Contact screen transversal Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds

Nergiz (Önen) Poyraz ${ }^{\text {a }}$
${ }^{a}$ Çukurova University, Faculty of Arts and Sciences, Department of Mathematics, Adana, Turkey

Abstract

We study contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifolds of indefinite Sasakian manifolds. We prove existence and non-existence theorems and find the integrability conditions of integrability of various distributions. We derive some characterization theorems for a contact STCR-lightlike submanifold to be a STCR-lightlike product. Moreover, we find results for minimal contact STCR-lightlike submanifolds of indefinite Sasakian manifolds. We also give examples.

1. Introduction

Since the intersection of normal vector bundle and the tangent bundle is non-trivial, then in the study of lightlike submanifolds is more interesting and remarkably different from the study of non-degenerate submanifolds. Lightlike submanifolds have been developed in $[5,10]$.

Duggal and Bejancu [5] introduced CR-lightlike submanifolds of indefinite Kaehler manifolds and Duggal and Şahin [8] introduced contact CR-lightlike submanifolds of indefinite Sasakian manifolds. But CR-lightlike submanifolds exclude the complex and totally real submanifolds as subcases. Then, screen Cauchy-Riemann (SCR)-lightlike submanifolds of indefinite Kaehler manifolds [6] and contact SCR-lightlike submanifolds of indefinite Sasakian manifolds [8] were presented by Duggal and Şahin. But there is no inclusion relation between screen Cauchy-Riemann and CR submanifolds, so Duggal and Şahin [7] presented a new class named generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Kaehler manifolds and GCR-lightlike submanifolds of indefinite Sasakian manifolds [9] which is an umbrella for all these types of submanifolds. These types of submanifolds have been studied by many authors [11, 13, 15, 17].

But CR-lightlike, screen CR-lightlike and generalized CR-lightlike do not contain real lightlike curves. For this reason, Şahin presented screen transversal lightlike submanifolds of indefinite Kaehler manifolds and show that such submanifolds contain lightlike real curves [18]. Screen transversal lightlike submanifolds of indefinite almost contact manifolds were introduced in [19]. Such submanifolds have been studied in $[12,14,20]$. On the other hand, as a generalization of CR-lightlike submanifolds and screen transversal lightlike submanifolds, in [3], Doğan, Şahin and Yaşar introduced screen transversal CR-lightlike submanifolds.

In this paper, we study contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifolds of indefinite Sasakian manifolds. We prove existence and non-existence theorems and find the integrability

[^0]conditions of various distributions. We derive some characterization theorems for a contact STCR-lightlike submanifold to be a STCR-lightlike product. Moreover, we find results for minimal contact STCR-lightlike submanifolds of indefinite Sasakian manifolds. We also give examples.

2. Preliminaries

Let (\bar{M}, \bar{g}) be a real $(m+n)$-dimensional semi-Riemannian manifold of constant index q, such that $m, n \geq 1,1 \leq q \leq m+n-1$ and (M, g) be an m-dimensional submanifold of (\bar{M}, \bar{g}), where g is the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle $T M$ of M then M is named a lightlike submanifold of (\bar{M}, \bar{g}). For a degenerate metric g on M

$$
\begin{equation*}
T M^{\perp}=\cup\left\{u \in T_{x} \bar{M}: \bar{g}(u, v)=0, \forall v \in T_{x} \bar{M}, x \in M\right\} \tag{1}
\end{equation*}
$$

is a degenerate n-dimensional subspace of $T_{x} \bar{M}$. Hence, both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces but no longer complementary. Thus, there exists a subspace $\operatorname{Rad}\left(T_{x} M\right)=T_{x} M \cap T_{x} M^{\perp}$ which is known as radical (null) space. If the mapping $\operatorname{Rad}(T M): x \in M \longrightarrow \operatorname{Rad}\left(T_{x} M\right)$, defines a smooth distribution, named radical distribution on M of rank $r>0$ then the submanifold M of (\bar{M}, \bar{g}) is named an r-lightlike submanifold.

Let $S(T M)$ be a screen distribution which is a semi-Riemannian complementary distribution of $\operatorname{Rad}(T M)$ in TM. This means that

$$
\begin{equation*}
T M=S(T M) \perp \operatorname{Rad}(T M) \tag{2}
\end{equation*}
$$

and $S\left(T M^{\perp}\right)$ is a complementary vector subbundle to $\operatorname{Rad}(T M)$ in $T M^{\perp}$. Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary (but not orthogonal) vector bundles to $T M$ in $T \bar{M}_{l_{M}}$ and $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$, respectively. Then, we have

$$
\begin{align*}
& \operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{3}\\
& \left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \perp S(T M) \perp S\left(T M^{\perp}\right) . \tag{4}
\end{align*}
$$

Theorem 2.1. [5] Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}). Suppose U is a coordinate neighbourhood of M and $\left\{\xi_{i}\right\}, i \in\{1, . ., r\}$ is a basis of $\Gamma\left(\operatorname{Rad}(T M)_{\mid u}\right)$. Then, there exist a complementary vector subbundle $\operatorname{ltr}(T M)$ of $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)_{\mid u}^{\perp}$ and a basis $\left\{N_{i}\right\}, i \in\{1, . ., r\}$ of $\Gamma\left(\operatorname{ltr}(T M)_{\mid u}\right)$ such that

$$
\begin{equation*}
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0 \tag{5}
\end{equation*}
$$

for any $i, j \in\{1, . ., r\}$.
We say that a submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of (\bar{M}, \bar{g}) is
Case 1: r-lightlike if $r<\min \{m, n\}$,
Case 2: Coisotropic if $r=n<m, S\left(T M^{\perp}\right)=\{0\}$,
Case 3: Isotropic if $r=m<n, S(T M)=\{0\}$,
Case 4: Totally lightlike if $r=m=n, S(T M)=\{0\}=S\left(T M^{\perp}\right)$.
Let $\bar{\nabla}$ be the Levi-Civita connection on \bar{M}. Then, using (4) we have

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{6}\\
\bar{\nabla}_{X} U & =-A_{U} X+\nabla_{X}^{t} U, \tag{7}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $U \in \Gamma(\operatorname{tr}(T M))$, where $\left\{\nabla_{X} Y, A_{U} X\right\}$ and $\left\{h(X, Y), \nabla_{X}^{t} U\right\}$ belong to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$, respectively. ∇ and ∇^{t} are linear connections on M and on the vector bundle $\operatorname{tr}(T M)$, respectively. According to (2), considering the projection morphisms L and S of $\operatorname{tr}(T M)$ on $l \operatorname{tr}(T M)$ and $S\left(T M^{\perp}\right)$,
respectively, (6) and (7) become

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y) \tag{8}\\
\bar{\nabla}_{X} N & =-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N) \tag{9}\\
\bar{\nabla}_{X} W & =-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W) \tag{10}
\end{align*}
$$

for any $X, Y \in \Gamma(T M), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, where $h^{l}(X, Y)=\operatorname{Lh}(X, Y), h^{s}(X, Y)=\operatorname{Sh}(X, Y)$, $\nabla_{X} Y, A_{N} X, A_{W} X \in \Gamma(T M), \nabla_{X}^{l} N, D^{l}(X, W) \in \Gamma(\operatorname{ltr}(T M))$ and $\nabla_{X}^{s} W, D^{s}(X, N) \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Hence, using (8)-(10) and letting into account that $\bar{\nabla}$ is a metric connection we derive

$$
\begin{align*}
g\left(h^{s}(X, Y), W\right)+g\left(Y, D^{l}(X, W)\right) & =g\left(A_{W} X, Y\right), \tag{11}\\
g\left(D^{s}(X, N), W\right) & =g\left(A_{W} X, N\right), \tag{12}\\
g\left(h^{l}(X, Y), \xi\right)+g\left(Y, h^{l}(X, \xi)\right)+g\left(Y, \nabla_{X} \xi\right) & =0 . \tag{13}
\end{align*}
$$

Let Q be a projection of $T M$ on $S(T M)$. Thus, using (2) we obtain

$$
\begin{align*}
\nabla_{X} Q Y & =\nabla_{X}^{*} Q Y+h^{*}(X, Q Y) \xi \tag{14}\\
\nabla_{X} \xi & =-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi \tag{15}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, where $\left\{\nabla_{X}^{*} Q Y, A_{\xi}^{*} X\right\}$ and $\left\{h^{*}(X, Q Y), \nabla_{X}^{* t} \xi\right\}$ belong to $\Gamma(S(T M))$ and $\Gamma(\operatorname{Rad}(T M))$, respectively.

Using the equations given above, we derive

$$
\begin{align*}
g\left(h^{l}(X, Q Y), \xi\right) & =g\left(A_{\xi}^{*} X, Q Y\right) \tag{16}\\
g\left(h^{*}(X, Q Y), N\right) & =g\left(A_{N} X, Q Y\right) \tag{17}\\
g\left(h^{l}(X, \xi), \xi\right) & =0, A_{\xi}^{*} \xi=0 \tag{18}
\end{align*}
$$

Generally, ∇ on M is not metric connection. Since $\bar{\nabla}$ is a metric connection, from (8) we obtain

$$
\left(\nabla_{X} g\right)(Y, Z)=\bar{g}\left(h^{l}(X, Y), Z\right)+\bar{g}\left(h^{l}(X, Z), Y\right)
$$

But, ∇^{*} is a metric connection on $S(T M)$.
Definition 2.2. A lightlike submanifold (M, g) of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) is said to be an irrotational submanifold if $\tilde{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$ [16]. Thus M is an irrotational lightlike submanifold iff $h^{l}(X, \xi)=0, h^{s}(X, \xi)=0$.

