolds, so Duggal and Şahin [7] presented a new class named generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Kaehler manifolds and GCR-lightlike submanifolds of indefinite Sasakian manifolds [9] which is an umbrella for all these types of submanifolds. These types of submanifolds have been studied by many authors [11, 13, 15, 17].

But CR-lightlike, screen CR-lightlike and generalized CR-lightlike do not contain real lightlike curves. For this reason, Şahin presented screen transversal lightlike submanifolds of indefinite Kaehler manifolds and show that such submanifolds contain lightlike real curves [18]. Screen transversal lightlike submanifolds of indefinite almost contact manifolds were introduced in [19]. Such submanifolds have been studied in [12, 14, 20]. On the other hand, as a generalization of CR-lightlike submanifolds and screen transversal lightlike submanifolds, in [3], Doğan, Şahin and Yaşar introduced screen transversal CR-lightlike submanifolds.

In this paper, we study contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifolds of indefinite Sasakian manifolds. We prove existence and non-existence theorems and find the integrability

2020 Mathematics Subject Classification. Primary 53C15; Secondary 53C40, 53C50.

Keywords. STCR-lightlike submanifolds; Indefinite Sasakian manifold; Minimal lightlike submanifolds.

Received: 30 September 2022; Accepted: 10 January 2023

Communicated by Mića Stanković

Email address: nonen@cu.edu.tr (Nergiz (Önen) Poyraz)

conditions of various distributions. We derive some characterization theorems for a contact STCR-lightlike submanifold to be a STCR-lightlike product. Moreover, we find results for minimal contact STCR-lightlike submanifolds of indefinite Sasakian manifolds. We also give examples.

2. Preliminaries

Let (\bar{M}, \bar{g}) be a real (m+n)-dimensional semi-Riemannian manifold of constant index q, such that $m, n \ge 1, 1 \le q \le m+n-1$ and (M, g) be an m-dimensional submanifold of (\bar{M}, \bar{g}) , where g is the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle TM of M then M is named a lightlike submanifold of (\bar{M}, \bar{q}) . For a degenerate metric g on M

$$TM^{\perp} = \bigcup \{ u \in T_x \bar{M} : \bar{q}(u, v) = 0, \forall v \in T_x \bar{M}, x \in M \}$$

$$\tag{1}$$

is a degenerate n-dimensional subspace of $T_x\bar{M}$. Hence, both T_xM and T_xM^\perp are degenerate orthogonal subspaces but no longer complementary. Thus, there exists a subspace $Rad(T_xM) = T_xM \cap T_xM^\perp$ which is known as radical (null) space. If the mapping $Rad(TM): x \in M \longrightarrow Rad(T_xM)$, defines a smooth distribution, named radical distribution on M of rank r > 0 then the submanifold M of (\bar{M}, \bar{g}) is named an r-lightlike submanifold.

Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribution of Rad(TM) in TM. This means that

$$TM = S(TM) \perp Rad(TM) \tag{2}$$

and $S(TM^{\perp})$ is a complementary vector subbundle to Rad(TM) in TM^{\perp} . Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to TM in $T\bar{M}_{|_{M}}$ and Rad(TM) in $S(TM^{\perp})^{\perp}$, respectively. Then, we have

$$tr(TM) = ltr(TM) \perp S(TM^{\perp}), \tag{3}$$

$$T\bar{M}\mid_{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus ltr(TM)\} \perp S(TM) \perp S(TM^{\perp}).$$
 (4)

Theorem 2.1. [5] Let $(M, g, S(TM), S(TM^{\perp}))$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Suppose U is a coordinate neighbourhood of M and $\{\xi_i\}$, $i \in \{1, .., r\}$ is a basis of $\Gamma(Rad(TM)_{|_{U}})$. Then, there exist a complementary vector subbundle ltr (TM) of Rad(TM) in $S(TM^{\perp})^{\perp}_{|_{U}}$ and a basis $\{N_i\}$, $i \in \{1, .., r\}$ of $\Gamma(ltr(TM)_{|_{U}})$ such that

$$\bar{g}(N_i, \xi_j) = \delta_{ij}, \quad \bar{g}(N_i, N_j) = 0$$
 (5)

for any i, j ∈ {1, ..., r}.

We say that a submanifold $(M, g, S(TM), S(TM^{\perp}))$ of $(\overline{M}, \overline{g})$ is

Case 1: r-lightlike if $r < min\{m, n\}$,

Case 2: Coisotropic if r = n < m, $S(TM^{\perp}) = \{0\}$,

Case 3: Isotropic if r = m < n, $S(TM) = \{0\}$,

Case 4: Totally lightlike if r = m = n, $S(TM) = \{0\} = S(TM^{\perp})$.

Let $\bar{\nabla}$ be the Levi-Civita connection on \bar{M} . Then, using (4) we have

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{6}$$

$$\bar{\nabla}_X U = -A_U X + \nabla_X^t U, \tag{7}$$

for any $X, Y \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$, where $\{\nabla_X Y, A_U X\}$ and $\{h(X, Y), \nabla_X^t U\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. ∇ and ∇^t are linear connections on M and on the vector bundle tr(TM), respectively. According to (2), considering the projection morphisms L and S of tr(TM) on ltr(TM) and $S(TM^{\perp})$,

respectively, (6) and (7) become

$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \tag{8}$$

$$\bar{\nabla}_X N = -A_N X + \nabla_X^l N + D^s(X, N), \tag{9}$$

$$\bar{\nabla}_X W = -A_W X + \nabla_X^s W + D^l(X, W), \tag{10}$$

for any $X, Y \in \Gamma(TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$, where $h^{l}(X, Y) = Lh(X, Y)$, $h^{s}(X, Y) = Sh(X, Y)$, $\nabla_{X}Y, A_{N}X, A_{W}X \in \Gamma(TM)$, $\nabla_{X}^{l}N, D^{l}(X, W) \in \Gamma(ltr(TM))$ and $\nabla_{X}^{s}W, D^{s}(X, N) \in \Gamma(S(TM^{\perp}))$. Hence, using (8)-(10) and letting into account that $\overline{\nabla}$ is a metric connection we derive

$$g(h^{s}(X,Y),W) + g(Y,D^{l}(X,W)) = g(A_{W}X,Y),$$
 (11)

$$q(D^{s}(X,N),W) = q(A_{W}X,N), \tag{12}$$

$$q(h^{l}(X,Y),\xi) + q(Y,h^{l}(X,\xi)) + q(Y,\nabla_{X}\xi) = 0.$$
 (13)

Let Q be a projection of TM on S(TM). Thus, using (2) we obtain

$$\nabla_X QY = \nabla_X^* QY + h^*(X, QY)\xi, \tag{14}$$

$$\nabla_X \xi = -A_{\xi}^* X + \nabla_X^{*t} \xi, \tag{15}$$

for any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$, where $\{\nabla_X^*QY, A_\xi^*X\}$ and $\{h^*(X, QY), \nabla_X^{*t}\xi\}$ belong to $\Gamma(S(TM))$ and $\Gamma(Rad(TM))$, respectively.

Using the equations given above, we derive

$$q(h^{l}(X,QY),\xi) = q(A_{\varepsilon}^{*}X,QY), \tag{16}$$

$$g(h^*(X,QY),N) = g(A_NX,QY), (17)$$

$$g(h^{l}(X,\xi),\xi) = 0, A_{\xi}^{*}\xi = 0.$$
 (18)

Generally, ∇ on M is not metric connection. Since $\bar{\nabla}$ is a metric connection, from (8) we obtain

$$(\nabla_X q)(Y, Z) = \bar{q}(h^l(X, Y), Z) + \bar{q}(h^l(X, Z), Y).$$

But, ∇^* is a metric connection on S(TM).

Definition 2.2. A lightlike submanifold (M, g) of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) is said to be an irrotational submanifold if $\tilde{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$ [16]. Thus M is an irrotational lightlike submanifold iff $h^l(X, \xi) = 0$, $h^s(X, \xi) = 0$.

Theorem 2.3. Let M be an r-lightlike submanifold of a semi-Riemannian manifold \overline{M} . Then ∇ is a metric connection iff Rad(TM) is a parallel distribution with respect to ∇ [5].

