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Abstract. For any homogeneous polynomial, it can be expressed as the product of a tensorA and a vector
x, we denote it by PA(x). With the change of the norm of x, the maximum value (resp. the minimum
value) of PA(x) is changed. In this paper, by the properties of tensorA, we study the relationships between
the maximum values (resp. minimum values) of PA(x) under different norms of x. We present that the
maximum values (resp. the minimum values) of PA(x) at different norms of x always have the same sign.
Moreover, the relationship between the magnitudes of the maximum values (resp. the minimum values)
of PA(x) at different norms of x are characterized. Further, some inequalities on H-eigenvalues and Z-
eigenvalues of tensor A are obtained directly. And some applications on definite positive of tensors and
hypergraphs are given.

1. Introduction

Tensors have been widely applied to many fields, such as signal processing [1], computing vision [2] and
statistical data analysis [3] etc. Let [n] = {1, 2, . . . ,n}, n is a positive integer. A k-order n-dimensional tensor
A = (ai1i2···ik ) (i j ∈ [n], j ∈ [k]) is a multidimensional array with nk entries. If ai1i2···ik ≥ 0 for all i j ∈ [n], j ∈ [k],
thenA is called nonnegative. If ai1i2···ik = aσ(i1)σ(i2)···σ(ik), where σ is any permutation of the indices i1, . . . , ik, then
A is called symmetric. Let C[k,n] and R[k,n] denote the set of k-order n-dimensional complex tensors and real
tensors, respectively.

LetA = (ai1i2···ik ) ∈ C
[k,n] and x = (x1, . . . , xn)T

∈ Cn. Axk−1 is an n-dimensional vector (see [4]), whose i-th
component is

(Axk−1)i =

n∑
i2,...,ik=1

aii2···ik xi2 · · · xik , i ∈ [n].
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For any kth degree real coefficient homogeneous polynomial, it can be expressed as

PA(x) := xT(Axk−1) =
n∑

i1,i2,...,ik=1

ai1i2···ik xi1 xi2 · · · xik ,

where A = (ai1i2···ik ) ∈ R
[k,n] and x = (x1, . . . , xn)T. Note that the tensor A isn’t unique, it maybe symmetric

or maybe not. By analyzing the critical value and positive definite of PA(x) under different norms of real
vector x, the (H/Z-)eigenvalues of tensor A were proposed and studied [4, 5]. After that, eigenvalues of
tensors have attracted much attention and have been found wide applications in quantum physics, higher
order Markov chains, spectral hypergraph theory and automatic control etc (see [6]-[19]).

For tensorA ∈ R[k,n] and x = (x1, . . . , xn)T
∈ Rn, let

λ(p)
max(A) = max{PA(x) : x ∈ Rn and ∥x∥p = 1},

λ(p)
min(A) = min{PA(x) : x ∈ Rn and ∥x∥p = 1},

where ∥x∥p =
p√
|x1|

p + · · · + |xn|
p is the p-norm of x. Thus, λ(p)

max(A) and λ(p)
min(A) denote the maximum and

minimum value of PA(x) under p-norm of real vector x, respectively. For some tensors, λ(k)
max(A) and λ(k)

min(A)
(resp. λ(2)

max(A) and λ(2)
min(A)) are exactly the largest and smallest H-eigenvalue (resp. Z-eigenvalue) of A,

respectively, such as the even order real symmetric tensors [4].
In this paper, we study the maximum and minimum value of PA(x) under different norms of real vector

x. We present that λ(p)
max(A) and λ(q)

max(A) (resp. λ(p)
min(A) and λ(q)

min(A)) always have the same sign for any
p, q ≥ 1. In other words, for any p, q ≥ 1, λ(p)

max(A) and λ(q)
max(A) (resp. λ(p)

min(A) and λ(q)
min(A)) are either both

greater than zero or both less than zero, or both equal to zero. Furthermore, when 1 ≤ q ≤ p, we obtain that

n
k
p−

k
q ≤
λ(q)

max(A)

λ(p)
max(A)

≤ 1 and n
k
p−

k
q ≤
λ(q)

min(A)

λ(p)
min(A)

≤ 1

if λ(p)
max(A) , 0, λ(p)

min(A) , 0. By the above inequalities, some relationships between H-eigenvalues and
Z-eigenvalues of tensors are obtained. Thus, some results on Z-eigenvalus can be got directly from the
results on the H-eigenvalues, and the vice verse. Moreover, some applications on definite positive of tensors
and hypergraphs are given.

