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Available at: http://www.pmf.ni.ac.rs/filomat

Further characterizations of k-generalized projectors and
k-hypergeneralized projectors

Kezheng Zuoa,b, Yu Lic,∗, Abdullah Alazemid

a School of Science and Technology, College of Arts and Science of Hubei Normal University, Huangshi, 435109, China
bSchool of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China
cCollege of Mathematical Sciences, Harbin Engineering University, Harbin, 150001, China

dDepartment of Mathematics, Kuwait University, Safat, 13060, Kuwait

Abstract. The paper focuses on the classes of the k-generalized and k-hypergeneralized projectors. Several
original features of these classes are identified and new properties are characterized. We present some
relations between k-generalized and k-hypergeneralized projectors that generalize appropriate relations
between generalized and hypergeneralized projectors given in [Further properties of generalized and
hypergeneralized projectors, Linear Algebra and its Applications, 389 (2004) 295–303] and [Further results
on generalized and hypergeneralized projectors, Linear Algebra and its Applications, 429 (2008) 1038–1050].

1. Introduction

Let N+ denote the set of all positive integers. For n ∈ N+, let 1,n = {1, · · · ,n}. The symbols Cm×n and
Cn will denote the set of complex m × n matrices and n-dimensional complex vector spaces. For a matrix
A ∈ Cm×n, the symbols A∗, R(A),N(A) and r(A) will stand for the conjugate transpose, range, nullspace and
rank of A, respectively. For a matrix A ∈ Cn×n, we denote by δ(A) and tr(A), the spectrum and the trace of
A, respectively. By In we will represent the identity matrix of order n. Henceforth, the symbolΦn will stand
for the set of all complex numbers such that zn = 1, i.e.

Φn = {z ∈ C : zn = 1}.

We define A0 = In, for A ∈ Cn×n.
The symbol A† will mean the unique generalized inverse of A which verifies

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A,

called the Moore-Penrose inverse of A.
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The index of a matrix A ∈ Cn×n, is the smallest nonnegative integer k such that r(Ak+1) = r(Ak), denoted
by Ind(A). The symbol CCM

n will stand for a set of all matrices of order n with the index at most one, i.e.

CCM
n = {A ∈ Cn×n : Ind(A) ≤ 1)}.

The group inverse of A ∈ CCM
n , introduced in [11], is the unique matrix G ∈ Cn×n such that

(1) AGA = A, (2) GAG = G, (5) GA = AG,

denoted by A#. Based on the matrices with the index at most one, Baksalary and Trenkler [6] proposed a
new generalized inverse, known as core inverse. For a matrix A ∈ CCM

n , the unique matrix G ∈ Cn×n with

AG = AA† and R(G) ⊆ R(A),

is called the core inverse of A and denoted by A #O. Replacing A by A∗, the dual core inverse of A ∈ CCM
n is

defined in the same paper [6], as the unique matrix G ∈ Cn×n such that

GA = A†A and R(G) ⊆ R(A∗),

denoted by A #O.
The symbols, CPI

m,n and CCA
m,n stand for the sets consisted of partial isometries and contractions, respec-

tively, i.e.,

CPI
m,n = {A ∈ C

m×n : AA∗A = A} = {A ∈ Cm×n : A† = A∗}, (1.1)

CCA
m,n = {A ∈ C

m×n : ∥Ax∥ ≤ ∥x∥ for all x ∈ Cn
}, (1.2)

where ∥ · ∥ denotes the 2-norm of a vector. Also, CN
n , C(k+2)-P

n , CSD
n , CEP

n and Cbi-EP
n stand for the sets consisting

of normal, (k + 2)-potent, star-dagger, EP and bi-EP matrices, respectively, i.e.,

CN
n = {A ∈ C

n×n : AA∗ = A∗A}, (1.3)

C(k+2)-P
n = {A ∈ Cn×n : Ak+2 = A},where k is a nonnegative integer, (1.4)
CSD

n = {A ∈ C
n×n : A†A∗ = A∗A†}, (1.5)

CEP
n = {A ∈ C

n×n : AA† = A†A} = {A ∈ Cn×n : R(A) = R(A∗)}, (1.6)
Cbi-EP

n = {A ∈ Cn×n : AA†A†A = A†AAA†}. (1.7)