An odd dimensional semi-Riemannian manifolds (\bar{M}, \bar{g}) is named a contact metric manifold [4] if there is a (1, 1) tensor field ϕ , a vector field V named characteristic vector field, and a 1-form η such that

$$\bar{q}(\phi X, \phi Y) = \bar{q}(X, Y) - \epsilon \eta(X) \eta(Y), \, \bar{q}(V, V) = \epsilon, \tag{19}$$

$$\phi^2 X = -X + \eta(X)V, \bar{q}(X, V) = \epsilon \eta(X), \tag{20}$$

$$d\eta(X,Y) = \bar{g}(X,\phi Y), \epsilon = \pm 1 \tag{21}$$

for any $X, Y \in \Gamma(T\overline{M})$.

It follows that

$$\phi V = 0, \phi \circ \eta = 0, \eta(V) = \epsilon. \tag{22}$$

Then (ϕ, V, η, \bar{g}) is named contact metric structure of (\bar{M}, \bar{g}) . We say that (\bar{M}, \bar{g}) has a normal contact structure if $N_{\phi} + d\eta \otimes V = 0$, where N_{ϕ} is the Nijenhuis tensor field of ϕ [23]. A normal contact metric manifold is named an indefinite Sasakian manifold [21, 22] for which we have

$$\nabla_X V = \phi X, \tag{23}$$

$$(\nabla_X \phi) Y = -\bar{q}(X, Y) V + \epsilon \eta(Y) X. \tag{24}$$

 (\bar{M}, \bar{g}) is named indefinite Sasakian space form, denoted by $\bar{M}(c)$, if it has the constant ϕ –sectional curvature c [22]. The curvature tensor \bar{R} of a Sasakian space form $\bar{M}(c)$ is given by

$$\bar{R}(X,Y)Z = \frac{(c+3)}{4} \{ \bar{g}(Y,Z)X - \bar{g}(X,Z)Y \} + \frac{(c-1)}{4} \{ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + \bar{g}(X,Z)\eta(Y)V - \bar{g}(Y,Z)\eta(X)V + \bar{g}(\phi Y,Z)\phi X + \bar{g}(\phi Z,X)\phi Y - 2\bar{g}(\phi X,Y)\phi Z \}$$
(25)

for any $X, Y, Z \in \Gamma(T\overline{M})$.

3. Contact Screen transversal Cauchy-Riemann (STCR)-Lightlike Submanifolds

Definition 3.1. Let M be a real r-lightlike submanifold of an indefinite Sasakian manifold manifold (\bar{M}, \bar{g}) . Then we say that M is a contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifold if the condition (A) and (B) are holded:

(A) There exist two subbundles σ_1 and σ_2 of Rad(TM) such that

$$Rad(TM) = \sigma_1 \oplus \sigma_2, \ \phi(\sigma_1) \subset S(TM), \ \phi(\sigma_2) \subset S(TM^{\perp}).$$
 (26)

(B) There exist two subbundles σ_0 and σ' of S (TM) such that

$$S(TM) = \left\{ \phi(\sigma_1) \oplus \sigma' \right\} \perp \sigma_0, \ \phi(\sigma_0) = \sigma_0, \ \phi(\sigma') = L_1 \perp S, \tag{27}$$

where σ_0 is a non-degenerate distribution on M, L_1 and S are vector subbundles of ltr (TM) and S (TM $^{\perp}$), respectively.

Then *TM* of *M* is decomposed as

$$TM = \sigma \oplus \bar{\sigma} \bot \{V\} \tag{28}$$

where

$$\sigma = \sigma_0 \oplus \sigma_1 \oplus \phi(\sigma_1) \tag{29}$$

and

$$\bar{\sigma} = \sigma_2 \oplus \phi(L_1) \oplus \phi(S). \tag{30}$$

It is clear that σ is invariant and $\bar{\sigma}$ is anti-invariant. Besides, we have

$$ltr(TM) = L_1 \oplus L_2, \phi(L_1) \subset S(TM), \phi(L_2) \subset S(TM^{\perp})$$
(31)

and

$$S(TM^{\perp}) = \left\{ \phi(\sigma_2) \oplus \phi(L_2) \right\} \perp S. \tag{32}$$

If $\sigma_1 \neq \{0\}$, $\sigma_2 \neq \{0\}$, $\sigma_0 \neq \{0\}$ and $S \neq \{0\}$, then M is called a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}) . For proper contact STCR-lightlike submanifold we note that the following features:

- 1. The condition (A) implies that $dim(Rad(TM)) \ge 2$.
- 2. The condition (B) implies $dim(\sigma) = 2s \ge 4$, $dim(\sigma') \ge 2$ and $dim(\sigma_2) = dim(L_2)$. Thus $dim(M) \ge 8$ and $dim(\bar{M}) \ge 13$.
 - 3. Any proper 8-dimensional contact STCR-lightlike submanifold must be 2-lightlike.
 - 4. (A) and contact distribution ($\eta = 0$) imply that index(\overline{M}) ≥ 2 .

Proposition 3.2. A contact STCR-lightlike submanifold M of an indefinite Sasakian manifold (\bar{M}, \bar{g}) is contact CR-lightlike submanifold (respectively, contact screen transversal lightlike submanifold) iff $\sigma_2 = \{0\}$ (respectively, $\sigma_1 = \{0\}$).

Proof. Suppose that M is a contact CR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}) . Then $\phi(Rad(TM))$ is a distribution on M such that $\phi(Rad(TM)) \cap Rad(TM) = \{0\}$. Therefore we get $\sigma_1 = Rad(TM)$ and $\sigma_2 = \{0\}$. Thus we conclude that $\phi(ltr(TM)) \cap ltr(TM) = \{0\}$. Then it follows that $\phi(ltr(TM)) \subset S(TM)$. Conversely, suppose that M is a contact STCR-lightlike submanifold such that $\sigma_2 = \{0\}$. Then we have $\sigma_1 = Rad(TM)$. Therefore $\phi(Rad(TM)) \cap Rad(TM) = \{0\}$, that is, $\phi(Rad(TM))$ is a vector subbundle of S(TM). Hence M is a contact CR-lightlike submanifold. Similarly one can obtain the other assertion. \square

Proposition 3.3. There exist no coisotropic, isotropic or totally lightlike proper contact STCR-lightlike submanifolds M of an indefinite Sasakian manifold. Any isotropic contact STCR-lightlike submanifold is a screen transversal lightlike submanifold. Besides, a coisotropic contact STCR-lightlike submanifold is a contact CR-lightlike submanifold.

Proof. Suppose that M is a proper contact STCR-lightlike submanifold. From definition of proper contact STCR-lightlike submanifold, we know that $\sigma_1 \neq \{0\}$, $\sigma_2 \neq \{0\}$, $\sigma_0 \neq \{0\}$ and $S \neq \{0\}$, that is both S(TM) and $S(TM^{\perp})$ are non-zero. Hence, M can not be a coisotropic, isotropic or totally lightlike submanifold. On the other hand, if M be a isotropic contact STCR-lightlike submanifold, then $S(TM) = \{0\}$, i.e., $\phi(\sigma_1) = \{0\}$ and $Rad(TM) = \sigma_2$. Hence, we obtain $\phi(Rad(TM)) = \phi(\sigma_2) \subset \Gamma(S(TM^{\perp}))$ and M is a contact screen transversal lightlike submanifold. Similarly, if M is a coisotropic contact STCR-lightlike submanifold, then $S(TM^{\perp}) = \{0\}$, i.e., $\phi(\sigma_2) = \{0\}$ and $Rad(TM) = \sigma_1$. Since, $\phi(Rad(TM)) = \phi(\sigma_1) \subset \Gamma(S(TM))$ then M is a contact CR-lightlike submanifold. \square

The following construction will help in understanding the examples of this paper. Consider (R_q^{2m+1} , ϕ_0 , V, η , g) with its usual Sasakian structure given by

$$\begin{split} \eta &= \tfrac{1}{2}(dz - \sum\limits_{j=1}^m y^j dx^j), V = 2\partial z, \\ \bar{g} &= \eta \otimes \eta + \tfrac{1}{4}(-\sum\limits_{j=1}^{\frac{q}{2}} dx^j \otimes dx^j + dy^j \otimes dy^j + \sum\limits_{i=q+1}^m dx^j \otimes dx^j + dy^j \otimes dy^j), \\ \phi_0(\sum\limits_{j=1}^m (X_j \partial x^j + Y_j \partial y^j)) + Z\partial z) &= \sum\limits_{j=1}^m (Y_j \partial x^j - X_j \partial y^j) + Y_j y^j \partial z \end{split}$$

where (x_i, y_i, z) are the Cartesian coordinates.