Theorem 2.3. Let M be an r-lightlike submanifold of a semi-Riemannian manifold \bar{M}. Then ∇ is a metric connection iff $\operatorname{Rad}(T M)$ is a parallel distribution with respect to ∇ [5].

An odd dimensional semi-Riemannian manifolds (\bar{M}, \bar{g}) is named a contact metric manifold [4] if there is a $(1,1)$ tensor field ϕ, a vector field V named characteristic vector field, and a 1-form η such that

$$
\begin{align*}
\bar{g}(\phi X, \phi Y) & =\bar{g}(X, Y)-\epsilon \eta(X) \eta(Y), \bar{g}(V, V)=\epsilon, \tag{19}\\
\phi^{2} X & =-X+\eta(X) V, \bar{g}(X, V)=\epsilon \eta(X), \tag{20}\\
d \eta(X, Y) & =\bar{g}(X, \phi Y), \epsilon= \pm 1 \tag{21}
\end{align*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
It follows that

$$
\begin{equation*}
\phi V=0, \phi \circ \eta=0, \eta(V)=\epsilon \tag{22}
\end{equation*}
$$

Then (ϕ, V, η, \bar{g}) is named contact metric structure of (\bar{M}, \bar{g}). We say that (\bar{M}, \bar{g}) has a normal contact structure if $N_{\phi}+d \eta \otimes V=0$, where N_{ϕ} is the Nijenhuis tensor field of ϕ [23]. A normal contact metric manifold is named an indefinite Sasakian manifold [21,22] for which we have

$$
\begin{align*}
\nabla_{X} V & =\phi X \tag{23}\\
\left(\nabla_{X} \phi\right) Y & =-\bar{g}(X, Y) V+\epsilon \eta(Y) X
\end{align*}
$$

(\bar{M}, \bar{g}) is named indefinite Sasakian space form, denoted by $\bar{M}(c)$, if it has the constant ϕ-sectional curvature c [22]. The curvature tensor \bar{R} of a Sasakian space form $\bar{M}(c)$ is given by

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{(c+3)}{4}\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y\}+\frac{(c-1)}{4}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+\bar{g}(X, Z) \eta(Y) V-\bar{g}(Y, Z) \eta(X) V \tag{25}\\
& +\bar{g}(\phi Y, Z) \phi X+\bar{g}(\phi Z, X) \phi Y-2 \bar{g}(\phi X, Y) \phi Z\}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$.

3. Contact Screen transversal Cauchy-Riemann (STCR)-Lightlike Submanifolds

Definition 3.1. Let M be a real r-lightlike submanifold of an indefinite Sasakian manifold manifold (\bar{M}, \bar{g}). Then we say that M is a contact screen transversal Cauchy-Riemann (STCR)-lightlike submanifold if the condition (A) and (B) are holded:
(A) There exist two subbundles σ_{1} and σ_{2} of $\operatorname{Rad}(T M)$ such that

$$
\begin{equation*}
\operatorname{Rad}(T M)=\sigma_{1} \oplus \sigma_{2}, \quad \phi\left(\sigma_{1}\right) \subset S(T M), \phi\left(\sigma_{2}\right) \subset S\left(T M^{\perp}\right) \tag{26}
\end{equation*}
$$

(B) There exist two subbundles σ_{0} and σ^{\prime} of S (TM) such that

$$
\begin{equation*}
S(T M)=\left\{\phi\left(\sigma_{1}\right) \oplus \sigma^{\prime}\right\} \perp \sigma_{0}, \phi\left(\sigma_{0}\right)=\sigma_{0}, \phi\left(\sigma^{\prime}\right)=L_{1} \perp S \tag{27}
\end{equation*}
$$

where σ_{0} is a non-degenerate distribution on M, L_{1} and S are vector subbundles of $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$, respectively.
Then $T M$ of M is decomposed as

$$
\begin{equation*}
T M=\sigma \oplus \bar{\sigma} \perp\{V\} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\sigma_{0} \oplus \sigma_{1} \oplus \phi\left(\sigma_{1}\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\sigma}=\sigma_{2} \oplus \phi\left(L_{1}\right) \oplus \phi(S) . \tag{30}
\end{equation*}
$$

It is clear that σ is invariant and $\bar{\sigma}$ is anti-invariant. Besides, we have

$$
\begin{equation*}
\operatorname{ltr}(T M)=L_{1} \oplus L_{2}, \phi\left(L_{1}\right) \subset S(T M), \phi\left(L_{2}\right) \subset S\left(T M^{\perp}\right) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(T M^{\perp}\right)=\left\{\phi\left(\sigma_{2}\right) \oplus \phi\left(L_{2}\right)\right\} \perp S . \tag{32}
\end{equation*}
$$

If $\sigma_{1} \neq\{0\}, \sigma_{2} \neq\{0\}, \sigma_{0} \neq\{0\}$ and $S \neq\{0\}$, then M is called a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}). For proper contact STCR-lightlike submanifold we note that the following features:

1. The condition (A) implies that $\operatorname{dim}(\operatorname{Rad}(T M)) \geq 2$.
2. The condition (B) implies $\operatorname{dim}(\sigma)=2 s \geq 4, \operatorname{dim}\left(\sigma^{\prime}\right) \geq 2$ and $\operatorname{dim}\left(\sigma_{2}\right)=\operatorname{dim}\left(L_{2}\right)$. Thus $\operatorname{dim}(M) \geq 8$ and $\operatorname{dim}(\bar{M}) \geq 13$.
3. Any proper 8-dimensional contact STCR-lightlike submanifold must be 2-lightlike.
4. (A) and contact distribution $(\eta=0)$ imply that index $(\bar{M}) \geq 2$.

Proposition 3.2. A contact STCR-lightlike submanifold M of an indefinite Sasakian manifold (\bar{M}, \bar{g}) is contact $C R$-lightlike submanifold (respectively, contact screen transversal lightlike submanifold) iff $\sigma_{2}=\{0\}$ (respectively, $\sigma_{1}=\{0\}$).
Proof. Suppose that M is a contact CR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}). Then $\phi(\operatorname{Rad}(T M))$ is a distribution on M such that $\phi(\operatorname{Rad}(T M)) \cap \operatorname{Rad}(T M)=\{0\}$. Therefore we get $\sigma_{1}=\operatorname{Rad}(T M)$ and $\sigma_{2}=\{0\}$. Thus we conclude that $\phi(\operatorname{ltr}(T M)) \cap l \operatorname{tr}(T M)=\{0\}$. Then it follows that $\phi(l \operatorname{tr}(T M)) \subset S(T M)$. Conversely, suppose that M is a contact STCR-lightlike submanifold such that $\sigma_{2}=\{0\}$. Then we have $\sigma_{1}=\operatorname{Rad}(T M)$. Therefore $\phi(\operatorname{Rad}(T M)) \cap \operatorname{Rad}(T M)=\{0\}$, that is, $\phi(\operatorname{Rad}(T M))$ is a vector subbundle of $S(T M)$. Hence M is a contact CR-lightlike submanifold. Similarly one can obtain the other assertion.
Proposition 3.3. There exist no coisotropic, isotropic or totally lightlike proper contact STCR-lightlike submanifolds M of an indefinite Sasakian manifold. Any isotropic contact STCR-lightlike submanifold is a screen transversal lightlike submanifold. Besides, a coisotropic contact STCR-lightlike submanifold is a contact CR-lightlike submanifold.

Proof. Suppose that M is a proper contact STCR-lightlike submanifold. From definition of proper contact STCR-lightlike submanifold, we know that $\sigma_{1} \neq\{0\}, \sigma_{2} \neq\{0\}, \sigma_{0} \neq\{0\}$ and $S \neq\{0\}$, that is both $S(T M)$ and $S\left(T M^{\perp}\right)$ are non-zero. Hence, M can not be a coisotropic, isotropic or totally lightlike submanifold. On the other hand, if M be a isotropic contact STCR-lightlike submanifold, then $S(T M)=\{0\}$, i.e., $\phi\left(\sigma_{1}\right)=$ $\{0\}$ and $\operatorname{Rad}(T M)=\sigma_{2}$. Hence, we obtain $\phi(\operatorname{Rad}(T M))=\phi\left(\sigma_{2}\right) \subset \Gamma\left(S\left(T M^{\perp}\right)\right)$ and M is a contact screen transversal lightlike submanifold. Similarly, if M is a coisotropic contact STCR-lightlike submanifold, then $S\left(T M^{\perp}\right)=\{0\}$, i.e., $\phi\left(\sigma_{2}\right)=\{0\}$ and $\operatorname{Rad}(T M)=\sigma_{1}$. Since, $\phi(\operatorname{Rad}(T M))=\phi\left(\sigma_{1}\right) \subset \Gamma(S(T M))$ then M is a contact CR-lightlike submanifold.