For m ∈N+, the sets of all m-EP matrices and m-normal matrices are defined by the following:

Cm-EP
n = {A ∈ Cn×n : AmA† = A†Am

} and Cm-N
n = {A ∈ Cn×n : AmA∗ = A∗Am

}. (1.8)

In 1997, Groß and Trenkler [13] introduced generalized and hypergeneralized projectors: a generalized
projector is a square matrix A such that A2 = A∗, while a hypergeneralized projector is a square matrix A such
that A2 = A†. Later, in [1–4], different properties and characterizations of generalized and hypergeneralized
projectors are given and finally generalized by Benı́tez and Tošıć [8, 18] who introduced k-generalized and
k-hypergeneralized projectors defined by the following:

Ck-GP
n = {A ∈ Cn×n : Ak = A∗} and Ck-HGP

n = {A ∈ Cn×n : Ak = A†}, (1.9)

where k ∈N+ and k ≥ 2.
Different topics related to k-generalized and k-hypergeneralized projectors have been investigated ex-

tensively in the past two decades. Deng, Li and Du [10] introduced a k-generalized and k-hypergeneralized
projector on a Hilbert space and presented their several characterizations. Zhu and Liu [19] proved that a
linear combination of two k-hypergeneralized projectors is still a k-hypergeneralized projector under given
certain conditions while Fu and Liu [12] presented the group inverse in terms of a linear combination of
k-hypergeneralized projectors. Using the spectral theorem for normal operators on Hilbert spaces, some
interesting characterizations of k-generalized projectors were given in [15].

Inspired by the above mentioned results of generalized, hypergeneralized, k-generalized, and k-hypergen-
eralized projectors, we will present some new results:
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• Certain characterizations of k-generalized and k-hypergeneralized projectors are given in terms of the
Moore-Penrose, group, and core inverse of a matrix A, as well as appropriate matrix expressions.

• Several characterizations of the classes of k-generalized and k-hypergeneralized projectors are cap-
tured using various matrix classes, such as normal, EP, bi-EP, m-EP and m-normal matrices, etc..

• Relationships between k-generalized and k-hypergeneralized projectors are discussed.

2. Preliminaries

In this section, we will recall some useful results to study characterizations of k-generalized and k-
hypergeneralized projectors. We begin with a well-known decomposition of square matrices.

Lemma 2.1. [14] (H-S decomposition) Let A ∈ Cn×n and r(A) = r. Then there exists a unitary matrix U ∈ Cn×n

such that

A = U
[
ΣK ΣL
0 0

]
U∗, (2.1)

where Σ = diag(σ1, σ2, . . . , σr) is the diagonal matrix of singular values of A, σi > 0, i = 1, r, K ∈ Cr×r, L ∈ Cr×(n−r)

and

KK∗ + LL∗ = Ir. (2.2)

Using the above mentioned H-S decomposition, the Moore-Penrose and group inverse can be repre-
sented as follows.

Lemma 2.2. [5] Let A be given by (2.1). The following statements hold:

(1) The Moore-Penrose inverse of A is given by

A† = U
[

K∗Σ−1 0
L∗Σ−1 0

]
U∗. (2.3)

(2) The group inverse of A exists if and only if K is nonsingular. In this case

A# = U
[

K−1Σ−1 K−1Σ−1K−1L
0 0

]
U∗.

Using the H-S decomposition, the following seven classes of matrices can be characterized:

Lemma 2.3. [3] Let A be given by (2.1). Then
(a) A ∈ CPI

n,n ⇔ Σ = Ir.
(b) A ∈ CCA

n,n ⇔ Ir − Σ
2 = CC∗ for some C ∈ Cr×r.

(c) A ∈ CN
n ⇔ L = 0 and KΣ = ΣK.

(d) A ∈ C(k+2)-P
n ⇔ (ΣK)k+1 = Ir.

(e) A ∈ CSD
n ⇔ KΣ = ΣK.

( f ) A ∈ CEP
n ⇔ L = 0.

(1) A ∈ Cbi-EP
n ⇔ L∗K = 0.