Example 3.4. Let $(\bar{M} = \mathbb{R}^{13}_4, \bar{g})$ be a semi-Euclidean space, where \bar{g} is of signature (-, -, +, +, +, +, -, -, +, +, +, +, +) with respect to canonical basis $(\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5, \partial x_6, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial y_5, \partial y_6, \partial z)$. Suppose M is a submanifold of \mathbb{R}^{13}_4 defined by

$$x^{1} = y^{4}, x^{3} = \cos \theta x^{2}, y^{3} = \sin \theta x^{2}, x_{5} = \sqrt{1 + (y^{5})^{2}}$$

A local frame of TM is given by

$$\xi_1 = \partial x_1 + \partial y_4 + y^1 \partial z, \xi_2 = \partial x_2 + \cos \theta \partial x_3 + \sin \theta \partial y_3 + (y^2 + \cos \theta y^3) \partial z,$$

$$Z_1 = \partial x_4 - \partial y_1 + y^4 \partial z, Z_2 = 2(\partial x_4 + \partial y_1 + y^1 \partial z),$$

$$Z_{3} = 2(y^{5}\partial x_{5} + x^{5}\partial y_{5} + y^{5}\partial z), Z_{4} = 2\partial x_{6} + y^{6}\partial z, Z_{5} = -2\partial y_{6}, Z = 2\partial z = V.$$

Hence M is a 2- lightlike submanifold of \mathbb{R}^{13}_4 with $Rad(TM) = Span\{\xi_1, \xi_2\}$. It is easy to see $\phi_0(\xi_1) = Z_1 \in \Gamma(S(TM))$, hence $\sigma_1 = Span\{\xi_1\}$ and $\sigma_2 = Span\{\xi_2\}$. On the other hand, since $\phi_0(Z_4) = Z_5 \in \Gamma(S(TM))$, we derive $\sigma_0 = Span\{Z_4, Z_5\}$ and by direct calculations, we derive the lightlike transversal bundle spanned by

$$N_1 = 2(-\partial x_1 + \partial y_4 + y^1 \partial z), N_2 = 2(-\partial x_2 + \cos\theta \partial x_3 + \sin\theta \partial y_3 + (y^2 + \cos\theta y^3) \partial z).$$

Then we see that $L_1 = Span\{N_1\}$, $L_2 = Span\{N_2\}$, $S(TM^{\perp}) = Span\{\phi_0(\xi_2), \phi_0(N_2), \phi_0(Z_3)\}$ and $S = Span\{\phi_0(Z_3) = W\}$. Thus, $\sigma' = Span\{\phi_0(N_1) = Z_2, \phi_0(W) = -Z_3\}$ and M is a proper contact STCR-lightlike submanifold of \mathbb{R}^{13}_4 .

We indicate the projections from $\Gamma(TM)$ to $\Gamma(\sigma_0)$, $\Gamma(\phi(\sigma_1))$, $\Gamma(\phi(L_1))$, $\Gamma(\phi(S))$, $\Gamma(\sigma_1)$ and $\Gamma(\sigma_2)$ by P_0 , P_1 , P_2 , P_3 , R_1 and R_2 , respectively. We also indicate the projections from $\Gamma(tr(TM))$ to $\Gamma(\phi(\sigma_2))$, $\Gamma(\phi(L_2))$, $\Gamma(S)$, $\Gamma(L_1)$ and $\Gamma(L_2)$ by S_1 , S_2 , S_3 , Q_1 and Q_2 , respectively. Hence, we write

$$X = PX + RX + \eta(X)V = P_0X + P_1X + P_2X + P_3X + R_1X + R_2X + \eta(X)V$$
(33)

and

$$\phi X = TX + \omega X \tag{34}$$

for any $X \in \Gamma(TM)$, where $PX \in \Gamma(\bar{\sigma})$, $RX \in \Gamma(\bar{\sigma})$ and TX and ωX are the tangential parts and the transversal parts of ϕX , respectively. Applying ϕ to (33) and denoting ϕP_0 , ϕP_1 , ϕP_2 , ϕP_3 , ϕR_1 , ϕR_2 by T_0 , T_1 , ω_L , ω_S , $T_{\bar{1}}$, $\omega_{\bar{2}}$, respectively, we derive

$$\phi X = T_0 X + T_1 X + T_{\bar{1}} X + \omega_L X + \omega_S X + \omega_{\bar{2}} X \tag{35}$$

for any $X \in \Gamma(TM)$, where $T_0X \in \Gamma(\sigma_0)$, $T_1X \in \Gamma(\sigma_1)$, $T_{\bar{1}}X \in \Gamma(\phi(\sigma_1))$, $\omega_LX \in \Gamma(L_1)$, $\omega_SX \in \Gamma(S)$ and $\omega_{\bar{2}}X \in \Gamma(\phi(\sigma_2))$. Similarly we write

$$U = S_1 U + S_2 U + S_3 U + Q_1 U + Q_2 U \tag{36}$$

for any $U \in \Gamma(tr(TM))$ and we denote ϕS_1 , ϕS_2 , ϕS_3 , ϕQ_1 , ϕQ_2 by B_2 , C_L , $B_{\bar{S}}$, $B_{\bar{L}}$, $C_{\bar{L}}$, respectively. Thus we write

$$\phi U = B_2 U + B_{\bar{5}} U + B_{\bar{L}} U + C_L U + C_{\bar{L}} U \tag{37}$$

and

$$\phi U = BU + CU \tag{38}$$

where BU and CU are sections of TM and tr(TM), respectively. Now, differentiating (35) and using (8)-(10), (24), (35) and (38), we derive

$$\nabla_{X}TY + h^{l}(X, TY) + h^{s}(X, TY) + \{-A_{\omega_{L}Y}X + \nabla_{X}^{l}(\omega_{L}Y) + D^{s}(X, \omega_{L}Y)\}$$

$$+\{-A_{\omega_{S}Y}X + \nabla_{X}^{s}(\omega_{S}Y) + D^{l}(X, \omega_{S}Y)\}$$

$$+\{-A_{\omega_{2}Y}X + \nabla_{X}^{s}(\omega_{2}Y) + D^{l}(X, \omega_{2}Y)\}$$

$$= T\nabla_{X}Y + \omega_{L}\nabla_{X}Y + \omega_{S}\nabla_{X}Y + \omega_{2}\nabla_{X}Y + Bh^{l}(X, Y) + Ch^{l}(X, Y)$$

$$+Bh^{s}(X, Y) + Ch^{s}(X, Y) - g(X, Y)V + \eta(Y)X$$

$$(39)$$

for any $X, Y \in \Gamma(TM)$. Taking the tangential, lightlike transversal and screen transversal parts of (39) we derive

$$(\nabla_X T)Y = \nabla_X TY - T\nabla_X Y = A_{\omega_L Y} X + A_{\omega_S Y} X + A_{\omega_{\bar{2}} Y} X$$

$$+Bh(X,Y) - q(X,Y)V + \eta(Y)X,$$

$$(40)$$

$$D^{l}(X, \omega_{S}Y) + D^{l}(X, \omega_{\tilde{2}}Y)$$

$$= \omega_{L}\nabla_{X}Y - \nabla^{l}_{X}(\omega_{L}Y) - h^{l}(X, TY) + Ch^{l}(X, Y)$$
(41)

and

$$D^{s}(X, \omega_{L}Y) = \omega_{S}\nabla_{X}Y + \omega_{\bar{2}}\nabla_{X}Y - \nabla_{X}^{s}(\omega_{S}Y) -\nabla_{X}^{s}(\omega_{\bar{2}}Y) - h^{s}(X, TY) + Ch^{s}(X, Y)$$

$$(42)$$

respectively.