The following construction will help in understanding the examples of this paper. Consider $\left(R_{q}^{2 m+1}, \phi_{0}, V\right.$, $\eta, g)$ with its usual Sasakian structure given by

$$
\begin{gathered}
\eta=\frac{1}{2}\left(d z-\sum_{j=1}^{m} y^{j} d x^{j}\right), V=2 \partial z \\
\bar{g}=\eta \otimes \eta+\frac{1}{4}\left(-\sum_{j=1}^{\frac{q}{2}} d x^{j} \otimes d x^{j}+d y^{j} \otimes d y^{j}+\sum_{i=q+1}^{m} d x^{j} \otimes d x^{j}+d y^{j} \otimes d y^{j}\right) \\
\left.\phi_{0}\left(\sum_{j=1}^{m}\left(X_{j} \partial x^{j}+Y_{j} \partial y^{j}\right)\right)+Z \partial z\right)=\sum_{j=1}^{m}\left(Y_{j} \partial x^{j}-X_{j} \partial y^{j}\right)+Y_{j} y^{j} \partial z
\end{gathered}
$$

where $\left(x_{j}, y_{j}, z\right)$ are the Cartesian coordinates.
Example 3.4. Let $\left(\bar{M}=\mathbb{R}_{4}^{13}, \bar{g}\right)$ be a semi-Euclidean space, where \bar{g} is ofsignature $(-,-,+,+,+,+,-,-,+,+,+,+,+)$ with respect to canonical basis $\left(\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}, \partial y_{6}, \partial z\right)$. Suppose M is a submanifold of \mathbb{R}_{4}^{13} defined by

$$
x^{1}=y^{4}, x^{3}=\cos \theta x^{2}, y^{3}=\sin \theta x^{2}, x_{5}=\sqrt{1+\left(y^{5}\right)^{2}} .
$$

A local frame of TM is given by

$$
\begin{aligned}
\xi_{1} & =\partial x_{1}+\partial y_{4}+y^{1} \partial z, \xi_{2}=\partial x_{2}+\cos \theta \partial x_{3}+\sin \theta \partial y_{3}+\left(y^{2}+\cos \theta y^{3}\right) \partial z \\
Z_{1} & =\partial x_{4}-\partial y_{1}+y^{4} \partial z, Z_{2}=2\left(\partial x_{4}+\partial y_{1}+y^{1} \partial z\right) \\
Z_{3} & =2\left(y^{5} \partial x_{5}+x^{5} \partial y_{5}+y^{5} \partial z\right), Z_{4}=2 \partial x_{6}+y^{6} \partial z, Z_{5}=-2 \partial y_{6}, Z=2 \partial z=V
\end{aligned}
$$

Hence M is a 2-lightlike submanifold of \mathbb{R}_{4}^{13} with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{\xi_{1}, \xi_{2}\right\}$. It is easy to see $\phi_{0}\left(\xi_{1}\right)=Z_{1} \in \Gamma(S(T M))$, hence $\sigma_{1}=\operatorname{Span}\left\{\xi_{1}\right\}$ and $\sigma_{2}=\operatorname{Span}\left\{\xi_{2}\right\}$. On the other hand, since $\phi_{0}\left(Z_{4}\right)=Z_{5} \in \Gamma(S(T M))$, we derive $\sigma_{0}=$ $\operatorname{Span}\left\{\mathrm{Z}_{4}, \mathrm{Z}_{5}\right\}$ and by direct calculations, we derive the lightlike transversal bundle spanned by

$$
N_{1}=2\left(-\partial x_{1}+\partial y_{4}+y^{1} \partial z\right), N_{2}=2\left(-\partial x_{2}+\cos \theta \partial x_{3}+\sin \theta \partial y_{3}+\left(y^{2}+\cos \theta y^{3}\right) \partial z\right) .
$$

Then we see that $L_{1}=\operatorname{Span}\left\{N_{1}\right\}, L_{2}=\operatorname{Span}\left\{N_{2}\right\}, S\left(T M^{\perp}\right)=\operatorname{Span}\left\{\phi_{0}\left(\xi_{2}\right), \phi_{0}\left(N_{2}\right), \phi_{0}\left(Z_{3}\right)\right\}$ and $S=\operatorname{Span}\left\{\phi_{0}\left(Z_{3}\right)=\right.$ $W\}$. Thus, $\sigma^{\prime}=\operatorname{Span}\left\{\phi_{0}\left(N_{1}\right)=Z_{2}, \phi_{0}(W)=-Z_{3}\right\}$ and M is a proper contact STCR-lightlike submanifold of \mathbb{R}_{4}^{13}.

We indicate the projections from $\Gamma(T M)$ to $\Gamma\left(\sigma_{0}\right), \Gamma\left(\phi\left(\sigma_{1}\right)\right), \Gamma\left(\phi\left(L_{1}\right)\right), \Gamma(\phi(S)), \Gamma\left(\sigma_{1}\right)$ and $\Gamma\left(\sigma_{2}\right)$ by P_{0}, P_{1}, P_{2}, P_{3}, R_{1} and R_{2}, respectively. We also indicate the projections from $\Gamma(\operatorname{tr}(T M))$ to $\Gamma\left(\phi\left(\sigma_{2}\right)\right), \Gamma\left(\phi\left(L_{2}\right)\right), \Gamma(S), \Gamma\left(L_{1}\right)$ and $\Gamma\left(L_{2}\right)$ by $S_{1}, S_{2}, S_{3}, Q_{1}$ and Q_{2}, respectively. Hence, we write

$$
\begin{equation*}
X=P X+R X+\eta(X) V=P_{0} X+P_{1} X+P_{2} X+P_{3} X+R_{1} X+R_{2} X+\eta(X) V \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi X=T X+\omega X \tag{34}
\end{equation*}
$$

for any $X \in \Gamma(T M)$, where $P X \in \Gamma(\sigma), R X \in \Gamma(\bar{\sigma})$ and $T X$ and ωX are the tangential parts and the transversal parts of ϕX, respectively. Applying ϕ to (33) and denoting $\phi P_{0}, \phi P_{1}, \phi P_{2}, \phi P_{3}, \phi R_{1}, \phi R_{2}$ by $T_{0}, T_{1}, \omega_{L}, \omega_{S}$, $T_{\overline{1}}, \omega_{\overline{2}}$, respectively, we derive

$$
\begin{equation*}
\phi X=T_{0} X+T_{1} X+T_{\overline{1}} X+\omega_{L} X+\omega_{S} X+\omega_{\overline{2}} X \tag{35}
\end{equation*}
$$

for any $X \in \Gamma(T M)$, where $T_{0} X \in \Gamma\left(\sigma_{0}\right), T_{1} X \in \Gamma\left(\sigma_{1}\right), T_{\overline{1}} X \in \Gamma\left(\phi\left(\sigma_{1}\right)\right), \omega_{L} X \in \Gamma\left(L_{1}\right), \omega_{S} X \in \Gamma(S)$ and $\omega_{\overline{2}} X \in \Gamma\left(\phi\left(\sigma_{2}\right)\right)$. Similarly we write

$$
\begin{equation*}
U=S_{1} U+S_{2} U+S_{3} U+Q_{1} U+Q_{2} U \tag{36}
\end{equation*}
$$

for any $U \in \Gamma(\operatorname{tr}(T M))$ and we denote $\phi S_{1}, \phi S_{2}, \phi S_{3}, \phi Q_{1}, \phi Q_{2}$ by $B_{2}, C_{L}, B_{\bar{S}}, B_{\bar{L}}, C_{\bar{L}}$, respectively. Thus we write

$$
\begin{equation*}
\phi U=B_{2} U+B_{\bar{S}} U+B_{\bar{L}} U+C_{L} U+C_{\bar{L}} U \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi U=B U+C U \tag{38}
\end{equation*}
$$

where $B U$ and $C U$ are sections of $T M$ and $\operatorname{tr}(T M)$, respectively. Now, differentiating (35) and using (8)-(10), (24), (35) and (38), we derive

$$
\begin{align*}
& \nabla_{X} T Y+h^{l}(X, T Y)+h^{s}(X, T Y)+\left\{-A_{\omega_{L} Y} X+\nabla_{X}^{l}\left(\omega_{L} Y\right)+D^{s}\left(X, \omega_{L} Y\right)\right\} \\
& +\left\{-A_{\omega_{S} Y} X+\nabla_{X}^{s}\left(\omega_{S} Y\right)+D^{l}\left(X, \omega_{S} Y\right)\right\} \tag{39}\\
& +\left\{-A_{\omega_{\overline{2}} Y} X+\nabla_{X}^{s}\left(\omega_{\overline{2}} Y\right)+D^{l}\left(X, \omega_{\overline{2}} Y\right)\right\} \\
= & T \nabla_{X} Y+\omega_{L} \nabla_{X} Y+\omega_{S} \nabla_{X} Y+\omega_{\overline{2}} \nabla_{X} Y+B h^{l}(X, Y)+C h^{l}(X, Y) \\
& +B h^{s}(X, Y)+C h^{s}(X, Y)-g(X, Y) V+\eta(Y) X
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$. Taking the tangential, lightlike transversal and screen transversal parts of (39) we derive

$$
\begin{gather*}
\left(\nabla_{X} T\right) Y=\quad \nabla_{X} T Y-T \nabla_{X} Y=A_{\omega_{L} Y} X+A_{\omega_{S} Y} X+A_{\omega_{2} Y} X \tag{40}\\
+ \\
+B h(X, Y)-g(X, Y) V+\eta(Y) X, \tag{41}\\
= \\
D^{l}\left(X, \omega_{S} Y\right)+D^{l}\left(X, \omega_{2} Y\right) \\
\nabla_{X} Y-\nabla_{X}^{l}\left(\omega_{L} Y\right)-h^{l}(X, T Y)+\operatorname{Ch}^{l}(X, Y)
\end{gather*}
$$

and

$$
\begin{align*}
D^{s}\left(X, \omega_{L} Y\right)= & \omega_{S} \nabla_{X} Y+\omega_{\overline{2}} \nabla_{X} Y-\nabla_{X}^{s}\left(\omega_{S} Y\right) \tag{42}\\
& -\nabla_{X}^{s}\left(\omega_{\overline{2}} Y\right)-h^{s}(X, T Y)+C h^{s}(X, Y)
\end{align*}
$$

respectively.