2. Preliminaries

In this section, we list some helpful notions and lemmas.
LetA ∈ C[k,n]. If there exist λ ∈ C and a nonzero vector x = (x1, . . . , xn)T

∈ Cn such that

Axk−1 = λx[k−1],

then λ is called an eigenvalue of A and x is called an eigenvector of A corresponding to λ, where x[k−1] =
(xk−1

1 , . . . , x
k−1
n )T. Further, if λ ∈ R and x ∈ Rn, then λ is called an H-eigenvalue of A and x is called the

corresponding H-eigenvector. Let ρ(A) = max{|λ| : λ is an eigenvalue ofA} be the spectral radius of A. If
there exist λ ∈ R and a nonzero vector x ∈ Rn such that

Axk−1 = λx and xTx = 1,

then λ is called a Z-eigenvalue of A and x is called the corresponding Z-eigenvector. Let ρZ(A) = max{|λ| :
λ is a Z-eigenvalue ofA} denote the Z-spectral radius ofA ifA has Z-eigenvalues.

For a tensorA ∈ C[k,n], it maybe doesn’t have the H-eigenvalues and Z-eigenvalues. But in the following
cases, it always has the H-eigenvalues and Z-eigenvalues.
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Lemma 2.1. [4, 20] Let A ∈ R[k,n] be an even order symmetric tensor. Then A always has H-eigenvalues and
Z-eigenvalues, and λ(k)

max(A), λ(k)
min(A), λ(2)

max(A) and λ(2)
min(A) are exactly the largest and the smallest H-eigenvalue,

the largest and the smallest Z-eigenvalue, respectively.

Lemma 2.2. [21–23] LetA ∈ R[k,n] be a nonnegative symmetric tensor. Then ρ(A) and ρZ(A) are the H-eigenvalue
and Z-eigenvalue ofA, respectively. And

ρZ(A) = λ(2)
max(A), ρ(A) = λ(k)

max(A).

A real symmetric tensorA ∈ R[k,n] is called positive (semi-)definite if xT(Axk−1) > 0 (≥ 0) for all x ∈ Rn
\ {0}

[4]. Note that there are no positive (semi-)definite tensors when k is odd.

Lemma 2.3. [4] LetA be an even order real symmetric tensor. ThenA is positive definite (resp. positive semi-definite)
if and only if its all H-eigenvalues or all Z-eigenvalues are positive (resp. nonnegative).

Lemma 2.4. Let x = (x1, . . . , xn)T
∈ Rn and 1 ≤ q ≤ p. Then


n∑

i=1
|xi|

q

n


1
q

≤


n∑

i=1
|xi|

p

n


1
p

.

Proof. Without loss of generality, suppose that x1, x2, . . . , xt , 0 and xt+1 = · · · = xn = 0. Then the Power
Mean Inequality implies that 

t∑
i=1
|xi|

q

t


1
q

≤


t∑

i=1
|xi|

p

t


1
p

.

Since
(

t
n

) 1
q
≤

(
t
n

) 1
p , we get


t∑

i=1
|xi |

q

t


1
q (

t
n

) 1
q
≤


t∑

i=1
|xi |

p

t


1
p (

t
n

) 1
p . Thus,


(

t∑
i=1
|xi|

q) + xq
t+1 + · · · + xq

n

n


1
q

≤


(

t∑
i=1
|xi|

p) + xq
t+1 + · · · + xq

n

n


1
p

.

This finishes the proof.

3. The maximum value of homogeneous polynomials under the different norms

In this section, we give some relationships on the λ(p)
max(A) and λ(q)

max(A) when 1 ≤ q ≤ p. Furthermore,
we get the conclusions on the largest H-eigenvalue and the largest Z-eigenvalue of tensors.

Theorem 3.1. LetA = (ai1i2···ik ) ∈ R
[k,n] and 1 ≤ q ≤ p. Then the following cases hold.