Theorem 3.5. There does not exist an induced metric connection of a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}) .

Proof. Assume that ∇ is a metric connection. Then from Theorem 2.3, Rad(TM) is parallel with respect to ∇ , i.e., $\nabla_X \xi \in \Gamma(Rad(TM))$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$. From (24) we obtain

$$\bar{\nabla}_{X}\phi\xi = \phi\bar{\nabla}_{X}\xi\tag{43}$$

for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$. Applying ϕ to (43) and using (20) and (24), we get

$$\phi \bar{\nabla}_X \phi \xi = -\bar{\nabla}_X \xi - \bar{g}(\xi, \bar{\nabla}_X V) V. \tag{44}$$

Then from (23) and (44) we derive

$$\phi \bar{\nabla}_X \phi \xi = -\bar{\nabla}_X \xi - g(\xi, \phi X) V. \tag{45}$$

Choose $X \in \Gamma(\phi(L_1))$ and $\xi \in \Gamma(\sigma_1)$ such that $g(\phi X, \xi) \neq 0$ (since $\sigma_1 \oplus \phi(L_1)$ is a non-degenerate distribution on M, so we can choose such vector fields). Hence from (6), (14), (38) and (45) we obtain

$$-\nabla_{X}\xi - h(X,\xi) - g(\xi,\phi X)V = T\nabla_{X}^{*}\phi\xi + \omega\nabla_{u}^{*}\phi\xi + Th^{*}(X,\phi\xi) + \omega h^{*}(X,\phi\xi) + Bh(X,\phi\xi) + Ch(X,\phi\xi),$$
(46)

for any $X \in \Gamma(\phi(L_1))$ and $\xi \in \Gamma(\sigma_1)$. Then taking tangential parts of (46) we derive

$$T\nabla_X^* \phi \xi + \nabla_X \xi + Th^*(X, \phi \xi) + Bh(X, \phi \xi) = -\bar{g}(\xi, \phi X)V. \tag{47}$$

Since Rad(TM) is parallel, $\nabla_X \xi \in \Gamma(Rad(TM))$. On the other hand, $T\nabla_X^* \phi \xi + Th^*(X, \phi \xi) \in \Gamma(\sigma_1 \bot \phi(\sigma_1) \bot \sigma_0)$ and $Bh(X, \phi \xi) \in \Gamma(\bar{\sigma})$, thus we obtain $\bar{g}(\xi, \phi X)V = 0$. Since $V \neq 0$ and $\bar{g}(\xi, \phi X) \neq 0$ we have a contradiction so Rad(TM) is not parallel. Hence ∇ is not a metric connection. \square

Theorem 3.6. Let M be a lightlike submanifold tangent to the structure vector field V in an indefinite Sasakian $\overline{M}(c)$ with $c \neq 1$ Then, M is a contact STCR-lightlike submanifold of $\overline{M}(c)$ iff:

(a) The maximal invariant subspaces of TpM, $p \in M$, define a distribution

$$\sigma = \sigma_0 \oplus \sigma_1 \oplus \phi(\sigma_1)$$

where $Rad(TM) = \sigma_1 \perp \sigma_2$ and σ_0 is a non-degenerate invariant distribution.

(b) There exists a lightlike transversal vector bundle *ltr*(*TM*) such that

$$\bar{q}(\bar{R}(X,Y)\xi,N)=0$$

for any $X, Y \in \Gamma(\sigma)$, $\xi \in \Gamma(Rad(TM))$, $N \in \Gamma(ltr(TM))$.

(c) There exists a vector subbundle M_2 on M such that

$$\bar{q}(\bar{R}(X,Y)W_1,W_2) = 0$$

for any $X, Y \in \Gamma(\sigma)$, $W_1, W_2 \in \Gamma(M_2)$, where M_2 is orthogonal to σ and \bar{R} is the curvature tensor of $\bar{M}(c)$.

Proof. Let M be a contact STCR-lightlike submanifold of $\bar{M}(c)$, $c \neq 1$. From (a), $\sigma = \sigma_0 \oplus \sigma_1 \oplus \phi(\sigma_1)$ is maximal invariant subspaces. Next from (25), we have

$$\bar{g}(\bar{R}(X,Y)\xi,N) = \frac{-c+1}{2} \{ g(\phi X,Y)\bar{g}(\phi \xi,N) \}$$

for any $X,Y \in \Gamma(\sigma)$, $\xi \in \Gamma(Rad(TM))$, $N \in \Gamma(ltr(TM))$. Since $g(\phi X,Y) \neq 0$ and $\bar{g}(\phi \xi,N) = 0$, we get $\bar{g}(\bar{R}(X,Y)\xi,N) = 0$. Thus (b) holds. Similarly, from (25) we get

$$\bar{g}(\bar{R}(X,Y)W_1,W_2) = \frac{-c+1}{2} \{g(\phi X,Y)\bar{g}(\phi W_1,W_2)\}$$

for any $X, Y \in \Gamma(\sigma)$, $W_1, W_2 \in \Gamma(M_2)$. Then (c) satisfies.

 \iff : Conversely, we suppose that (a), (b) and (c) are holded. From (a), $\sigma = \sigma_0 \oplus \sigma_1 \oplus \phi(\sigma_1)$ is maximal invariant subspaces and $Rad(TM) = \sigma_1 \perp \sigma_2$, while $\phi(\sigma_1)$ is an invariant distribution on TM, σ_2 isn't invariant on TM with respect to ϕ . For this reason, $\phi(\sigma_2) \subset \Gamma(tr(TM))$. Hence, it is easy to see that $\phi(\sigma_1) \neq \sigma_2$ and $\phi(\sigma_1)$ is a distribution on S(TM). Besides, for $ltr(TM) = L_1 \oplus L_2$ and $\xi_1 \in \Gamma(\sigma_1)$, $N_1 \in \Gamma(L_1)$ from (b) and (25) we get

$$\bar{g}(\phi \xi_1, N_1) = -\bar{g}(\xi_1, \phi N_1) = 0$$

which implies $\phi(L_1)$ is a distribution on S(TM). It is easy to see that $\phi(\sigma_2) \neq L_1$ or $\phi(\sigma_2) \neq L_2$. Thus $\phi(\sigma_2)$ is a distribution on $S(TM^{\perp})$. Similarly, for any $\xi_2 \in \Gamma(\sigma_2)$ and $N_2 \in \Gamma(L_2)$, since $\bar{g}(\phi \xi_2, N_2) = -\bar{g}(\xi_2, \phi N_2) = 0$, then $\phi(L_2)$ is a distribution on $S(TM^{\perp})$, too. From (c), there exists a non-degenerate distribution M_2 such that $M_2 \perp \sigma$ and for any $X, Y \in \Gamma(\sigma)$, $W_1, W_2 \in \Gamma(M_2)$, we have

$$\bar{g}(\phi W_1, W_2) = 0.$$

This implies that $\phi(M_2) \perp M_2$. Also $\bar{g}(\phi \xi, W) = -\bar{g}(\xi, \phi W) = 0$ implies that $\phi(M_2) \perp Rad(TM)$. Furthermore, this say that $\phi(M_2)$ does not belong to ltr(TM). Besides, since $\phi(M_2) \perp \sigma$ and σ is invariant, we write

$$\bar{q}(X, W) = \bar{q}(\phi X, W) = -\bar{q}(X, \phi W) = 0.$$

for any $X \in \Gamma(\sigma)$ and $W \in \Gamma(M_2)$, that is, $\phi(M_2)$ is orthogonal to σ , too. Hence, M_2 and $\phi(M_2)$ are distributions on S(TM) and $S(TM^{\perp})$, respectively. Moreover, from a result in [2], we know that the structure vector field V belongs to S(TM). Then summing up the above arguments, we conclude that

$$S(TM) = \{\phi(\sigma_1) \oplus \phi(L_1)\} \bot M_2 \bot \sigma_o \bot \{V\}.$$

Thus, M is a contact STCR-lightlike submanifold of \overline{M} . \square

Theorem 3.7. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then

(1) $\bar{\sigma}$ is integrable iff

$$A_{\phi X}Y = A_{\phi Y}X$$
.