Theorem 3.5. There does not exist an induced metric connection of a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}).

Proof. Assume that ∇ is a metric connection. Then from Theorem 2.3, $\operatorname{Rad}(T M)$ is parallel with respect to ∇, i.e., $\nabla_{X} \xi \in \Gamma(\operatorname{Rad}(T M))$ for any $X \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$. From (24) we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \phi \xi=\phi \bar{\nabla}_{X} \xi \tag{43}
\end{equation*}
$$

for any $X \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$. Applying ϕ to (43) and using (20) and (24), we get

$$
\begin{equation*}
\phi \bar{\nabla}_{X} \phi \xi=-\bar{\nabla}_{X} \xi-\bar{g}\left(\xi, \bar{\nabla}_{X} V\right) V . \tag{44}
\end{equation*}
$$

Then from (23) and (44) we derive

$$
\begin{equation*}
\phi \bar{\nabla}_{X} \phi \xi=-\bar{\nabla}_{X} \xi-g(\xi, \phi X) V \tag{45}
\end{equation*}
$$

Choose $X \in \Gamma\left(\phi\left(L_{1}\right)\right)$ and $\xi \in \Gamma\left(\sigma_{1}\right)$ such that $g(\phi X, \xi) \neq 0$ (since $\sigma_{1} \oplus \phi\left(L_{1}\right)$ is a non-degenerate distribution on M, so we can choose such vector fields). Hence from (6), (14), (38) and (45) we obtain

$$
\begin{align*}
-\nabla_{X} \xi-h(X, \xi)-g(\xi, \phi X) V= & T \nabla_{X}^{*} \phi \xi+\omega \nabla_{u}^{*} \phi \xi+T h^{*}(X, \phi \xi) \\
& +\omega h^{*}(X, \phi \xi)+B h(X, \phi \xi)+\operatorname{Ch}(X, \phi \xi), \tag{46}
\end{align*}
$$

for any $X \in \Gamma\left(\phi\left(L_{1}\right)\right)$ and $\xi \in \Gamma\left(\sigma_{1}\right)$. Then taking tangential parts of (46) we derive

$$
\begin{equation*}
T \nabla_{X}^{*} \phi \xi+\nabla_{X} \xi+T h^{*}(X, \phi \xi)+B h(X, \phi \xi)=-\bar{g}(\xi, \phi X) V \tag{47}
\end{equation*}
$$

Since $\operatorname{Rad}(T M)$ is parallel, $\nabla_{X} \xi \in \Gamma(\operatorname{Rad}(T M))$. On the other hand, $T \nabla_{X}^{*} \phi \xi+T h^{*}(X, \phi \xi) \in \Gamma\left(\sigma_{1} \perp \phi\left(\sigma_{1}\right) \perp \sigma_{0}\right)$ and $B h(X, \phi \xi) \in \Gamma(\bar{\sigma})$, thus we obtain $\bar{g}(\xi, \phi X) V=0$. Since $V \neq 0$ and $\bar{g}(\xi, \phi X) \neq 0$ we have a contradiction so $\operatorname{Rad}(T M)$ is not parallel. Hence ∇ is not a metric connection.

Theorem 3.6. Let M be a lightlike submanifold tangent to the structure vector field V in an indefinite Sasakian $\bar{M}(c)$ with $c \neq 1$ Then, M is a contact STCR-lightlike submanifold of $\bar{M}(c)$ iff:
(a) The maximal invariant subspaces of $T p M, p \in M$, define a distribution

$$
\sigma=\sigma_{0} \oplus \sigma_{1} \oplus \phi\left(\sigma_{1}\right)
$$

where $\operatorname{Rad}(T M)=\sigma_{1} \perp \sigma_{2}$ and σ_{0} is a non-degenerate invariant distribution.
(b) There exists a lightlike transversal vector bundle $\operatorname{ltr}(T M)$ such that

$$
\bar{g}(\bar{R}(X, Y) \xi, N)=0
$$

for any $X, Y \in \Gamma(\sigma), \xi \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(\operatorname{ltr}(T M))$.
(c) There exists a vector subbundle M_{2} on M such that

$$
\bar{g}\left(\bar{R}(X, Y) W_{1}, W_{2}\right)=0
$$

for any $X, Y \in \Gamma(\sigma), W_{1}, W_{2} \in \Gamma\left(M_{2}\right)$, where M_{2} is orthogonal to σ and \bar{R} is the curvature tensor of $\bar{M}(c)$.
Proof. Let M be a contact STCR-lightlike submanifold of $\bar{M}(c), c \neq 1$. From (a), $\sigma=\sigma_{0} \oplus \sigma_{1} \oplus \phi\left(\sigma_{1}\right)$ is maximal invariant subspaces. Next from (25), we have

$$
\bar{g}(\bar{R}(X, Y) \xi, N)=\frac{-c+1}{2}\{g(\phi X, Y) \bar{g}(\phi \xi, N)\}
$$

for any $X, Y \in \Gamma(\sigma), \xi \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(\operatorname{ltr}(T M))$. Since $g(\phi X, Y) \neq 0$ and $\bar{g}(\phi \xi, N)=0$, we get $\bar{g}(\bar{R}(X, Y) \xi, N)=0$. Thus (b) holds. Similarly, from (25) we get

$$
\bar{g}\left(\bar{R}(X, Y) W_{1}, W_{2}\right)=\frac{-c+1}{2}\left\{g(\phi X, Y) \bar{g}\left(\phi W_{1}, W_{2}\right)\right\}
$$

for any $X, Y \in \Gamma(\sigma), W_{1}, W_{2} \in \Gamma\left(M_{2}\right)$. Then (c) satisfies.
$\Longleftarrow):$ Conversely, we suppose that (a), (b) and (c) are holded. From (a), $\sigma=\sigma_{0} \oplus \sigma_{1} \oplus \phi\left(\sigma_{1}\right)$ is maximal invariant subspaces and $\operatorname{Rad}(T M)=\sigma_{1} \perp \sigma_{2}$, while $\phi\left(\sigma_{1}\right)$ is an invariant distribution on $T M, \sigma_{2}$ isn't invariant on $T M$ with respect to ϕ. For this reason, $\phi\left(\sigma_{2}\right) \subset \Gamma(\operatorname{tr}(T M))$. Hence, it is easy to see that $\phi\left(\sigma_{1}\right) \neq \sigma_{2}$ and $\phi\left(\sigma_{1}\right)$ is a distribution on $S(T M)$. Besides, for $\operatorname{ltr}(T M)=L_{1} \oplus L_{2}$ and $\xi_{1} \in \Gamma\left(\sigma_{1}\right), N_{1} \in \Gamma\left(L_{1}\right)$ from (b) and (25) we get

$$
\bar{g}\left(\phi \xi_{1}, N_{1}\right)=-\bar{g}\left(\xi_{1}, \phi N_{1}\right)=0
$$

which implies $\phi\left(L_{1}\right)$ is a distribution on $S(T M)$. It is easy to see that $\phi\left(\sigma_{2}\right) \neq L_{1}$ or $\phi\left(\sigma_{2}\right) \neq L_{2}$. Thus $\phi\left(\sigma_{2}\right)$ is a distribution on $S\left(T M^{\perp}\right)$. Similarly, for any $\xi_{2} \in \Gamma\left(\sigma_{2}\right)$ and $N_{2} \in \Gamma\left(L_{2}\right)$, since $\bar{g}\left(\phi \xi_{2}, N_{2}\right)=-\bar{g}\left(\xi_{2}, \phi N_{2}\right)=0$, then $\phi\left(L_{2}\right)$ is a distribution on $S\left(T M^{\perp}\right)$, too. From (c), there exists a non-degenerate distribution M_{2} such that $M_{2} \perp \sigma$ and for any $X, Y \in \Gamma(\sigma), W_{1}, W_{2} \in \Gamma\left(M_{2}\right)$, we have

$$
\bar{g}\left(\phi W_{1}, W_{2}\right)=0
$$

This implies that $\phi\left(M_{2}\right) \perp M_{2}$. Also $\bar{g}(\phi \xi, W)=-\bar{g}(\xi, \phi W)=0$ implies that $\phi\left(M_{2}\right) \perp \operatorname{Rad}(T M)$. Furthermore, this say that $\phi\left(M_{2}\right)$ does not belong to $\operatorname{ltr}(T M)$. Besides, since $\phi\left(M_{2}\right) \perp \sigma$ and σ is invariant, we write

$$
\bar{g}(X, W)=\bar{g}(\phi X, W)=-\bar{g}(X, \phi W)=0 .
$$

for any $X \in \Gamma(\sigma)$ and $W \in \Gamma\left(M_{2}\right)$, that is, $\phi\left(M_{2}\right)$ is orthogonal to σ, too. Hence, M_{2} and $\phi\left(M_{2}\right)$ are distributions on $S(T M)$ and $S\left(T M^{\perp}\right)$, respectively. Moreover, from a result in [2], we know that the structure vector field V belongs to $S(T M)$. Then summing up the above arguments, we conclude that

$$
S(T M)=\left\{\phi\left(\sigma_{1}\right) \oplus \phi\left(L_{1}\right)\right\} \perp M_{2} \perp \sigma_{o} \perp\{V\} .
$$

Thus, M is a contact STCR-lightlike submanifold of \bar{M}.
Theorem 3.7. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then
(1) $\bar{\sigma}$ is integrable iff

$$
A_{\phi X} Y=A_{\phi Y} X
$$

(2) $\sigma \perp\{V\}$ is integrable iff

$$
h(X, \phi Y)=h(\phi X, Y)
$$

(3) σ is not integrable.