(1) If λ(q)
max(A) ≥ 0, then 0 ≤ n

k
p−

k
qλ(p)

max(A) ≤ λ(q)
max(A) ≤ λ(p)

max(A).
(2) If λ(q)

max(A) < 0, then 0 > n
k
p−

k
qλ(p)

max(A) ≥ λ(q)
max(A) ≥ λ(p)

max(A).
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Proof. (1) a) When λ(q)
max(A) ≥ 0, we firstly prove that λ(q)

max(A) ≤ λ(p)
max(A). Let x = (x1, . . . , xn)T

∈ Rn be the

vector such that λ(q)
max(A) = xT(Axk−1). Then we have ∥x∥q = 1 and ∥x∥pp =

n∑
i=1
|xi|

p
≤

n∑
i=1
|xi|

q = 1. Thus,

0 ≤ λ(q)
max(A) = xT(Axk−1)

=

n∑
i1,...,ik=1

ai1···ik xi1 · · · xik

= ∥x∥kp
n∑

i1,...,ik=1

ai1···ik
xi1

∥x∥p
· · ·

xik

∥x∥p
. (3.1)

Let y = (y1, . . . , yn)T = ( x1
∥x∥p
, . . . , xn

∥x∥p
)T. So, y ∈ Rn and ∥y∥p = 1. By (3.1), we get

0 ≤ λ(q)
max(A) = ∥x∥kp

n∑
i1,...,ik=1

ai1···ik yi1 · · · yik = ∥x∥
k
pyT(Ayk−1) ≤ ∥x∥kpλ

(p)
max(A).

From ∥x∥kp ≤ 1, so 0 ≤ λ(q)
max(A) ≤ λ(p)

max(A).

b) Next, we prove that 0 ≤ n
k
p−

k
qλ(p)

max(A) ≤ λ(q)
max(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector such that

λ(p)
max(A) = xT(Axk−1). Then ∥x∥p = 1. And Lemma 2.4 implies that


n∑

i=1
|xi |

q

n


1
q

≤


n∑

i=1
|xi |

p

n


1
p

, i.e., n
1
p−

1
q ∥x∥q ≤

∥x∥p = 1. Let y = n
1
p−

1
q x, so ∥y∥q = n

1
p−

1
q ∥x∥q ≤ 1. By a), we get that if λ(q)

max(A) ≥ 0, then λ(p)
max(A) ≥ 0. Thus,

0 ≤ λ(p)
max(A) =

n∑
i1,...,ik=1

ai1···ik xi1 · · · xik

= (n
1
q−

1
p )k

n∑
i1,...,ik=1

ai1···ik (n
1
p−

1
q xi1 ) · · · (n

1
p−

1
q xik )

= (n
1
q−

1
p )k

n∑
i1,...,ik=1

ai1···ik yi1 · · · yik

= ∥y∥kq(n
1
q−

1
p )k

n∑
i1,...,ik=1

ai1···ik
yi1

∥y∥q
· · ·

yik

∥y∥q
. (3.2)

Let z = (z1, . . . , zn)T = ( y1

∥y∥q
, . . . ,

yn

∥y∥q
)T. So, z ∈ Rn and ∥z∥q = 1. By (3.2), we get

0 ≤ λ(p)
max(A) = ∥y∥kq(n

1
q−

1
p )kzT(Azk−1) ≤ ∥y∥kq(n

1
q−

1
p )kλ(q)

max(A).

From ∥y∥kq ≤ 1, so 0 ≤ n
k
p−

k
qλ(p)

max(A) ≤ λ(q)
max(A).

It follows from a) and b) that the statement (1) holds.

(2) c) When λ(q)
max(A) < 0, we firstly prove that λ(q)

max(A) ≥ λ(p)
max(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector

such that λ(p)
max(A) = xT(Axk−1). Then we have ∥x∥p = 1 and ∥x∥qq =

n∑
i=1
|xi|

q
≥

n∑
i=1
|xi|

p = 1. Thus,

λ(p)
max(A) = ∥x∥kq

n∑
i1,...,ik=1

ai1···ik
xi1

∥x∥q
· · ·

xik

∥x∥q
. (3.3)
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Let y = (y1, . . . , yn)T = ( x1
∥x∥q
, . . . , xn

∥x∥q
)T. So, y ∈ Rn and ∥y∥q = 1. By (3.3), we get

λ(p)
max(A) = ∥x∥kqyT(Ayk−1) ≤ ∥x∥kqλ

(q)
max(A) < 0.