(2) $\sigma \perp \{V\}$ is integrable iff

$$h(X, \phi Y) = h(\phi X, Y).$$

(3) σ is not integrable.

Proof. From (40) we derive

$$-T\nabla_X Y = A_{\omega_1 Y} X + A_{\omega_5 Y} X + A_{\omega_7 Y} X + Bh(X, Y) - g(X, Y)V$$

for any $X, Y \in \Gamma(\bar{\sigma})$. Hence we have

$$T[X,Y] = -A_{\omega_1 Y}X + A_{\omega_1 X}Y - A_{\omega_2 Y}X + A_{\omega_3 X}Y - A_{\omega_2 Y}X + A_{\omega_7 X}Y$$

which proves assertion (1). From (41) and (42) we get

$$h(X, TY) = \omega_L \nabla_X Y + \omega_S \nabla_X Y + \omega_{\bar{2}} \nabla_X Y + Ch(X, Y)$$

for any $X, Y \in \Gamma(\sigma \bot \{V\})$. Hence we derive

$$h(X, TY) - h(Y, TX) = \omega_L[X, Y] + \omega_S[X, Y] + \omega_{\bar{2}}[X, Y]$$

which proves the assertion (2). Assume that σ is integrable. Then, we have $\bar{g}([X,Y],V)=0$, for any $X,Y\in\Gamma(\sigma_0)$. Using that \bar{V} is metric connection and (23) we derive $g([X,Y],V)=2g(\phi Y,X)$. Hence we have $\bar{g}(\phi Y,X)=0$. Since σ_0 is non-degenerate, this is a contradiction. Thus σ is not integrable. \square

Theorem 3.8. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then, $\sigma \bot \{V\}$ is integrable iff the followings are holded:

$$h^s(X, \phi Y) - h^s(Y, \phi X) \in \Gamma(\phi(L_2))$$

and

$$h^{l}(X, \phi Y) - h^{l}(Y, \phi X) \in \Gamma(L_2)$$

for any $X, Y \in \Gamma(\sigma \bot \{V\})$.

Proof. From definition of contact STCR-lightlike submanifolds, σ is integrable iff for any $X, Y \in \Gamma(\sigma \bot \{V\})$, $[X, Y] \in \Gamma(\sigma \bot \{V\})$,

$$\bar{g}([X,Y],N_2) = \bar{g}([X,Y],\phi\xi_1) = \bar{g}([X,Y],\phi W) = 0,$$

for any $X, Y \in \Gamma(\sigma \perp \{V\})$, $\xi_1 \in \Gamma(\sigma_1)$, $N_2 \in \Gamma(L_2)$ and $W \in \Gamma(S)$. Thus, for any $X, Y \in \Gamma(\sigma \perp \{V\})$, $\xi_1 \in \Gamma(\sigma_1)$, $N_2 \in \Gamma(L_2)$ and $W \in \Gamma(S)$, using (8), (19) and (24) we have

$$\bar{g}([X,Y],N_2) = \bar{g}(h^s(X,\phi Y) - h^s(Y,\phi X),\phi N_2),\tag{48}$$

$$\bar{g}([X,Y], \phi \xi_1) = \bar{g}(h^l(Y, \phi X) - h^l(X, \phi Y), \xi_1),$$
(49)

$$\bar{q}([X,Y],\phi W) = \bar{q}(h^s(Y,\phi X) - h^s(X,\phi Y), W). \tag{50}$$

Hence, the proof comes from (48)-(50). \square

Theorem 3.9. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then, $\bar{\sigma}$ is integrable iff

$$A_{\phi X}Y - A_{\phi Y}X \in \Gamma(\tilde{\sigma})$$

for any $X, Y \in \Gamma(\bar{\sigma})$.

Proof. $\bar{\sigma}$ is integrable iff for any $X, Y \in \Gamma(\bar{\sigma})$, $[X, Y] \in \Gamma(\bar{\sigma})$, i.e.,

$$\bar{q}([X,Y],N_1) = \bar{q}([X,Y],\phi N_1) = \bar{q}([X,Y],Z) = \bar{q}([X,Y],V) = 0,$$

for any $X, Y \in \Gamma(\bar{\sigma})$, $Z \in \Gamma(\sigma_0)$ and $N_1 \in \Gamma(L_1)$. Thus, using (7), (19) and (24) we have

$$\bar{g}([X,Y],N_1) = \bar{g}(A_{\phi X}Y - A_{\phi Y}X,\phi N_1) \tag{51}$$

for any $X, Y \in \Gamma(\bar{\sigma})$ and $N_1 \in \Gamma(L_1)$. Similarly, using again (7), (19), (23) and (24) we derive

$$\bar{g}([X,Y],\phi N_1) = \bar{g}(A_{\phi Y}X - A_{\phi X}Y, N_1), \tag{52}$$

$$\bar{g}([X,Y],Z) = \bar{g}(A_{\phi X}Y - A_{\phi Y}X,\phi Z),\tag{53}$$

$$\bar{g}([X,Y],V) = 2\bar{g}(\phi Y,X) = 0 \tag{54}$$

for any $X, Y \in \Gamma(\bar{\sigma}), Z \in \Gamma(\sigma_0)$ and $N_1 \in \Gamma(L_1)$. Thus the proof follows from (51)-(54).

4. STCR-Lightlike Product

Definition 4.1. A STCR-lightlike submanifold M of an indefinite Sasakian manifold \bar{M} is named STCR-lightlike product if both the distributions $\sigma \oplus \{V\}$ and $\bar{\sigma}$ define totally geodesic foliation in M.

Theorem 4.2. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then, $\sigma \bot \{V\}$ defines a totally geodesic foliation in M iff

$$Bh(X, \phi Y) = 0$$

for any $X, Y \in \Gamma(\sigma \bot \{V\})$.

Proof. $\sigma \perp \{V\}$ defines a totally geodesic foliation in M iff

$$g(\nabla_X Y, \phi \xi_1) = g(\nabla_X Y, N_2) = g(\nabla_X Y, \phi W) = 0$$

for any $X, Y \in \Gamma(\sigma \perp \{V\})$, $\xi_1 \in \Gamma(\sigma_1)$, $N_2 \in \Gamma(L_2)$ and $W \in \Gamma(S)$. From (8), (19) and (24) we derive

$$g(\nabla_X Y, \phi \xi_1) = -\bar{g}(h^l(X, \phi Y), \xi_1), \tag{55}$$

$$g(\nabla_X Y, N_2) = \bar{g}(h^s(X, \phi Y), \phi N_2), \tag{56}$$

$$g(\nabla_X Y, \phi W) = -\bar{g}(h^s(X, \phi Y), W). \tag{57}$$

Thus from (55) we see that $h^l(X, \phi Y)$ has no components in L_1 and from (56) and (57) we see that $h^s(X, \phi Y)$ has no components in $\phi(\sigma_2) \perp S$, i.e., $Bh(X, \phi Y) = 0$. This completes the proof. \square

Theorem 4.3. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then, $\bar{\sigma}$ defines a totally geodesic foliation in M iff

- (i) $A_{N_1}X$ has no components in $\phi(\sigma_1) \perp \phi(S)$.
- (ii) $A_{\phi Y}X$ has no components in $\sigma_o \perp \sigma_1$,

for any $X, Y \in \Gamma(\bar{\sigma})$ and $N_1 \in \Gamma(L_1)$.

Proof. $\bar{\sigma}$ defines a totally geodesic foliation in M iff

$$\bar{g}(\nabla_X Y, N_1) = g(\nabla_X Y, \phi N_1) = g(\nabla_X Y, Z) = g(\nabla_X Y, V) = 0$$

for any $X, Y \in \Gamma(\bar{\sigma}), N_1 \in \Gamma(L_1)$ and $Z \in \Gamma(\sigma_0)$. Since $\bar{\nabla}$ is a metric connection, (6), (9) and (24) imply

$$\bar{q}(\nabla_X Y, N_1) = q(A_{N_1} X, Y). \tag{58}$$

Using (6), (7), (19) and (24) we obtain

$$g(\nabla_X Y, \phi N_1) = g(A_{\phi Y} X, N_1), \tag{59}$$

$$g(\nabla_X Y, Z) = -g(A_{\phi Y} X, \phi Z). \tag{60}$$

Similarly, since $\bar{\nabla}$ is a metric connection and from (6) and (23), we derive

$$g(\nabla_X Y, V) = -\bar{g}(Y, \phi X) = 0. \tag{61}$$

Thus the proof comes from (58)-(61). \Box

Theorem 4.4. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . If $(\nabla_X T)Y = 0$, then M is a STCR lightlike product.