Proof. From (40) we derive

$$
-T \nabla_{X} Y=A_{\omega_{L} Y} X+A_{\omega_{S} Y} X+A_{\omega_{2} Y} X+B h(X, Y)-g(X, Y) V
$$

for any $X, Y \in \Gamma(\bar{\sigma})$. Hence we have

$$
T[X, Y]=-A_{\omega_{L} Y} X+A_{\omega_{L} X} Y-A_{\omega_{S} Y} X+A_{\omega_{S} X} Y-A_{\omega_{2} Y} X+A_{\omega_{2} X} Y
$$

which proves assertion (1). From (41) and (42) we get

$$
h(X, T Y)=\omega_{L} \nabla_{X} Y+\omega_{S} \nabla_{X} Y+\omega_{2} \nabla_{X} Y+C h(X, Y)
$$

for any $X, Y \in \Gamma(\sigma \perp\{V\})$. Hence we derive

$$
h(X, T Y)-h(Y, T X)=\omega_{L}[X, Y]+\omega_{S}[X, Y]+\omega_{\overline{2}}[X, Y]
$$

which proves the assertion (2). Assume that σ is integrable. Then, we have $\bar{g}([X, Y], V)=0$, for any $X, Y \in \Gamma\left(\sigma_{0}\right)$. Using that $\bar{\nabla}$ is metric connection and (23) we derive $g([X, Y], V)=2 g(\phi Y, X)$. Hence we have $\bar{g}(\phi Y, X)=0$. Since σ_{0} is non-degenerate, this is a contradiction. Thus σ is not integrable.

Theorem 3.8. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then, $\sigma \perp\{V\}$ is integrable iff the followings are holded:

$$
h^{s}(X, \phi Y)-h^{s}(Y, \phi X) \in \Gamma\left(\phi\left(L_{2}\right)\right)
$$

and

$$
h^{l}(X, \phi Y)-h^{l}(Y, \phi X) \in \Gamma\left(L_{2}\right)
$$

for any $X, Y \in \Gamma(\sigma \perp\{V\})$.
Proof. From definition of contact STCR-lightlike submanifolds, σ is integrable iff for any $X, Y \in \Gamma(\sigma \perp\{V\})$, $[X, Y] \in \Gamma(\sigma \perp\{V\})$,

$$
\bar{g}\left([X, Y], N_{2}\right)=\bar{g}\left([X, Y], \phi \xi_{1}\right)=\bar{g}([X, Y], \phi W)=0,
$$

for any $X, Y \in \Gamma(\sigma \perp\{V\}), \xi_{1} \in \Gamma\left(\sigma_{1}\right), N_{2} \in \Gamma\left(L_{2}\right)$ and $W \in \Gamma(S)$. Thus, for any $X, Y \in \Gamma(\sigma \perp\{V\}), \xi_{1} \in \Gamma\left(\sigma_{1}\right)$, $N_{2} \in \Gamma\left(L_{2}\right)$ and $W \in \Gamma(S)$, using (8), (19) and (24) we have

$$
\begin{align*}
& \bar{g}\left([X, Y], N_{2}\right)=\bar{g}\left(h^{s}(X, \phi Y)-h^{s}(Y, \phi X), \phi N_{2}\right), \tag{48}\\
& \bar{g}\left([X, Y], \phi \xi_{1}\right)=\bar{g}\left(h^{l}(Y, \phi X)-h^{l}(X, \phi Y), \xi_{1}\right), \tag{49}\\
& \bar{g}([X, Y], \phi W)=\bar{g}\left(h^{s}(Y, \phi X)-h^{s}(X, \phi Y), W\right) . \tag{50}
\end{align*}
$$

Hence, the proof comes from (48)-(50).
Theorem 3.9. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then, $\bar{\sigma}$ is integrable iff

$$
A_{\phi X} Y-A_{\phi Y} X \in \Gamma(\tilde{\sigma})
$$

for any $X, Y \in \Gamma(\bar{\sigma})$.
Proof. $\bar{\sigma}$ is integrable iff for any $X, Y \in \Gamma(\bar{\sigma}),[X, Y] \in \Gamma(\bar{\sigma})$, i.e.,

$$
\bar{g}\left([X, Y], N_{1}\right)=\bar{g}\left([X, Y], \phi N_{1}\right)=\bar{g}([X, Y], Z)=\bar{g}([X, Y], V)=0,
$$

for any $X, Y \in \Gamma(\bar{\sigma}), Z \in \Gamma\left(\sigma_{0}\right)$ and $N_{1} \in \Gamma\left(L_{1}\right)$. Thus, using (7), (19) and (24) we have

$$
\begin{equation*}
\bar{g}\left([X, Y], N_{1}\right)=\bar{g}\left(A_{\phi X} Y-A_{\phi Y} X, \phi N_{1}\right) \tag{51}
\end{equation*}
$$

for any $X, Y \in \Gamma(\bar{\sigma})$ and $N_{1} \in \Gamma\left(L_{1}\right)$. Similarly, using again (7), (19), (23) and (24) we derive

$$
\begin{align*}
& \bar{g}\left([X, Y], \phi N_{1}\right)=\bar{g}\left(A_{\phi Y} X-A_{\phi X} Y, N_{1}\right), \tag{52}\\
& \bar{g}([X, Y], Z)=\bar{g}\left(A_{\phi X} Y-A_{\phi Y} X, \phi Z\right), \tag{53}\\
& \bar{g}([X, Y], V)=2 \bar{g}(\phi Y, X)=0 \tag{54}
\end{align*}
$$

for any $X, Y \in \Gamma(\bar{\sigma}), Z \in \Gamma\left(\sigma_{0}\right)$ and $N_{1} \in \Gamma\left(L_{1}\right)$. Thus the proof follows from (51)-(54).

4. STCR-Lightlike Product

Definition 4.1. A STCR-lightlike submanifold M of an indefinite Sasakian manifold \bar{M} is named STCR-lightlike product if both the distributions $\sigma \oplus\{V\}$ and $\bar{\sigma}$ define totally geodesic foliation in M.

Theorem 4.2. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then, $\sigma \perp\{V\}$ defines a totally geodesic foliation in M iff

$$
B h(X, \phi Y)=0
$$

for any $X, Y \in \Gamma(\sigma \perp\{V\})$.
Proof. $\sigma \perp\{V\}$ defines a totally geodesic foliation in M iff

$$
g\left(\nabla_{X} Y, \phi \xi_{1}\right)=g\left(\nabla_{X} Y, N_{2}\right)=g\left(\nabla_{X} Y, \phi W\right)=0
$$

for any $X, Y \in \Gamma(\sigma \perp\{V\}), \xi_{1} \in \Gamma\left(\sigma_{1}\right), N_{2} \in \Gamma\left(L_{2}\right)$ and $W \in \Gamma(S)$. From (8), (19) and (24) we derive

$$
\begin{align*}
g\left(\nabla_{X} Y, \phi \xi_{1}\right) & =-\bar{g}\left(h^{l}(X, \phi Y), \xi_{1}\right), \tag{55}\\
g\left(\nabla_{X} Y, N_{2}\right) & =\bar{g}\left(h^{s}(X, \phi Y), \phi N_{2}\right), \tag{56}\\
g\left(\nabla_{X} Y, \phi W\right) & =-\bar{g}\left(h^{s}(X, \phi Y), W\right) . \tag{57}
\end{align*}
$$

Thus from (55) we see that $h^{l}(X, \phi Y)$ has no components in L_{1} and from (56) and (57) we see that $h^{s}(X, \phi Y)$ has no components in $\phi\left(\sigma_{2}\right) \perp S$, i.e., $B h(X, \phi Y)=0$. This completes the proof.

Theorem 4.3. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then, $\bar{\sigma}$ defines a totally geodesic foliation in M iff
(i) $A_{N_{1}} X$ has no components in $\phi\left(\sigma_{1}\right) \perp \phi(S)$.
(ii) $A_{\phi Y} X$ has no components in $\sigma_{0} \perp \sigma_{1}$,
for any $X, Y \in \Gamma(\bar{\sigma})$ and $N_{1} \in \Gamma\left(L_{1}\right)$.
Proof. $\bar{\sigma}$ defines a totally geodesic foliation in M iff

$$
\bar{g}\left(\nabla_{X} Y, N_{1}\right)=g\left(\nabla_{X} Y, \phi N_{1}\right)=g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X} Y, V\right)=0
$$

for any $X, Y \in \Gamma(\bar{\sigma}), N_{1} \in \Gamma\left(L_{1}\right)$ and $Z \in \Gamma\left(\sigma_{0}\right)$. Since $\bar{\nabla}$ is a metric connection, (6), (9) and (24) imply

$$
\begin{equation*}
\bar{g}\left(\nabla_{X} Y, N_{1}\right)=g\left(A_{N_{1}} X, Y\right) . \tag{58}
\end{equation*}
$$

Using (6), (7), (19) and (24) we obtain

$$
\begin{align*}
& g\left(\nabla_{X} Y, \phi N_{1}\right)=g\left(A_{\phi Y} X, N_{1}\right), \tag{59}\\
& g\left(\nabla_{X} Y, Z\right)=-g\left(A_{\phi Y} X, \phi Z\right) . \tag{60}
\end{align*}
$$

Similarly, since $\bar{\nabla}$ is a metric connection and from (6) and (23), we derive

$$
\begin{equation*}
g\left(\nabla_{X} Y, V\right)=-\bar{g}(Y, \phi X)=0 . \tag{61}
\end{equation*}
$$

Thus the proof comes from (58)-(61).
Theorem 4.4. Let M be a contact STCR-lightlike submanifold of an indefinite Sasakian manifold $\bar{M} . \operatorname{If}\left(\nabla_{X} T\right) Y=0$, then M is a STCR lightlike product.