The following two lemmas provide characterizations of A ∈ Cn×n being a k-generalized and a k-
hypergeneralized projector.
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Lemma 2.4. [8] Let A ∈ Cn×n and r(A) = r. Then the following statements are equivalent:
(a) A is a k-generalized projector.
(b) A is a normal matrix and δ(A) ⊆ {0} ∪Φk+1.
(c) A is a normal matrix and Ak+2 = A.
(d) A can be expressed as

A = U
[

D 0
0 0

]
U∗,

where U is unitary and D ∈ Cr×r is a diagonal matrix such that Dk+1 = Ir.

Lemma 2.5. [18] Let A ∈ Cn×n and r(A) = r. Then the following statements are equivalent:
(a) A is a k-hypergeneralized projector.
(b) A is a EP matrix, δ(A) ⊆ {0} ∪Φk+1 and A is diagonalizable.
(c) A is a EP matrix and Ak+2 = A.
(d) A has the following representation

A = U
[

D 0
0 0

]
U∗,

where U is unitary and D ∈ Cr×r is a nonsingular matrix such that Dk+1 = Ir.

It follows from [8] that

A# = A† = A∗ = Ak, (2.4)

whenever A is a k-generalized projector, and as we will see in the next lemma, the condition (2.4) is sufficient
for a matrix A ∈ CCM

n to be a k-generalized projector.

Lemma 2.6. Let A ∈ Cn×n. Then A ∈ Ck-GP
n if and only if A# = A† = A∗ = Ak and A ∈ CCM

n .

An analogous result for k-hypergeneralized projectors is provided as follows.

Lemma 2.7. [18] Let A ∈ Cn×n. Then A ∈ Ck-HGP
n if and only if A# = A† = Ak and A ∈ CCM

n .

The following auxiliary lemma will be exploited to establish some characterizations of the classes of
k-generalized and k-hypergeneralized projectors in terms of m-EP and m-normal matrices.

Lemma 2.8. [16] Let m be a positive integer and A be given by (2.1). Then
(a) A ∈ Cm-EP

n if and only if

K∗K(ΣK)m−1 = (ΣK)m−1, L∗Σ−1(ΣK)m−1 = 0 and (ΣK)m−1ΣL = 0. (2.5)

(b) A ∈ Cm-N
n if and only if

(ΣL)∗(ΣK)m−1 = 0, (ΣK)m−1ΣL and (ΣK)m−1Σ2 = (ΣK)∗(ΣK)m. (2.6)

3. Characterizations of k-generalized projectors

In this section, we will represent certain new characterizations of k-generalized projectors. The following
auxiliary result is a particular version of the H-S decomposition for a k-generalized projector and will be
exploited to establish some of the assertions to come.

Theorem 3.1. Let A ∈ Cn×n be given by (2.1). Then A ∈ Ck-GP
n if and only if L = 0, Σ = Ir and Kk+1 = Ir.
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Proof. (⇐) : It follows by Lemma 2.3 and Lemma 2.4.
(⇒) : By Lemma 2.3 and Lemma 2.4, we have

L = 0, ΣK = KΣ and (ΣK)k+1 = Ir. (3.1)

From L = 0 and (2.2), we get K∗ = K−1. Also, by (3.1), we have that

Σk+1 = K−(k+1) = (K∗)k+1. (3.2)

By taking the conjugate transpose of (3.2), we obtain

Σk+1 = (Σk+1)∗ = (K−(k+1))∗ = Kk+1 = Σ−(k+1),

which implies Σ = Ir. Hence L = 0, Σ = Ir and Kk+1 = Ir.

Theorem 5 in [2] and (2.18) in [2] as well as Theorem 2 in [3] established some necessary and sufficient
conditions for a matrix A ∈ Cn×n to be a generalized projector in terms of its conjugate transpose, Moore-
Penrose inverse and group inverse. The next theorem shows that the corresponding equivalences remain
valid also in the case when A is a k-generalized projector.

Theorem 3.2. Let A ∈ Cn×n. The following statements are equivalent:
(a) A ∈ Ck-GP

n .
(b) A∗ ∈ Ck-GP

n .
(c) A† ∈ Ck-GP

n .
(d) A#

∈ Ck-GP
n and A ∈ CCM

n .

Proof. (a)⇔ (b) : The proof follows from the equality (A∗)k = (Ak)∗.
(a)⇒ (c) : According to (d) of Lemma 2.4, we have

A† = U
[

D−1 0
0 0

]
U∗,

where D−1 is a diagonal matrix and (D−1)k+1 = Ir. Now, the implication follows straightforwardly from (d)⇒ (a) of
Lemma 2.4.