Proof. Let $X, Y \in \Gamma(\bar{\sigma})$, hence TY = 0. Then using (40) with the hypothesis, we get $T\nabla_X Y = 0$. Thus $\nabla_X Y \in \Gamma(\bar{\sigma})$ i.e. $\bar{\sigma}$ defines a totally geodesic foliation in M. Let $X, Y \in \Gamma(\sigma \bot \{V\})$; hence $\omega Y = 0$. Then using (40), we derive $Bh(X, \phi Y) = 0$. From Theorem 4.2, $\sigma \bot \{V\}$ defines a totally geodesic foliation in M. Therefore, M is a STCR lightlike product. This completes the proof. \square

Theorem 4.5. Let M be an irrotational contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then, M is a STCR lightlike product if the following conditions are holded:

- *i)* $\nabla_X U \in \Gamma(S(TM^{\perp}))$, for any $X \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$.
- *ii)* $A_{\varepsilon}^*Y \in \Gamma(\phi(\sigma_1) \perp \phi(S))$, for any $Y \in \Gamma(\sigma \perp \{V\})$ and $\xi \in \Gamma(Rad(TM))$.

Proof. Let (i) holds, then using (9) and (10) we get $A_NX=0$, $A_WX=0$, $D^l(X,W)=0$ and $\nabla^l_XN=0$ for any $X\in\Gamma(TM)$, $N\in\Gamma(ltr(TM))$ and $W\in\Gamma(S(TM^\perp))$. Therefore for any $X,Y\in\Gamma(\sigma\bot\{V\})$ and $W\in\Gamma(S(TM^\perp))$ and using (11), we derive $\bar{g}(h^s(X,Y),W)=0$. Since $S(TM^\perp)$ is non-degenerate, $h^s(X,Y)=0$. Therefore, $Bh^s(X,Y)=0$. Since M is irrotational, using (13) and (ii) we derive $\bar{g}(h^l(X,Y),\xi)=\bar{g}(Y,A_\xi^*X)=0$ for any $X,Y\in\Gamma(\sigma\bot\{V\})$ and $\xi\in\Gamma(Rad(TM))$. Thus, we derive $h^l(X,Y)=0$. Hence $Bh^l(X,Y)=0$. Then, from Theorem 4.2 the distribution $\sigma\bot\{V\}$ defines a totally geodesic foliation in M.

Next, for any $X,Y \in \Gamma(\bar{\sigma})$, then $\phi Y = \omega Y \in \Gamma(L_1 \perp S \perp \phi(\sigma_2)) \subset tr(TM)$. Using (40) we derive $T\nabla_X Y = -Bh(X,Y) + g(X,Y)V$, comparing the components along $\bar{\sigma}$, we get $T\nabla_X Y = 0$, which implies that $\nabla_X Y \in \Gamma(\bar{\sigma})$. Thus $\bar{\sigma}$ defines a totally geodesic foliation in M and M is a STCR-lightlike product. \square

Definition 4.6. [23] If the second fundamental form h of a submanifold tangent to characteristic vector field V, of an indefinite Sasakian manifold \bar{M} is of the form

$$h(X,Y) = \{q(X,Y) - \eta(X)\eta(X)\}\beta + \eta(X)h(Y,V) + \eta(Y)h(X,V)$$
(62)

for any $X, Y \in \Gamma(TM)$, where β is a vector field transversal to M, then M is named a totally contact umbilical submanifold and totally contact geodesic if $\beta = 0$.

Theorem 4.7. Let M be a totally contact umbilical contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then M is a STCR-lightlike product if $Bh(X, \phi Y) = 0$, for any $X \in \Gamma(TM)$ and $Y \in \Gamma(\sigma \bot \{V\})$.

Proof. Assume that $Bh(X, \phi Y) = 0$. Then $\sigma \bot \{V\}$ defines totally geodesic foliation in M for any $X, Y \in \Gamma(\sigma \bot \{V\})$. Using (40) we have

$$-T\nabla_X Y = A_{\omega Y} X + Bh(X, Y) - g(X, Y)V, \tag{63}$$

for any $X, Y \in \Gamma(\bar{\sigma})$. Using (7), (19), (24), (34) and (38) then equation (63) becomes

$$-g(T\nabla_{X}Y,Z) = g(A_{\omega Y}X + Bh(X,Y) - g(X,Y)V,Z)$$

$$= \bar{g}(\bar{\nabla}_{X}\phi Y,Z)$$

$$= -\bar{g}(\bar{\nabla}_{X}Y,\phi Z)$$

$$= \bar{g}(Y,\nabla_{X}Z')$$
(64)

for any $Z \in \Gamma(\sigma_0)$, where $\phi Z = Z' \in \Gamma(\sigma_0)$. From (24), we obtain

$$\bar{\nabla}_{X}\phi Z = \phi \bar{\nabla}_{X} Z \tag{65}$$

for any $X, Y \in \Gamma(\bar{\sigma})$ and $Z \in \Gamma(\sigma_0)$. Using (6), (34), (38) and taking transversal part of resulting equation we derive

$$\omega Q \nabla_X Z = h(X, TZ) - Ch(X, Z). \tag{66}$$

Using (62), we derive $\omega Q \nabla_X Z = 0$, this implies $\nabla_X Z \in \Gamma(\sigma)$. Hence, (64) becomes $g(T \nabla_X Y, Z) = 0$. Since σ_0 is non-degenerate, $\bar{\sigma}$ defines a totally geodesic foliation in M. Hence the proof is proved. \square

5. Minimal STCR-lightlike submanifolds

Definition 5.1. We say that a lightlike submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{q}) is minimal if:

- (i) $h^s = 0$ on Rad(TM) and
- (ii) trh = 0, where trace is written with respect to g restricted to S(TM).

It has been proved in [1] that the above definition is independent of S(TM) and $S(TM^{\perp})$, but it depends on tr(TM).

$$\begin{array}{rcl} x^1 & = & u^1, x^2 = u^2 \cosh \beta, x^3 = u^1, x^4 = u^2 \sinh \beta, \\ x^5 & = & \cos u^3 \cosh u^4, x^6 = \cos u^5 \sinh u^6, x^7 = \sin u^5 \sinh u^6, \\ y^1 & = & u^7, y^2 = u^2 \sinh \beta, y^3 = u^8, y^4 = u^2 \cosh \beta, \\ y^5 & = & \sin u^3 \sinh u^4, y^6 = \cos u^5 \cosh u^6, y^7 = \sin u^5 \cosh u^6, \end{array}$$