Proof. Let $X, Y \in \Gamma(\bar{\sigma})$, hence $T Y=0$. Then using (40) with the hypothesis, we get $T \nabla_{X} Y=0$. Thus $\nabla_{X} Y \in \Gamma(\bar{\sigma})$ i.e. $\bar{\sigma}$ defines a totally geodesic foliation in M. Let $X, Y \in \Gamma(\sigma \perp\{V\})$; hence $\omega Y=0$. Then using (40), we derive $B h(X, \phi Y)=0$. From Theorem 4.2, $\sigma \perp\{V\}$ defines a totally geodesic foliation in M. Therefore, M is a STCR lightlike product. This completes the proof.

Theorem 4.5. Let M be an irrotational contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then, M is a STCR lightlike product if the following conditions are holded:
i) $\nabla_{X} U \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, for any $X \in \Gamma(T M)$ and $U \in \Gamma(\operatorname{tr}(T M))$.
ii) $A_{\xi}^{*} Y \in \Gamma\left(\phi\left(\sigma_{1}\right) \perp \phi(S)\right)$, for any $Y \in \Gamma(\sigma \perp\{V\})$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$.

Proof. Let (i) holds, then using (9) and (10) we get $A_{N} X=0, A_{W} X=0, D^{l}(X, W)=0$ and $\nabla_{X}^{l} N=0$ for any $X \in \Gamma(T M), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Therefore for any $X, Y \in \Gamma(\sigma \perp\{V\})$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and using (11), we derive $\bar{g}\left(h^{s}(X, Y), W\right)=0$. Since $S\left(T M^{\perp}\right)$ is non-degenerate, $h^{s}(X, Y)=0$. Therefore, $B h^{s}(X, Y)=0$. Since M is irrotational, using (13) and (ii) we derive $\bar{g}\left(h^{l}(X, Y), \xi\right)=\bar{g}\left(Y, A_{\xi}^{*} X\right)=0$ for any $X, Y \in \Gamma(\sigma \perp\{V\})$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$. Thus, we derive $h^{l}(X, Y)=0$. Hence $B h^{l}(X, Y)=0$. Then, from Theorem 4.2 the distribution $\sigma \perp\{V\}$ defines a totally geodesic foliation in M.

Next, for any $X, Y \in \Gamma(\bar{\sigma})$, then $\phi Y=\omega Y \in \Gamma\left(L_{1} \perp S \perp \phi\left(\sigma_{2}\right)\right) \subset \operatorname{tr}(T M)$. Using (40) we derive $T \nabla_{X} Y=-B h(X, Y)+g(X, Y) V$, comparing the components along $\bar{\sigma}$, we get $T \nabla_{X} Y=0$, which implies that $\nabla_{X} Y \in \Gamma(\bar{\sigma})$. Thus $\bar{\sigma}$ defines a totally geodesic foliation in M and M is a STCR-lightlike product.

Definition 4.6. [23] If the second fundamental form h of a submanifold tangent to characteristic vector field V, of an indefinite Sasakian manifold \bar{M} is of the form

$$
\begin{equation*}
h(X, Y)=\{g(X, Y)-\eta(X) \eta(X)\} \beta+\eta(X) h(Y, V)+\eta(Y) h(X, V) \tag{62}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$, where β is a vector field transversal to M, then M is named a totally contact umbilical submanifold and totally contact geodesic if $\beta=0$.

Theorem 4.7. Let M be a totally contact umbilical contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then M is a STCR-lightlike product if $B h(X, \phi Y)=0$, for any $X \in \Gamma(T M)$ and $Y \in \Gamma(\sigma \perp\{V\})$.

Proof. Assume that $B h(X, \phi Y)=0$. Then $\sigma \perp\{V\}$ defines totally geodesic foliation in M for any $X, Y \in$ $\Gamma(\sigma \perp\{V\})$. Using (40) we have

$$
\begin{equation*}
-T \nabla_{X} Y=A_{\omega} X+B h(X, Y)-g(X, Y) V \tag{63}
\end{equation*}
$$

for any $X, Y \in \Gamma(\bar{\sigma})$. Using (7), (19), (24), (34) and (38) then equation (63) becomes

$$
\begin{align*}
-g\left(T \nabla_{X} Y, Z\right) & =g\left(A_{\omega Y} X+B h(X, Y)-g(X, Y) V, Z\right) \\
& =\bar{g}\left(\bar{\nabla}_{X} \phi Y, Z\right) \\
& =-\bar{g}\left(\bar{\nabla}_{X} Y, \phi Z\right) \tag{64}\\
& =\bar{g}\left(Y, \nabla_{X} Z^{\prime}\right)
\end{align*}
$$

for any $Z \in \Gamma\left(\sigma_{0}\right)$, where $\phi Z=Z^{\prime} \in \Gamma\left(\sigma_{0}\right)$. From (24), we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Z=\phi \bar{\nabla}_{X} Z \tag{65}
\end{equation*}
$$

for any $X, Y \in \Gamma(\bar{\sigma})$ and $Z \in \Gamma\left(\sigma_{0}\right)$. Using (6), (34), (38) and taking transversal part of resulting equation we derive

$$
\begin{equation*}
\omega Q \nabla_{X} Z=h(X, T Z)-C h(X, Z) \tag{66}
\end{equation*}
$$

Using (62), we derive $\omega Q \nabla_{X} Z=0$, this implies $\nabla_{X} Z \in \Gamma(\sigma)$. Hence, (64) becomes $g\left(T \nabla_{X} Y, Z\right)=0$. Since σ_{0} is non-degenerate, $\bar{\sigma}$ defines a totally geodesic foliation in M. Hence the proof is proved.

5. Minimal STCR-lightlike submanifolds

Definition 5.1. We say that a lightlike submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{g}) is minimal if:
(i) $h^{s}=0$ on $\operatorname{Rad}(T M)$ and
(ii) $\operatorname{trh}=0$, where trace is written with respect to g restricted to $S(T M)$.

It has been proved in [1] that the above definition is independent of $S(T M)$ and $S\left(T M^{\perp}\right)$, but it depends on $\operatorname{tr}(T M)$.

Example 5.2. Consider a semi-Euclidean space $\left(\bar{M}=\mathbb{R}_{4}^{15}, \bar{g}\right)$, where \bar{g} is ofsignature $(-,-,+,+,+,+,+,-,-,+,+,+$, ,,+++) with respect to canonical basis ($\left.\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial x_{7}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}, \partial y_{6}, \partial y_{7}, \partial z\right)$. Let M be a 9-dimensional submanifold of \mathbb{R}_{4}^{15} given by

$$
\begin{aligned}
x^{1} & =u^{1}, x^{2}=u^{2} \cosh \beta, x^{3}=u^{1}, x^{4}=u^{2} \sinh \beta, \\
x^{5} & =\cos u^{3} \cosh u^{4}, x^{6}=\cos u^{5} \sinh u^{6}, x^{7}=\sin u^{5} \sinh u^{6}, \\
y^{1} & =u^{7}, y^{2}=u^{2} \sinh \beta, y^{3}=u^{8}, y^{4}=u^{2} \cosh \beta, \\
y^{5} & =\sin u^{3} \sinh u^{4}, y^{6}=\cos u^{5} \cosh u^{6}, y^{7}=\sin u^{5} \cosh u^{6}, \\
z & =u^{9} .
\end{aligned}
$$

Then a local frame of TM is given by

$$
\begin{aligned}
Z_{1}= & \partial x_{1}+\partial x_{3}, \\
Z_{2}= & \cosh \beta \partial x_{2}+\sinh \beta \partial x_{4}+\sinh \beta \partial y_{2}+\cosh \beta \partial y_{4}+\left(y^{2} \cosh \beta+y^{4} \sinh \beta\right) \partial z, \\
Z_{3}= & -\sin u^{3} \cosh u^{4} \partial x_{5}+\cos u^{3} \sinh u^{4} \partial y_{5}+\left(-y^{5} \sin u^{3} \cosh u^{4}\right) \partial z, \\
Z_{4}= & \cos u^{3} \sinh u^{4} \partial x_{5}+\sin u^{3} \cosh u^{4} \partial y_{5}+\left(y^{5} \cos u^{3} \sinh u^{4}\right) \partial z, \\
Z_{5}= & -\sin u^{5} \sinh u^{6} \partial x_{6}+\cos u^{5} \sinh u^{6} \partial x_{7}-\sin u^{5} \cosh u^{6} \partial y_{6}+\cos u^{5} \cosh u^{6} \partial y_{7} \\
& +\left(-y^{5} \sin u^{5} \sinh u^{6}+y^{6} \cos u^{5} \sinh u^{6}\right) \partial z, \\
Z_{6}= & \cos u^{5} \cosh u^{6} \partial x_{6}+\sin u^{5} \cosh u^{6} \partial x_{7}+\cos u^{5} \sinh u^{6} \partial y_{6}+\sin u^{5} \sinh u^{6} \partial y_{7} \\
& +\left(y^{5} \cos u^{5} \cosh u^{6}+y^{6} \sin u^{5} \cosh u^{6}\right) \partial z, \\
Z_{7}= & \partial y_{1}, Z_{8}=\partial y_{3}, Z=2 \partial z=V .
\end{aligned}
$$