From ∥x∥kq ≥ 1, we have λ(p)
max(A) ≤ λ(q)

max(A) < 0.

d) Next, we prove that 0 > n
k
p−

k
qλ(p)

max(A) ≥ λ(q)
max(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector such that
λ(q)

max(A) = xT(Axk−1). Then ∥x∥q = 1. And Lemma 2.4 implies that 1 = ∥x∥q ≤ n
1
q−

1
p ∥x∥p. Let y = n

1
q−

1
p x, so

∥y∥p = n
1
q−

1
p ∥x∥p ≥ 1. Similar to the (3.2), we have

λ(q)
max(A) = ∥y∥kp(n

1
p−

1
q )k

n∑
i1,...,ik=1

ai1···ik
yi1

∥y∥p
· · ·

yik

∥y∥p
. (3.4)

Let z = (z1, . . . , zn)T = ( y1

∥y∥p
, . . . ,

yn

∥y∥p
)T. So, z ∈ Rn and ∥z∥p = 1. By c), we get that if λ(q)

max(A) < 0, then

λ(p)
max(A) < 0. By (3.4), we get

λ(q)
max(A) = ∥y∥kp(n

1
p−

1
q )kzT(Azk−1) ≤ ∥y∥kp(n

1
p−

1
q )kλ(p)

max(A) < 0.

From ∥y∥kp ≥ 1, we have 0 > n
k
p−

k
qλ(p)

max(A) ≥ λ(q)
max(A).

It follows from c) and d) the statement (2) holds.

LetA ∈ R[k,n] and 1 ≤ q ≤ p. From Theorem 3.1 (1), we directly get that if λ(q)
max(A) > 0, then λ(p)

max(A) > 0,
and if λ(p)

max(A) > 0, then λ(q)
max(A) > 0. From Theorem 3.1 (2), we get that if λ(q)

max(A) < 0, then λ(p)
max(A) < 0,

and if λ(p)
max(A) < 0, then λ(q)

max(A) < 0. Thus, we have the following result.

Theorem 3.2. LetA ∈ R[k,n] and 1 ≤ q ≤ p. Then λ(p)
max(A) and λ(q)

max(A) always have the same sign for any p, q ≥ 1.
In other words, for any p, q ≥ 1, λ(p)

max(A) and λ(q)
max(A) are either both greater than zero or both less than zero, or both

equal to zero.

By Theorem 3.1 and 3.2, we have the following corollary.

Corollary 3.3. For real tensorA ∈ R[k,n] and 1 ≤ q ≤ p, λ(p)
max(A) and λ(q)

max(A) always have the same sign for any
p, q ≥ 1. And the following inequalities hold

n
k
p−

k
q ≤
λ(q)

max(A)

λ(p)
max(A)

≤ 1,

if λ(p)
max(A) , 0.

For the even order symmetric tensor A, by Lemma 2.1, λ(2)
max(A) and λ(k)

max(A) are exactly the largest
Z-eigenvalue and the largest H-eigenvalue of A, respectively. Thus, by Corollary 3.3, we directly get the
following relationships between the largest Z-eigenvalue and the largest H-eigenvalue of tensors.

Theorem 3.4. LetA ∈ R[k,n] be an even order real symmetric tensor. Then λ(2)
max(A) and λ(k)

max(A) always have the
same sign. And

n
2−k

2 ≤
λ(2)

max(A)

λ(k)
max(A)

≤ 1,

if λ(k)
max(A) , 0.
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For the k-order nonnegative symmetric tensor A, by Lemma 2.2, λ(2)
max(A) and λ(k)

max(A) are exactly the
Z-spectral radius ρZ(A) and spectral radius ρ(A) ofA, respectively. And clearly,

ρ(A) = λ(k)
max(A) = max{xT(Axk−1) :

n∑
i=1

xk
i = 1, x ∈ Rn

} ≥ 0.