(c)⇒ (a) : The implication follows if we replace A by A† in the proof of (a)⇒ (c).
(a)⇔ (d) : This follows similarly as in the part (a)⇔ (c).

Remark 3.3. If we take k = 2 in Theorem 3.2, we will obtain (2.18) from [2] and Theorem 5 from [2], as well as
Theorem 2 from [3].

The following theorem provides characterizations of A ∈ Cn×n being a k-generalized projector in terms
of the following equalities: Ak+1 = AA∗, Ak+1 = A∗A, A∗Ak+1 = A∗AA∗ and Ak+1A∗ = A∗AA∗.

Theorem 3.4. Let A ∈ Cn×n with k ∈N+ and k ≥ 2. The following statements are equivalent:
(a) A ∈ Ck-GP

n .
(b) Ak+1 = AA∗.
(c) Ak+1 = A∗A.
(d) A∗Ak+1 = A∗AA∗.
(e) Ak+1A∗ = A∗AA∗.

Proof. The implications (a)⇒ (b), (a)⇒ (c), (a)⇒ (d) and (a)⇒ (e) follow by direct verification.
(b)⇒ (a) : Suppose that Ak+1 = AA∗. Then by (2.1), we have that

(ΣK)k+1 = ΣK(ΣK)∗ + ΣL(ΣL)∗ and (ΣK)k(ΣL) = 0.

By simple computations, we obtain Σ2 = (ΣK)k+1. It can be deduced that K is nonsingular, hence (recall that Σ is
always nonsingular) from (ΣK)k(ΣL) = 0 we infer L = 0. From (2.2) and the fact that L = 0, we get K∗ = K−1. Since
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Σ2 = (ΣK)k+1 = ΣK(ΣK)k, it follows that K−1Σ = (ΣK)k. Thus, (ΣK)∗ = (ΣK)k. Now, L = 0 and (ΣK)∗ = (ΣK)k

imply that Ak = A∗, i.e. A ∈ Ck-GP
n .

(c) ⇒ (a) : Suppose that Ak+1 = A∗A. Taking the conjugate of Ak+1 = A∗A, we obtain (A∗)k+1 = A∗A which
imples by the implication (b)⇒ (a), that A∗ ∈ Ck-GP

n . Now, by Theorem 3.2, we get that A ∈ Ck-GP
n .

(d)⇒ (a) : Suppose that A∗Ak+1 = A∗AA∗. From A∗Ak+1 = A∗AA∗ and (2.1), we have

K∗Σ3 = K∗Σ(ΣK)k+1, L∗Σ3 = L∗Σ(ΣK)k+1, (3.3)
K∗Σ(ΣK)kΣL = 0 and L∗Σ(ΣK)kΣL = 0. (3.4)

Now, by multiplying the first and the second equalities of (3.3), from the left side by K and L, respectively, we get

KK∗Σ3 = KK∗Σ(ΣK)k+1 and LL∗Σ3 = LL∗Σ(ΣK)k+1,

which by (2.2), implies that Σ2 = (ΣK)k+1. Thus K is nonsingular and by (3.4) we get L = 0. The rest of the proof
follows as in the part (b)⇒ (a).

(e) ⇒ (a) : Suppose that Ak+1A∗ = A∗AA∗. By taking the conjugate of Ak+1A∗ = A∗AA∗, we get (A∗)∗(A∗)k+1 =
AA∗A, which implies by (d)⇒ (a) that A∗ ∈ Ck-GP

n . Now, from Theorem 3.2 it follows that A ∈ Ck-GP
n .

The following theorem provides characterizations of A ∈ Cn×n being a k-generalized projector in terms
of the powers of the Moore-Penrose inverse and the group inverse of A.

Theorem 3.5. Let A ∈ Cn×n and let m, l, k be nonnegative integers such that l ≥ k − m + 1. Then the following
statements are equivalent:

(a) A ∈ Ck-GP
n .

(b) Am = A∗(A†)lAm+l−k and A ∈ CCM
n .

(c) Am = A∗(A#)lAm+l−k and A ∈ CCM
n .