Thus M is a 2-lightlike submanifold with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}, \phi_{0}\left(\sigma_{1}\right)=\operatorname{Span}\left\{\phi_{0}\left(Z_{1}\right)=Z_{7}+Z_{8}\right\}, \sigma_{0}=$ $\operatorname{Span}\left\{Z_{3}, Z_{4}\right\}$ and it is easy to say that

$$
\begin{aligned}
\operatorname{ltr}(T M) & =\operatorname{Span}\left\{N_{1}=2\left(-\partial x_{1}+\partial x_{3}\right)\right. \\
N_{2} & \left.=2\left(-\cosh \beta \partial x_{2}-\sinh \beta \partial x_{4}+\sinh \beta \partial y_{2}+\cosh \beta \partial y_{4}+\left(-y^{2} \cosh \beta-y^{4} \sinh \beta\right) \partial z\right)\right\} \\
\phi_{0}\left(N_{1}\right) & =2\left(Z_{7}-Z_{8}\right), S\left(T M^{\perp}\right)=\operatorname{Span}\left\{\phi_{0}\left(Z_{2}\right), \phi_{0}\left(N_{2}\right), \phi_{0}\left(Z_{5}\right), \phi_{0}\left(Z_{6}\right)\right\}
\end{aligned}
$$

Hence, M is a proper contact STCR-lightlike submanifold of \mathbb{R}_{4}^{15}, with a quasi-orthonormal basis of \bar{M} along M is

$$
\begin{aligned}
\left\{\xi_{1}\right. & =Z_{1}, \xi_{2}=Z_{2}, \phi_{0}\left(\xi_{1}\right)=-Z_{7}-Z_{8}, \phi_{0}\left(N_{1}\right)=2\left(Z_{7}-Z_{8}\right) \\
e_{1} & =\frac{1}{\sqrt{\cosh ^{2} u^{4}-\cos ^{2} u^{3}}} Z_{3}, e_{2}=\frac{1}{\sqrt{\cosh ^{2} u^{4}-\cos ^{2} u^{3}}} Z_{4}, \\
e_{3} & =\frac{1}{\sqrt{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}}} Z_{5}, e_{4}=\frac{1}{\sqrt{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}}} Z_{6}, V=Z_{10}, \\
W_{1} & =\phi_{0}\left(\xi_{2}\right), W_{2}=\phi_{0}\left(N_{2}\right), W_{3}=\frac{1}{\sqrt{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}}} \phi_{0}\left(Z_{5}\right), \\
W_{4} & =\frac{1}{\sqrt{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}}} \phi_{0}\left(Z_{6}\right), N_{1}, N_{2},
\end{aligned}
$$

where $\varepsilon_{1}=g\left(e_{1}, e_{1}\right)=1, \varepsilon_{2}=g\left(e_{2}, e_{2}\right)=1, \varepsilon_{3}=g\left(e_{3}, e_{3}\right)=1$ and $\varepsilon_{4}=g\left(e_{4}, e_{4}\right)=1$. Using (8), we get

$$
\begin{aligned}
h\left(\xi_{1}, \xi_{1}\right) & =h\left(\xi_{2}, \xi_{2}\right)=h\left(e_{1}, e_{1}\right)=h\left(e_{2}, e_{2}\right)=0, \\
h\left(\phi_{0}\left(\xi_{1}\right), \phi_{0}\left(\xi_{1}\right)\right) & =h\left(\phi_{0}\left(N_{1}\right), \phi_{0}\left(N_{1}\right)\right)=h^{l}\left(e_{3}, e_{3}\right)=h^{l}\left(e_{4}, e_{4}\right)=0, \\
h^{s}\left(e_{3}, e_{3}\right) & =\frac{1}{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}} Z_{4}, h^{s}\left(e_{4}, e_{4}\right)=-\frac{1}{\sinh ^{2} u^{6}+\cosh ^{2} u^{6}} Z_{4} .
\end{aligned}
$$

Thus

$$
\operatorname{traceh}_{q \mid S(T M)}=\epsilon_{3} h^{s}\left(e_{3}, e_{3}\right)+\epsilon_{4} h^{s}\left(e_{4}, e_{4}\right)=h^{s}\left(e_{3}, e_{3}\right)+h^{s}\left(e_{4}, e_{4}\right)=0
$$

Hence M is a minimal proper contact STCR-lightlike submanifold of \mathbb{R}_{4}^{15}.
Let take a quasi-orthonormal frame

$$
\left\{\xi_{1}, \ldots, \xi_{q}, e_{1}, \ldots, e_{m}, V, W_{1}, \ldots, \dot{W}_{n}, N_{1}, \ldots, N_{q}\right\}
$$

such that $\left(\xi_{1}, \ldots, \xi_{q}, e_{1}, \ldots, e_{m}, V\right)$ belongs to $\Gamma(T M)$. Then take $\left(\xi_{1}, \ldots, \xi_{q}, e_{1}, \ldots, e_{m}\right)$ such that $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ form a basis of $\sigma_{1},\left\{\xi_{p+1}, \ldots, \xi_{q}\right\}$ form a basis of σ_{2} and $\left\{e_{1}, \ldots, e_{2 s}\right\}$ form a basis of σ_{0}. Besides, we take $\left\{W_{1}, \ldots, W_{k}\right\}$ a basis of $S,\left\{N_{1}, \ldots, N_{p}\right\}$ a basis of L_{1} and $\left\{N_{p+1}, \ldots, N_{q}\right\}$ a basis of L_{2}. Hence we have a quasi-orthonormal basis of M as follows:

$$
\left\{\xi_{1}, \ldots, \xi_{p}, \xi_{p+1}, \ldots, \xi_{r}, e_{1}, \ldots, e_{l}, \phi e_{1}, \ldots, \phi e_{l}, \phi \xi_{1}, \ldots, \phi \xi_{p}, \phi N_{1}, \ldots, \phi N_{p}, \phi W_{1}, \ldots, \phi W_{k}\right\}
$$

Theorem 5.3. Let M be a proper contact STCR-lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then M is minimal iff

$$
\begin{equation*}
\operatorname{trace} A_{W_{j} \mid S(T M)}=0, \operatorname{trace} A_{\xi_{q} \mid S(T M)}^{*}=0 \tag{67}
\end{equation*}
$$

and $\bar{g}\left(Y, D^{l}(X, W)\right)=0$ for any $X, Y \in \Gamma(\operatorname{Rad}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$.
Proof. We know that $h^{l}=0$ on $\operatorname{Rad}(T M)$ [1]. Definition of a contact STCR-lightlike submanifold, M is minimal iff

$$
\sum_{j=1}^{2 s} \epsilon_{j} h\left(e_{j}, e_{j}\right)+\sum_{j=1}^{p} h\left(\phi \xi_{j}, \phi \xi_{j}\right)+\sum_{j=1}^{p} h\left(\phi N_{j}, \phi N_{j}\right)+\sum_{\alpha=1}^{k} \epsilon_{\alpha} h\left(\phi W_{\alpha}, \phi W_{\alpha}\right)=0
$$

Now from (11), we have $h^{s}=0$ on $\operatorname{Rad}(T M)$ iff $\bar{g}\left(Y, D^{l}(X, W)\right)=0$, for any $X, Y \in \Gamma(\operatorname{Rad}(T M))$ and $W \in$ $\Gamma\left(S\left(T M^{\perp}\right)\right)$. Besides, we derive

$$
\begin{align*}
\text { traceh } \mid & S(T M)=\frac{1}{r} \sum_{q=1}^{r} \sum_{j=1}^{p} \bar{g}\left(h^{l}\left(\phi \xi_{j}, \phi \xi_{j}\right), \xi_{q}\right) N_{q}+\bar{g}\left(h^{l}\left(\phi N_{j}, \phi N_{j}\right), \xi_{q}\right) N_{q} \\
& +\frac{1}{n-r} \sum_{j=1}^{p} \sum_{\beta=1}^{n-r} \epsilon_{\beta}\left\{\bar{g}\left(h^{s}\left(\phi \xi_{j}, \phi \xi_{j}\right), W_{\beta}\right) W_{\beta}+\bar{g}\left(h^{s}\left(\phi N_{j}, \phi N_{j}\right), W_{\beta}\right) W_{\beta}\right\} \tag{68}\\
& +\sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r}\left\{\sum_{j=1}^{2 s} \bar{g}\left(h^{s}\left(e_{j}, e_{j}\right), W_{\beta}\right) W_{\beta}+\sum_{\alpha=1}^{k} \bar{g}\left(h^{s}\left(\phi W_{\alpha}, \phi W_{\alpha}\right), W_{\beta}\right) W_{\beta}\right\} \\
& +\sum_{q=1}^{r} \frac{1}{r}\left\{\sum_{j=1}^{2 s} \bar{g}\left(h^{l}\left(e_{j}, e_{j}\right), \xi_{q}\right) N_{q}+\sum_{\alpha=1}^{k} \bar{g}\left(h^{l}\left(\phi W_{\alpha}, \phi W_{\alpha}\right), \xi_{q}\right) N_{q}\right\} .
\end{align*}
$$