Thus, by Corollary 3.3, we directly get the following relationships between the Z-spectral radius and spectral
radius.

Theorem 3.5. LetA ∈ R[k,n] be a nonnegative symmetric tensor. Then ρZ(A) and ρ(A) always have the same sign.
And

n
2−k

2 ≤
ρZ(A)
ρ(A)

≤ 1,

if ρ(A) > 0.

Next, we give some examples to show the Theorem 3.5.

Example 3.6. Let A = (ai1i2i3i4 ) ∈ R[4,3] be a nonnegative symmetric tensor, where a1111 = 4, a1112 = 1, a1121 =
1, a1211 = 1, a2111 = 1, a2222 = 1, a3333 = 6 and others are zero. By calculation, we get the all H-eigenvalues (not
counting multiplicity) are

λ1 = 1, λ2 = 6, λ3 ≈ 0.4143, λ4 ≈ 5.781.

The all Z-eigenvalues (not counting multiplicity) are

λ1 = 1, λ2 = 6, λ3 ≈ 0.2127, λ4 ≈ 0.955, λ5 ≈ 4.442,

λ6 ≈ 0.2054, λ7 ≈ 0.8239, λ8 ≈ 2.552, λ9 ≈ 0.8571.

The calculation results show that
1
3
<
ρZ(A)
ρ(A)

= 1.

Example 3.7. Let A = (ai1i2i3i4 ) ∈ R[4,2] be a nonnegative symmetric tensor, where a1111 = 3, a1112 = 1, a1121 =
1, a1211 = 1, a2111 = 1, a2222 = 1 and others are zero. By calculation, we get the all H-eigenvalues (not counting
multiplicity) are

λ1 = 1, λ2 ≈ 4.905, λ3 = 0.

The all Z-eigenvalues (not counting multiplicity) are

λ1 = 1, λ2 ≈ 0.951, λ3 ≈ 3.549, λ4 = 0.

The calculation results show that
1
2
<
ρZ(A)
ρ(A)

< 1.

4. The minimum value of homogeneous polynomials under the different norms

In this section, we give some relationships on the λ(p)
min(A) and λ(q)

min(A) when 1 ≤ q ≤ p. Furthermore,
we get the conclusions on the smallest H-eigenvalue and the smallest Z-eigenvalue of tensors. And the
inequalities on p-spectral radius are obtained.

Theorem 4.1. LetA = (ai1i2···ik ) ∈ R
[k,n] and 1 ≤ q ≤ p. Then the following cases hold.

(1) If λ(q)
min(A) ≥ 0, then 0 ≤ n

k
p−

k
qλ(p)

min(A) ≤ λ(q)
min(A) ≤ λ(p)

min(A).

(2) If λ(q)
min(A) < 0, then 0 > n

k
p−

k
qλ(p)

min(A) ≥ λ(q)
min(A) ≥ λ(p)

min(A).
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Proof. (1) a) When λ(q)
min(A) ≥ 0, we firstly prove that λ(q)

min(A) ≤ λ(p)
min(A). Let x = (x1, . . . , xn)T

∈ Rn be the
vector such that λ(p)

min(A) = xT(Axk−1). Then ∥x∥p = 1 and ∥x∥q ≥ 1. Thus, we get

λ(p)
min(A) =

n∑
i1,...,ik=1

ai1···ik xi1 · · · xik = ∥x∥
k
q

n∑
i1,...,ik=1

ai1···ik
xi1

∥x∥q
· · ·

xik

∥x∥q
.

Let y = (y1, . . . , yn)T = ( x1
∥x∥q
, . . . , xn

∥x∥q
)T. So, y ∈ Rn and ∥y∥q = 1. Then

λ(p)
min(A) = ∥x∥kq

n∑
i1,...,ik=1

ai1···ik yi1 · · · yik = ∥x∥
k
qyT(Aym−1) ≥ ∥x∥kqλ

(q)
min(A) ≥ 0.