Then a local frame of TM is given by

$$Z_1 = \partial x_1 + \partial x_3,$$

$$Z_2 = \cosh \beta \partial x_2 + \sinh \beta \partial x_4 + \sinh \beta \partial y_2 + \cosh \beta \partial y_4 + (y^2 \cosh \beta + y^4 \sinh \beta) \partial z$$

$$Z_3 = -\sin u^3 \cosh u^4 \partial x_5 + \cos u^3 \sinh u^4 \partial y_5 + (-y^5 \sin u^3 \cosh u^4) \partial z,$$

$$Z_4 = \cos u^3 \sinh u^4 \partial x_5 + \sin u^3 \cosh u^4 \partial y_5 + (y^5 \cos u^3 \sinh u^4) \partial z,$$

$$Z_5 = -\sin u^5 \sinh u^6 \partial x_6 + \cos u^5 \sinh u^6 \partial x_7 - \sin u^5 \cosh u^6 \partial y_6 + \cos u^5 \cosh u^6 \partial y_7 + (-y^5 \sin u^5 \sinh u^6 + y^6 \cos u^5 \sinh u^6) \partial z,$$

$$Z_6 = \cos u^5 \cosh u^6 \partial x_6 + \sin u^5 \cosh u^6 \partial x_7 + \cos u^5 \sinh u^6 \partial y_6 + \sin u^5 \sinh u^6 \partial y_7 + (y^5 \cos u^5 \cosh u^6 + y^6 \sin u^5 \cosh u^6) \partial z,$$

$$Z_7 = \partial y_1, Z_8 = \partial y_3, Z = 2\partial z = V.$$

Thus M is a 2-lightlike submanifold with Rad(TM) = Span $\{Z_1, Z_2\}$, $\phi_0(\sigma_1)$ = Span $\{\phi_0(Z_1) = Z_7 + Z_8\}$, σ_0 = Span $\{Z_3, Z_4\}$ and it is easy to say that

$$ltr(TM) = Span\{N_1 = 2(-\partial x_1 + \partial x_3), N_2 = 2(-\cosh\beta\partial x_2 - \sinh\beta\partial x_4 + \sinh\beta\partial y_2 + \cosh\beta\partial y_4 + (-y^2\cosh\beta - y^4\sinh\beta)\partial z)\}, \phi_0(N_1) = 2(Z_7 - Z_8), S(TM^{\perp}) = Span\{\phi_0(Z_2), \phi_0(N_2), \phi_0(Z_5), \phi_0(Z_6)\}.$$

Hence, M is a proper contact STCR-lightlike submanifold of \mathbb{R}^{15}_{4} , with a quasi-orthonormal basis of \bar{M} along M is

$$\{\xi_1 = Z_1, \, \xi_2 = Z_2, \, \phi_0(\xi_1) = -Z_7 - Z_8, \, \phi_0(N_1) = 2(Z_7 - Z_8),$$

$$e_1 = \frac{1}{\sqrt{\cosh^2 u^4 - \cos^2 u^3}} Z_3, \, e_2 = \frac{1}{\sqrt{\cosh^2 u^4 - \cos^2 u^3}} Z_4,$$

$$e_3 = \frac{1}{\sqrt{\sinh^2 u^6 + \cosh^2 u^6}} Z_5, \, e_4 = \frac{1}{\sqrt{\sinh^2 u^6 + \cosh^2 u^6}} Z_6, \, V = Z_{10},$$

$$W_1 = \phi_0(\xi_2), \, W_2 = \phi_0(N_2), \, W_3 = \frac{1}{\sqrt{\sinh^2 u^6 + \cosh^2 u^6}} \phi_0(Z_5),$$

$$W_4 = \frac{1}{\sqrt{\sinh^2 u^6 + \cosh^2 u^6}} \phi_0(Z_6), \, N_1, \, N_2,$$

where $\varepsilon_1 = g(e_1, e_1) = 1$, $\varepsilon_2 = g(e_2, e_2) = 1$, $\varepsilon_3 = g(e_3, e_3) = 1$ and $\varepsilon_4 = g(e_4, e_4) = 1$. Using (8), we get

$$h(\xi_1, \xi_1) = h(\xi_2, \xi_2) = h(e_1, e_1) = h(e_2, e_2) = 0,$$

$$h(\phi_0(\xi_1), \phi_0(\xi_1)) = h(\phi_0(N_1), \phi_0(N_1)) = h^l(e_3, e_3) = h^l(e_4, e_4) = 0,$$

$$h^s(e_3, e_3) = \frac{1}{\sinh^2 u^6 + \cosh^2 u^6} Z_4, h^s(e_4, e_4) = -\frac{1}{\sinh^2 u^6 + \cosh^2 u^6} Z_4.$$

Thus

$$traceh_{a|S(TM)} = \epsilon_3 h^s(e_3, e_3) + \epsilon_4 h^s(e_4, e_4) = h^s(e_3, e_3) + h^s(e_4, e_4) = 0.$$

Hence M is a minimal proper contact STCR-lightlike submanifold of \mathbb{R}^{15}_4 .

Let take a quasi-orthonormal frame

$$\{\xi_1,...,\xi_q,e_1,...,e_m,V,W_1,...,\dot{W}_n,N_1,...,N_q\}$$

such that $(\xi_1, ..., \xi_q, e_1, ..., e_m, V)$ belongs to $\Gamma(TM)$. Then take $(\xi_1, ..., \xi_q, e_1, ..., e_m)$ such that $\{\xi_1, ..., \xi_p\}$ form a basis of σ_1 , $\{\xi_{p+1}, ..., \xi_q\}$ form a basis of σ_2 and $\{e_1, ..., e_{2s}\}$ form a basis of σ_0 . Besides, we take $\{W_1, ..., W_k\}$ a basis of S, $\{N_1, ..., N_p\}$ a basis of L_1 and $\{N_{p+1}, ..., N_q\}$ a basis of L_2 . Hence we have a quasi-orthonormal basis of L_1 as follows:

$$\{\xi_1,...,\xi_p,\xi_{p+1},...,\xi_r,e_1,...,e_l,\phi e_1,...,\phi e_l,\phi \xi_1,...,\phi \xi_p,\phi N_1,...,\phi N_p,\phi W_1,...,\phi W_k\}.$$

Theorem 5.3. Let M be a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M} . Then M is minimal iff

$$traceA_{W_i|S(TM)} = 0, traceA_{\mathcal{E}_i|S(TM)}^* = 0$$

$$(67)$$

and $\bar{q}(Y, D^l(X, W)) = 0$ for any $X, Y \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. We know that $h^l = 0$ on Rad(TM) [1]. Definition of a contact STCR-lightlike submanifold, M is minimal iff

$$\sum_{j=1}^{2s} \epsilon_j h(e_j, e_j) + \sum_{j=1}^{p} h(\phi \xi_j, \phi \xi_j) + \sum_{j=1}^{p} h(\phi N_j, \phi N_j) + \sum_{\alpha=1}^{k} \epsilon_\alpha h(\phi W_\alpha, \phi W_\alpha) = 0.$$

Now from (11), we have $h^s = 0$ on Rad(TM) iff $\bar{g}(Y, D^l(X, W)) = 0$, for any $X, Y \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Besides, we derive

traceh |
$$s_{(TM)} = \frac{1}{r} \sum_{q=1}^{r} \sum_{j=1}^{p} \bar{g}(h^{l}(\phi \xi_{j}, \phi \xi_{j}), \xi_{q}) N_{q} + \bar{g}(h^{l}(\phi N_{j}, \phi N_{j}), \xi_{q}) N_{q}$$

 $+ \frac{1}{n-r} \sum_{j=1}^{p} \sum_{\beta=1}^{n-r} \epsilon_{\beta} \{ \bar{g}(h^{s}(\phi \xi_{j}, \phi \xi_{j}), W_{\beta}) W_{\beta} + \bar{g}(h^{s}(\phi N_{j}, \phi N_{j}), W_{\beta}) W_{\beta} \}$
 $+ \sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r} \{ \sum_{j=1}^{2s} \bar{g}(h^{s}(e_{j}, e_{j}), W_{\beta}) W_{\beta} + \sum_{\alpha=1}^{k} \bar{g}(h^{s}(\phi W_{\alpha}, \phi W_{\alpha}), W_{\beta}) W_{\beta} \}$
 $+ \sum_{q=1}^{r} \frac{1}{r} \{ \sum_{i=1}^{2s} \bar{g}(h^{l}(e_{j}, e_{j}), \xi_{q}) N_{q} + \sum_{\alpha=1}^{k} \bar{g}(h^{l}(\phi W_{\alpha}, \phi W_{\alpha}), \xi_{q}) N_{q} \}.$ (68)

Using (11) and (16) in (68), we get

traceh |
$$s_{(TM)} = \frac{1}{r} \sum_{q=1}^{r} \sum_{j=1}^{p} g(A_{\xi_{q}}^{*} \phi \xi_{j}, \phi \xi_{j}) N_{q} + g(A_{\xi_{q}}^{*} \phi N_{j}, \phi N_{j}) N_{q}$$