Proof. The implications (a)⇒ (b) and (a)⇒ (c) follow by calculations from Lemma 2.2.
(b) ⇒ (a) : Suppose that Am = A∗(A†)lAm+l−k. Evidently, R(Am) ⊆ R(A∗) which together with r(A) = r(A2),

gives R(A) = R(Am) ⊆ R(A∗). Thus R(A) = R(A∗). From ( f ) of Lemma 2.3, we have L = 0, which implies that
K∗ = K−1 and ΣK is nonsingular. Hence, the assumption Am = A∗(A†)lAm+l+k gives

(ΣK)m = (ΣK)∗(ΣK)−l(ΣK)m+l−k.

Therefore, we have (ΣK)∗ = (ΣK)k, which together with L = 0 yields Ak = A∗.
(c) ⇒ (a) : Note that the condition A ∈ CCM

n implies the existence of A#. This follows similarly as in the part
(b)⇒ (a).

The example provided below shows that Theorem 3.5 is not valid without the assumption that A ∈ CCM
n

in its items (b).

Example 3.6. Let m = k = l = 2 and let

A =

 1 0 0
0 0 1
0 0 0

 .
It is easy to verify that A2 = A∗(A†)2A2, A < CCM

n and A < C2-GP
n .

Theorem 2 in [1] provides certain characterizations of a generalized projector in terms of its conjugate
transpose, Moore-Penrose inverse, and group inverse. The generalization of this result for the case of a
k-generalized projector is given in the following theorem.

Theorem 3.7. Let A ∈ Cn×n with k ∈N+ and k ≥ 2. Then the following statements are equivalent:
(a) A ∈ Ck-GP

n .
(b) Ak−1 = A∗A† and A ∈ CCM

n .
(c) Ak−1 = A†A∗ and A ∈ CCM

n .
(d) Ak−1 = A∗A# and A ∈ CCM

n .
(e) Ak−1 = A#A∗ and A ∈ CCM

n .
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Proof. (a) ⇒ (b) : Suppose that A ∈ Ck-GP
n . From Lemma 2.6 we get that A ∈ CCM

n and A∗A† = A2k = Ak−1A†A =
Ak−1.

(b)⇒ (a) : Suppose that Ak−1 = A∗A† and A ∈ CCM
n . From Ak−1 = A∗A† and Ind(A) ≤ 1, we get that

R(A) = R(Ak−1) = R(A∗A†) ⊆ R(A∗).

Hence R(A) = R(A∗), i.e., AA† = A†A. Multiplying Ak−1 = A∗A† by A2 from the right, gives Ak+1 = A∗A. Now by
Theorem 3.4, we have A ∈ Ck-GP

n .
(a)⇔ (c) : This follows similarly as in the part (a)⇔ (b).
(a)⇒ (d) : Suppose that A ∈ Ck-GP

n . By Lemma 2.6 we get A∗A# = A2k = Ak−1.
(d) ⇒ (a) : Multiplying Ak−1 = A∗A# by A2 from the right, we obtain Ak+1 = A∗A. Now, from Theorem 3.4 we

get A ∈ Ck-GP
n .

(a)⇔ (e) : This follows similarly as in the part (a)⇔ (d).

Remark 3.8. The case k = 2 in Theorem 3.7, is exactly Theorem 2 given in [1].

The example below shows that the equivalences established in Theorem 3.7, are not valid if we remove
the assumption that A ∈ CCM

n in items (b) − (e).

Example 3.9. Let k = 3 and

A =
[

0 1
0 0

]
.

We can verify that A2 = A∗A†, A2 = A†A∗, A < CCM
n and A < C3-GP

n .

The properties of the class C2-GP
n in terms of the matrix classes CPI

n , CCA
n , C4-P

n , CSD
n and Cbi-EP

n are given in
[3]. In the next theorem we show a similar result for the class Ck-GP

n .

Theorem 3.10. The following statements hold:
(a) Ck-GP

n = CPI
n ∩ C

(k+2)-P
n ∩ Cbi-EP

n .

(b) Ck-GP
n = CSD

n ∩ C
(k+2)-P
n ∩ Cbi-EP

n .

(c) Ck-GP
n = CCA

n ∩ C(k+2)-P
n ∩ Cbi-EP

n .