From ∥x∥kq ≥ 1, so λ(p)
min(A) ≥ λ(q)

min(A) ≥ 0.

b) Next, we prove that 0 ≤ n
k
p−

k
qλ(p)

min(A) ≤ λ(q)
min(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector such that

λ(q)
min(A) = xT(Axk−1). Then ∥x∥q = 1. And Lemma 2.4 implies that 1 = ∥x∥q ≤ n

1
q−

1
p ∥x∥p. Let y = n

1
q−

1
p x, so

∥y∥p = n
1
q−

1
p ∥x∥p ≥ 1. Thus,

λ(q)
min(A) =

n∑
i1,...,ik=1

ai1···ik xi1 · · · xik

= (n
1
p−

1
q )k

n∑
i1,...,ik=1

ai1···ik (n
1
q−

1
p xi1 ) · · · (n

1
q−

1
p xik )

= (n
1
p−

1
q )k

n∑
i1,...,ik=1

ai1···ik yi1 · · · yik

= ∥y∥kp(n
1
p−

1
q )k

n∑
i1,...,ik=1

ai1···ik
yi1

∥y∥p
· · ·

yik

∥y∥p
. (4.1)

Let z = (z1, . . . , zn)T = ( y1

∥y∥p
, . . . ,

yn

∥y∥p
)T. So, z ∈ Rn and ∥z∥p = 1. By a), we get that if λ(q)

min(A) ≥ 0, then

λ(p)
min(A) ≥ 0. Hence,

λ(q)
min(A) = ∥y∥kp(n

1
p−

1
q )kzT(Azk−1) ≥ ∥y∥kp(n

1
p−

1
q )kλ(p)

min(A) ≥ 0.

From ∥y∥kp ≥ 1, so λ(q)
min(A) ≥ n

k
p−

k
qλ(p)

min(A) ≥ 0.
It follows from a) and b) that the statement (1) holds.

(2) c) When λ(q)
min(A) < 0, we firstly prove that λ(q)

min(A) ≥ λ(p)
min(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector
such that λ(q)

min(A) = xT(Axk−1). Then ∥x∥q = 1 and ∥x∥p ≤ 1. Thus, we get

0 > λ(q)
min(A) = ∥x∥kp

n∑
i1,...,ik=1

ai1···ik
xi1

∥x∥p
· · ·

xik

∥x∥p
.

Let y = (y1, . . . , yn)T = ( x1
∥x∥p
, . . . , xn

∥x∥p
)T. So, y ∈ Rn and ∥y∥p = 1. Then

0 > λ(q)
min(A) = ∥x∥kp

n∑
i1,...,ik=1

ai1···ik yi1 · · · yik = ∥x∥
k
pyT(Aym−1) ≥ ∥x∥kpλ

(p)
min(A).

From ∥x∥kp ≤ 1, so 0 > λ(q)
min(A) ≥ λ(p)

min(A).
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d) Next, we prove that 0 > n
k
p−

k
qλ(p)

min(A) ≥ λ(q)
min(A). Let x = (x1, . . . , xn)T

∈ Rn be the vector such that

λ(p)
min(A) = xT(Axk−1). Then ∥x∥p = 1. And Lemma 2.4 implies that n

1
p−

1
q ∥x∥q ≤ ∥x∥p = 1. Let y = n

1
p−

1
q x, so

∥y∥q = n
1
p−

1
q ∥x∥q ≤ 1. By c), we get that if λ(q)

min(A) < 0, then λ(p)
min(A) < 0. Thus, similar to the (4.1), we have

0 > λ(p)
min(A) = ∥y∥kq(n

1
q−

1
p )k

n∑
i1,...,ik=1

ai1···ik
yi1

∥y∥q
· · ·

yik

∥y∥q
.

Let z = (z1, . . . , zn)T = ( y1

∥y∥q
, . . . ,

yn

∥y∥q
)T. So, z ∈ Rn and ∥z∥q = 1. Hence,

0 > λ(p)
min(A) = ∥y∥kq(n

1
q−

1
p )kzT(Azk−1) ≥ ∥y∥kq(n

1
q−

1
p )kλ(q)

min(A).

From ∥y∥kq ≤ 1, so 0 > n
k
p−

k
qλ(p)

min(A) ≥ λ(q)
min(A).