 $+ \frac{1}{n-r} \sum_{j=1}^{p} \sum_{\beta=1}^{n-r} \epsilon_{\beta} \{ g(A_{W_{\beta}} \phi \xi_{j}, \phi \xi_{j}) W_{\beta} + g(A_{W_{\beta}} \phi N_{j}, \phi N_{j}) W_{\beta} \}$
 $+ \sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r} \{ \sum_{j=1}^{2s} g(A_{W_{\beta}} e_{j}, e_{j}) W_{\beta} + \sum_{\alpha=1}^{k} g(A_{W_{\beta}} \phi W_{\alpha}, \phi W_{\alpha}) W_{\beta} \}$
 $+ \sum_{q=1}^{r} \frac{1}{r} \{ \sum_{j=1}^{2s} g(A_{\xi_{q}}^{*} e_{j}, e_{j}) N_{q} + \sum_{\alpha=1}^{k} g(A_{\xi_{q}}^{*} \phi W_{\alpha}, \phi W_{\alpha}) N_{q} \}.$ (69)

Equation (69) completes the proof. \Box

Theorem 5.4. A totally umbilical STCR-lightlike submanifold M is minimal iff

$$traceA_{W_{\beta}}|_{\sigma_0 \perp \phi(S)} = traceA_{\xi_a}^*|_{\sigma_0 \perp \phi(S)} = 0$$

$$(70)$$

for any $\xi_q \in \Gamma(Rad(TM))$ and $W_\beta \in \Gamma(S(TM^\perp))$, where $k \in \{1,2,...,r\}$ and $\beta \in \{1,2,...,n-r\}$.

Proof. M is minimal iff $h^s = 0$ on Rad(TM) and traceh = 0 on S(TM), i.e.

traceh |
$$s_{(TM)} = traceh \mid_{\sigma_0} + traceh \mid_{\phi(\sigma_1)} + traceh \mid_{\phi(L_1)} + traceh \mid_{\phi(S)}$$

$$= \sum_{j=1}^{2s} \epsilon_j h(e_j, e_j) + \sum_{j=1}^p h(\phi \xi_j, \phi \xi_j) + \sum_{j=1}^p h(\phi N_j, \phi N_j) + \sum_{\alpha=1}^k \epsilon_\alpha h(\phi W_\alpha, \phi W_\alpha).$$
(71)

Using (62) in (71) we derive

$$traceh | s_{(TM)} = traceh |_{\sigma_{0}} + traceh |_{\phi(S)}$$

$$= \sum_{j=1}^{2s} \epsilon_{j} h(e_{j}, e_{j}) + \sum_{\alpha=1}^{k} \epsilon_{l} h(\phi W_{\alpha}, \phi W_{\alpha})$$

$$= \sum_{j=1}^{2s} \epsilon_{j} (h^{l}(e_{j}, e_{j}) + h^{s}(e_{j}, e_{j})) + \sum_{\alpha=1}^{k} \epsilon_{l} (h^{l}(\phi \dot{W}_{\alpha}, \phi W_{\alpha}) + h^{s}(\phi W_{\alpha}, \phi W_{\alpha}))$$

$$= \sum_{q=1}^{r} \frac{1}{r} \{ \sum_{j=1}^{2s} \bar{g}(h^{l}(e_{j}, e_{j}), \xi_{q}) N_{q} + \sum_{\alpha=1}^{k} \bar{g}(h^{l}(\phi W_{\alpha}, \phi W_{\alpha}), \xi_{q}) N_{q} \}$$

$$+ \sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r} \{ \sum_{j=1}^{2s} \bar{g}(h^{s}(e_{j}, e_{j}), W_{\beta}) W_{\beta} + \sum_{\alpha=1}^{k} \bar{g}(h^{s}(\phi W_{\alpha}, \phi W_{\alpha}), W_{\beta}) W_{\beta} \}$$

$$(72)$$

Besides, if we consider (11) and (16) in (72), we obtain

traceh |
$$s_{(TM)} = \sum_{q=1}^{r} \frac{1}{r} \{ \sum_{j=1}^{2s} g(A_{\xi_{q}}^{*} e_{j}, e_{j}) N_{q} + \sum_{\alpha=1}^{k} g(A_{\xi_{q}}^{*} \phi W_{\alpha}, \phi W_{\alpha}) N_{q} \}$$

 $+ \sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r} \{ \sum_{j=1}^{2s} g(A_{W_{\beta}} e_{j}, e_{j}) W_{\beta} + \sum_{\alpha=1}^{k} g(A_{W_{\beta}} \phi W_{\alpha}, \phi W_{\alpha}) W_{\beta} \}$
 $= 0$

which completes the proof. \Box

References

- [1] Bejan, C. L. and Duggal, K. L., Global lightlike manifolds and harmonicity, Kodai Math. J. 28 (2005), 131–145.
- [2] Călin, C., Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
- [3] Doğan, B., Şahin, B. and Yaşar, E., Screen transversal cauchy Riemann lightlike submanifolds, Filomat, 34 (5) (2020), 1581-1599.
- [4] Duggal, K. L., Space time manifolds and contact structures, International Journal of Mathematics and Mathematical Sciences, 13 (3) (1990), 545–553.
- [5] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Pub., The Netherlands, 1996.
- [6] Duggal, K. L. and Şahin, B., Screen Cauchy-Riemann lightlike submanifolds, Acta Math. Hungar. 106 (1-2) (2005), 137-165.
- [7] Duggal, K. L. and Şahin, B., Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungar. 112 (1-2) (2006), 107–130.
- [8] Duggal, K. L. and Şahin, B., Lightlike submanifolds of indefinite Sasakian manifolds, International Journal of Mathematics and Mathematical Sciences, 2007 (2007), Article ID 57585, 21 pages.
- [9] Duggal, K. L. and Şahin, B., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Sasakian Manifolds, Acta Math. Hungar. 122 (2009), 45–58.
- [10] Duggal K. L. and Şahin B., Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG., 2010.
- [11] Gupta, R. S. and Sharfuddin, A., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Kenmotsu Manifolds, Note di Mathematica, 30 (2010), 49–59.
- [12] Gupta, R. S. and Sharfuddin, A., Screen transversal lightlike submanifolds of indefinite cosymplectic manifolds, Rendiconti del Seminario Matematico della Università di Padova, 124 (2010), 145-156.
- [13] Gupta, R.S., Upadhyay, A. and Sharfuddin, A., Generalised Cauchy-Riemann lightlike submanifolds of indefinite cosymplectic manifolds, An. Ştiinţ. Univ. "Al. I. Cuza" Ia şi. Mat. (N.S.), 58(2) (2012), 381-394.
- [14] Kılıç, E., Şahin B. and Keleş S., Screen Semi Invariant Lightlike Submanifolds of Semi-Riemannian Product Manifolds, International Electronic Journal of Geometry, 4 (2) (2011), 120-135.
- [15] Kumar, S., Kumar, R., Nagaich, R. K., GCR-lightlike submanifolds of a semi-Riemannian product manifold, Bull. Korean Math. Soc. 51(3) (2014), 883-899.
- [16] Kupeli, D. N., Singular semi-Riemannian geometry, Kluwer Academic Publishers, Dordrecht, 366, 1996.
- [17] (Önen) Poyraz, N., Golden GCR-Lightlike submanifolds of golden semi-Riemannian manifolds, Mediterranean Journal of Mathematics, 17(5) (2020), 1-16.
- [18] Sahin, B., Screen transversal lightlike submanifolds of Kähler manifolds, Chaos, Solitons and Fractals, 38 (2008), 1439–1448.
- [19] Yıldırım, C. and Şahin, B., Screen transversal lightlike submanifolds of indefinite sasakian manifolds, An. Şt. Univ. Ovidius Constanta, 18 (2) (2010), 315-336.
- [20] Yıldırım, C. Erdoğan, F.E., Screen transversal lightlike submanifolds of semi-Riemannian product manifolds, Mathematical Sciences And Applications E-Notes, 3 (1) (2015), 75-85.
- [21] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), 271–290.
- [22] Tanno, S., Sasakian manifolds with constant φ-holomorphic sectional curvature, Tohoku Math. J. 21 (1969), 501-507.
- [23] Yano, K. and Kon, M., Structures on Manifolds, World Scientifle, 1984.