Using (11) and (16) in (68), we get

$$
\begin{align*}
\text { traceh } \mid & S(T M)=\frac{1}{r} \sum_{q=1}^{r} \sum_{j=1}^{p} g\left(A_{\xi_{q}}^{*} \phi \xi_{j}, \phi \xi_{j}\right) N_{q}+g\left(A_{\xi_{q}}^{*} \phi N_{j}, \phi N_{j}\right) N_{q} \\
& +\frac{1}{n-r} \sum_{j=1}^{p} \sum_{\beta=1}^{n-r} \epsilon_{\beta}\left\{g\left(A_{W_{\beta}} \phi \xi_{j}, \phi \xi_{j}\right) W_{\beta}+g\left(A_{W_{\beta}} \phi N_{j}, \phi N_{j}\right) W_{\beta}\right\} \tag{69}\\
& +\sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r}\left\{\sum_{j=1}^{2 s} g\left(A_{W_{\beta}} e_{j}, e_{j}\right) W_{\beta}+\sum_{\alpha=1}^{k} g\left(A_{W_{\beta}} \phi W_{\alpha}, \phi W_{\alpha}\right) W_{\beta}\right\} \\
& +\sum_{q=1}^{r} \frac{1}{r}\left\{\sum_{j=1}^{2 s} g\left(A_{\xi_{q}}^{*} e_{j}, e_{j}\right) N_{q}+\sum_{\alpha=1}^{k} g\left(A_{\xi_{q}}^{*} \phi W_{\alpha}, \phi W_{\alpha}\right) N_{q}\right\} .
\end{align*}
$$

Equation (69) completes the proof.
Theorem 5.4. A totally umbilical STCR-lightlike submanifold M is minimal iff

$$
\begin{equation*}
\left.\operatorname{trace}_{W_{\beta}}\right|_{\sigma_{0} \perp \phi(S)}=\left.\operatorname{trace} A_{\xi_{q}}^{*}\right|_{\sigma_{0} \perp \phi(S)}=0 \tag{70}
\end{equation*}
$$

for any $\xi_{q} \in \Gamma(\operatorname{Rad}(T M))$ and $W_{\beta} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, where $k \in\{1,2, \ldots, r\}$ and $\beta \in\{1,2, \ldots, n-r\}$.
Proof. M is minimal iff $h^{s}=0$ on $\operatorname{Rad}(T M)$ and traceh $=0$ on $S(T M)$, i.e.
traceh $\quad \mid \quad S(T M)=$ traceh $\left.\right|_{\sigma_{0}}+$ traceh $\left.\right|_{\phi\left(\sigma_{1}\right)}+$ traceh $\left.\right|_{\phi\left(L_{1}\right)}+$ traceh $\left.\right|_{\phi(S)}$

$$
\begin{equation*}
=\sum_{j=1}^{2 s} \epsilon_{j} h\left(e_{j}, e_{j}\right)+\sum_{j=1}^{p} h\left(\phi \xi_{j}, \phi \xi_{j}\right)+\sum_{j=1}^{p} h\left(\phi N_{j}, \phi N_{j}\right)+\sum_{\alpha=1}^{k} \epsilon_{\alpha} h\left(\phi W_{\alpha}, \phi W_{\alpha}\right) . \tag{71}
\end{equation*}
$$

Using (62) in (71) we derive

$$
\begin{align*}
\text { traceh } \mid & S(T M)=\left.\operatorname{traceh}\right|_{\sigma_{0}}+\left.\operatorname{traceh}\right|_{\phi(S)} \\
= & \sum_{j=1}^{2 s} \epsilon_{j} h\left(e_{j}, e_{j}\right)+\sum_{\alpha=1}^{k} \epsilon_{l} h\left(\phi W_{\alpha}, \phi W_{\alpha}\right) \\
= & \sum_{j=1}^{2 s} \epsilon_{j}\left(h^{l}\left(e_{j}, e_{j}\right)+h^{s}\left(e_{j}, e_{j}\right)\right)+\sum_{\alpha=1}^{k} \epsilon_{l}\left(h^{l}\left(\phi \dot{W}_{\alpha}, \phi W_{\alpha}\right)+h^{s}\left(\phi W_{\alpha}, \phi W_{\alpha}\right)\right) \tag{72}\\
= & \sum_{q=1}^{r} \frac{1}{r}\left\{\sum_{j=1}^{2 s} \bar{g}\left(h^{l}\left(e_{j}, e_{j}\right), \xi_{q}\right) N_{q}+\sum_{\alpha=1}^{k} \bar{g}\left(h^{l}\left(\phi W_{\alpha}, \phi W_{\alpha}\right), \xi_{q}\right) N_{q}\right\} \\
& +\sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r}\left\{\sum_{j=1}^{2 s} \bar{g}\left(h^{s}\left(e_{j}, e_{j}\right), W_{\beta}\right) W_{\beta}+\sum_{\alpha=1}^{k} \bar{g}\left(h^{s}\left(\phi W_{\alpha}, \phi W_{\alpha}\right), W_{\beta}\right) W_{\beta}\right\}
\end{align*}
$$

Besides, if we consider (11) and (16) in (72), we obtain

$$
\begin{aligned}
\text { traceh | } & S(T M)=\sum_{q=1}^{r} \frac{1}{r}\left\{\sum_{j=1}^{2 s} g\left(A_{\xi_{q}}^{*} e_{j}, e_{j}\right) N_{q}+\sum_{\alpha=1}^{k} g\left(A_{\xi_{q}}^{*} \phi W_{\alpha}, \phi W_{\alpha}\right) N_{q}\right\} \\
& +\sum_{\beta=1}^{n-r} \epsilon_{\beta} \frac{1}{n-r}\left\{\sum_{j=1}^{2 s} g\left(A_{W_{\beta}} e_{j}, e_{j}\right) W_{\beta}+\sum_{\alpha=1}^{k} g\left(A_{W_{\beta}} \phi W_{\alpha}, \phi W_{\alpha}\right) W_{\beta}\right\} \\
= & 0
\end{aligned}
$$

which completes the proof.

References

[1] Bejan, C. L. and Duggal, K. L., Global lightlike manifolds and harmonicity, Kodai Math. J. 28 (2005), 131-145.
[2] Călin, C., Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
[3] Doğan, B., Şahin, B. and Yaşar, E., Screen transversal cauchy Riemann lightlike submanifolds, Filomat, 34 (5) (2020), 1581-1599.
[4] Duggal, K. L., Space time manifolds and contact structures, International Journal of Mathematics and Mathematical Sciences, 13 (3) (1990), 545-553.
[5] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Pub., The Netherlands, 1996.
[6] Duggal, K. L. and Şahin, B., Screen Cauchy-Riemann lightlike submanifolds, Acta Math. Hungar. 106 (1-2) (2005), 137-165.
[7] Duggal, K. L. and Şahin, B., Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungar. 112 (1-2) (2006), 107-130.
[8] Duggal, K. L. and Şahin, B., Lightlike submanifolds of indefinite Sasakian manifolds, International Journal of Mathematics and Mathematical Sciences, 2007 (2007), Article ID 57585, 21 pages.
[9] Duggal, K. L. and Şahin, B., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Sasakian Manifolds, Acta Math. Hungar. 122 (2009), 45-58.
[10] Duggal K. L. and Şahin B., Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG., 2010.
[11] Gupta, R. S. and Sharfuddin, A., Generalized Cauchy-Riemann Lightlike Submanifolds of Indefinite Kenmotsu Manifolds, Note di Mathematica, 30 (2010), 49-59.
[12] Gupta, R. S. and Sharfuddin, A., Screen transversal lightlike submanifolds of indefinite cosymplectic manifolds, Rendiconti del Seminario Matematico della Università di Padova, 124 (2010), 145-156.
[13] Gupta, R.S., Upadhyay, A. and Sharfuddin, A., Generalised Cauchy-Riemann lightlike submanifolds of indefinite cosymplectic manifolds, An. Ştiinţ. Univ. "Al. I. Cuza" Ia şi. Mat. (N.S.), 58(2) (2012), 381-394.
[14] Kılıç, E., Şahin B. and Keleş S., Screen Semi Invariant Lightlike Submanifolds of Semi-Riemannian Product Manifolds, International Electronic Journal of Geometry, 4 (2) (2011), 120-135.
[15] Kumar, S., Kumar, R., Nagaich, R. K., GCR-lightlike submanifolds of a semi-Riemannian product manifold, Bull. Korean Math. Soc. 51(3) (2014), 883-899.
[16] Kupeli, D. N., Singular semi-Riemannian geometry, Kluwer Academic Publishers, Dordrecht, 366, 1996.
[17] (Önen) Poyraz, N., Golden GCR-Lightlike submanifolds of golden semi-Riemannian manifolds, Mediterranean Journal of Mathematics, 17(5) (2020), 1-16.
[18] Şahin, B., Screen transversal lightlike submanifolds of Kähler manifolds, Chaos, Solitons and Fractals, 38 (2008), 1439-1448.
[19] Yıldırım, C. and Şahin, B., Screen transversal lightlike submanifolds of indefinite sasakian manifolds, An. Şt. Univ. Ovidius Constanta, 18 (2) (2010), 315-336.
[20] Yıldırım, C. Erdoğan, F.E., Screen transversal lightlike submanifolds of semi-Riemannian product manifolds, Mathematical Sciences And Applications E-Notes, 3 (1) (2015), 75-85.
[21] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), 271-290.
[22] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tohoku Math. J. 21 (1969), 501-507.
[23] Yano, K. and Kon, M., Structures on Manifolds, World Scientiflc, 1984.

[^0]: 2020 Mathematics Subject Classification. Primary 53C15; Secondary 53C40, 53C50.
 Keywords. STCR-lightlike submanifolds; Indefinite Sasakian manifold; Minimal lightlike submanifolds.
 Received: 30 September 2022; Accepted: 10 January 2023
 Communicated by Mića Stanković
 Email address: nonen@cu.edu.tr (Nergiz (Önen) Poyraz)