It follows from c) and d) that the statement (2) holds.

LetA ∈ R[k,n] and 1 ≤ q ≤ p. From Theorem 4.1 (1), we directly get that if λ(q)
min(A) > 0, then λ(p)

min(A) > 0,
and if λ(p)

min(A) > 0, then λ(q)
min(A) > 0. By (2), we get that if λ(q)

min(A) < 0, then λ(p)
min(A) < 0, and if λ(p)

min(A) < 0,
then λ(q)

min(A) < 0. Thus, we have the following result.

Theorem 4.2. LetA ∈ R[k,n] and 1 ≤ q ≤ p. Then λ(p)
min(A) and λ(q)

min(A) always have the same sign for any p, q ≥ 1.
In other words, for any p, q ≥ 1, λ(p)

min(A) and λ(q)
min(A) are either both greater than zero or both less than zero, or both

equal to zero.

By Theorem 4.1 and 4.2, we have the following corollary.

Corollary 4.3. For real tensorA ∈ R[k,n] and 1 ≤ q ≤ p, λ(p)
min(A) and λ(q)

min(A) always have the same sign for any
p, q ≥ 1. And the following inequalities hold

n
k
p−

k
q ≤
λ(q)

min(A)

λ(p)
min(A)

≤ 1,

if λ(p)
min(A) , 0.

For even order real symmetric tensor A, by Lemma 2.1, λ(2)
min(A) and λ(k)

min(A) are exactly the smallest
Z-eigenvalue and the smallest H-eigenvalue ofA, respectively. Thus, by Corollary 4.3, we directly get the
following relationships between the smallest H-eigenvalue and the smallest Z-eigenvalue of tensors.

Theorem 4.4. Let A ∈ R[k,n] be an even order real symmetric tensor. Then λ(2)
min(A) and λ(k)

min(A) always have the
same sign. And

n
2−k

2 ≤
λ(2)

min(A)

λ(k)
min(A)

≤ 1,

if λ(k)
min(A) , 0.

Next, we give some examples to show the Theorem 4.4.

Example 4.5. Let tensorA = (ai1i2i3i4 ) ∈ R[4,3] coincide with the tensor in Example 3.6. Thus, the calculation results
show that

1
3
<
λ(2)

min(A)

λ(4)
min(A)

< 1.
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Example 4.6. Let tensorA = (ai1i2i3i4 ) ∈ R[4,2] coincide with the tensor in Example 3.7. Thus, the calculation results
show that

λ(2)
min(A) = λ(4)

min(A) = 0.

The p-spectral radius [24] ρ(p)(A) of tensorA is defined as

ρ(p)(A) = max{|PA(x)|} = max{|λ(p)
max(A)|, |λ(p)

min(A)|}.

For nonnegative symmetric tensorA, Nikiforov proposed the inequalities

n
k
p−

k
qρ(p)(A) ≤ ρ(q)(A) ≤ ρ(p)(A) (4.2)

if 1 ≤ q ≤ p.
By Theorem 3.1 and 4.1, we can also get the conclusion (4.2) as follows. But we cannot get the Theorem

3.1 and 4.1 from the conclusion (4.2) directly.

Theorem 4.7. LetA = (ai1i2···ik ) ∈ R
[k,n] be a real tensor and 1 ≤ q ≤ p. Then

n
k
p−

k
qρ(p)(A) ≤ ρ(q)(A) ≤ ρ(p)(A).

Proof. If λ(q)
min(A) ≥ 0, so λ(q)

max(A) ≥ 0. Thus, Theorem 3.1 (1) yields that 0 ≤ λ(q)
max(A) ≤ λ(p)

max(A). And
Theorem 4.1 (1) yields that 0 ≤ λ(q)

min(A) ≤ λ(p)
min(A). Hence, ρ(q)(A) ≤ ρ(p)(A).

If λ(q)
min(A) < 0. Then we consider the following cases.

Case 1. When λ(q)
max(A) ≥ 0. The Theorem 3.1 (1) yields that 0 ≤ λ(q)

max(A) ≤ λ(p)
max(A). Since λ(q)

min(A) < 0,
Theorem 4.1 (2) yields that 0 > λ(q)

min(A) ≥ λ(p)
min(A). Hence, ρ(q)(A) ≤ ρ(p)(A).

Case 2. When λ(q)
max(A) < 0. The Theorem 3.1 (2) yields that 0 > λ(q)

max(A) ≥ λ(p)
max(A). Since λ(q)

min(A) < 0,
Theorem 4.1 (2) yields that 0 > λ(q)

min(A) ≥ λ(p)
min(A). Hence, ρ(q)(A) ≤ ρ(p)(A).

In conclusion, ρ(q)(A) ≤ ρ(p)(A).

Similarly, we can prove that n
k
p−

k
qρ(p)(A) ≤ ρ(q)(A).

5. Some applications on definite positive of tensors and hypergraphs

In this section, by the above conclusions, we obtain some applications on definite positive of tensors
and hypergraphs.

5.1. The applications on definite positive of tensors

For even order real symmetric tensor A, by Lemma 2.3, we know that A is positive (semi-)definite if
and only if λ(2)

min(A) > (≥)0. Then it follows from Theorem 4.2 that λ(m)
min(A) > (≥)0 for any m ≥ 2. Thus, by

Theorem 4.1 and 4.2, we get the following result.

Theorem 5.1. LetA ∈ R[k,n] be an even order real symmetric tensor. Then the following cases hold.
(i) IfA is positive (semi-)definite, then

λ(m)
min(A) ≥ λ(2)

min(A) > (≥)0,

for any m ≥ 2.
(ii) If there is a m ≥ 2 such that λ(m)

min(A) > (≥)0, thenA is positive (semi-)definite.
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5.2. The applications on hypergraphs

Let a hypergraphG = (V(G),E(G)), where V(G) = {1, 2, . . . ,n} and E(G) = {e1, e2, . . . , em} are the vertex set
and edge set of G, respectively. If each edge of G contains k vertices, then G is called a k-uniform hypergraph.
Clearly, 2-uniform hypergraphs are exactly the ordinary graphs. The degree of a vertex i of G is denoted by
di, where di = |{e j : i ∈ e j, j = 1, . . . ,m}|, i ∈ [n]. The adjacency tensor [25] of k-uniform hypergraph G, denoted
byAG, is a k-order n-dimensional nonnegative symmetric tensor with entries

ai1i2···ik =

{ 1
(k−1)! , if {i1, i2, . . . , ik} ∈ E(G);
0, otherwise.

Let LG = DG −AG and QG = DG +AG be the Laplacian tensor and signless Laplacian tensor of G [26], where
DG is a diagonal tensor, whose diagonal entries are d1, . . . , dn, respectively. Clearly, LG and QG are both
symmetric, and QG is nonnegative.

It’s easy to check that LG is a diagonally dominated tensor, so LG is a positive semi-definite when k
is even, see [20]. It follows Lemma 2.1 and 2.3 that λ(k)

min(LG) = λ(2)
min(LG) = 0. Thus, λ(k)

max(LG) ≥ 0 and
λ(2)

max(LG) ≥ 0.Hence, we can get the following results for k-uniform hypergraph G by Theorem 3.4 and 3.5.

Theorem 5.2. Let G be a k-uniform hypergraph, then ρZ(AG) and ρ(AG) (resp. ρZ(QG) and ρ(QG), λ(2)
max(LG) and

λ(k)
max(LG)) always have the same sign. And

n
2−k

2 ≤
ρZ(AG)
ρ(AG)

≤ 1,

n
2−k

2 ≤
ρZ(QG)
ρ(QG)

≤ 1,

if ρ(AG) > 0, ρ(QG) > 0. And when k is even, we have

n
2−k

2 ≤
λ(2)

max(LG)

λ(k)
max(LG)

≤ 1,

if λ(k)
max(LG) > 0. The λ(2)

max(LG) and λ(k)
max(LG) are exactly the the largest the Z-eigenvalue and H-eigenvalue of LG,

respectively.

Remark 5.3. In [10], Lin et al. gave the inequalities of ρZ(AG) and ρ(AG) as follows

ρZ(AG) ≤ ρ(AG).

In this paper, the Theorem 5.2 generalizes this result.
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