Proof. By Theorem 3.1 and Lemma 2.3 we have that A ∈ Ck-GP
n is a subset of the following sets:

CPI
n ∩ C

(k+2)-P
n ∩ Cbi-EP

n , CSD
n ∩ C

(k+2)-P
n ∩ Cbi-EP

n and CCA
n ∩ C(k+2)-P

n ∩ Cbi-EP
n .

So, we need to prove the reverse inclusion in the three items.
(a) Let A ∈ CPI

n ∩ C
(k+2)-P
n ∩ Cbi-EP

n . By (a), (d) and (1) of Lemma 2.3, we get that

Σ = Ir, (ΣK)k+1 = Ir and L∗K = 0.

By the first and the second equality above, it follows that K is nonsingular and Kk+1 = Ir. Also, by the third one and
the nonsingularity of K, it follows that L = 0. Now, by Theorem 3.1 we have A ∈ Ck-GP

n .
(b) Let A ∈ CSD

n ∩ C
(k+2)-P
n ∩ Cbi-EP

n . By (e), (d) and (1) of Lemma 2.3, it follows that

ΣK = KΣ, (ΣK)k+1 = Ir and L∗K = 0. (3.5)

Hence K is nonsingular and L = 0. Now by Lemma 2.4 and Theorem 3.1, it follows that A ∈ Ck-GP
n .

(c) Let A ∈ CCA
n ∩ C(k+2)-P

n ∩ Cbi-EP
n . By (d) and (1) of Lemma 2.3, we have

(ΣK)k+1 = Ir and L∗K = 0,
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which implies that L = 0. Also, by (2.2) we have that K∗ = K−1 and by (b) of Lemma 2.3 it follows that Ir − Σ
2 =

Ir − ΣK(ΣK)∗ is positive semi-definite. Thus tr(Ir − ΣK(ΣK)∗) ≥ 0, i.e.

tr(ΣK(ΣK)∗) ≤ r. (3.6)

Let λ1, λ2 · · ·λr be the eigenvalues of ΣK. Since (ΣK)k+1 = Ir we have that |λi| = 1, i = 1, r. Now, by Schur’s lemma,
ΣK can be expressed as

ΣK = V


λ1 t12 · · · t1r
0 λ2 · · · t2r
...

...
. . .

...
0 0 · · · λr

V∗, (3.7)

for some unitary matrix V. From (3.6) and (3.7), we have

tr(ΣK(ΣK)∗) = |λ1|
2 + |λ2|

2 + · · · + |λr|
2 +

∑
1≤i< j≤r

|ti j|
2
≤ r. (3.8)

By (3.8) and |λi| = 1, i = 1, r, we obtain that∑
1≤i< j≤r

|ti j|
2 = 0⇒ ti j = 0, i, j = 1, r, i , j.

Using (3.7), we get

Σ2 = ΣK(ΣK)∗ = V


λ1λ1 0 · · · 0

0 λ2λ2 · · · 0
...

...
. . .

...
0 0 · · · λrλr

V
∗ = Ir.

Substituting Σ = Ir into (ΣK)k+1 = Ir gives Kk+1 = Ir. Now, by Theorem 3.1 we have that Ck-GP
n .

Remark 3.11. The case k = 2 in Theorem 3.10 contains the results from Theorem 3, Theorem 4 and (2.7) in [3].

Certain descriptions of Ck-GP
n related to different classes of matrices can be found in the following

theorem.

Theorem 3.12. The following statements hold:
(a) Ck-GP

n = CPI
n ∩ C

(k+2)-P
n ∩ Cm-EP

n .

(b) Ck-GP
n = CSD

n ∩ C
(k+2)-P
n ∩ Cm-EP

n .

(c) Ck-GP
n = CCA

n ∩ C(k+2)-P
n ∩ Cm-EP

n .

(d) Ck-GP
n = CPI

n ∩ C
(k+2)-P
n ∩ Cm-N

n .

(e) Ck-GP
n = CSD

n ∩ C
(k+2)-P
n ∩ Cm-N

n .

( f ) Ck-GP
n = CCA

n ∩ C(k+2)-P
n ∩ Cm-N

n .

Proof. By Theorem 3.1 and Lemma 2.8, it follows that

Ck-GP
n ⊆ Cm-EP

n and Ck-GP
n ⊆ Cm-N

n . (3.9)

(a) By Theorem 3.1, Lemma 2.3 and (3.9), we have that CPI
n ∩C

(k+2)-P
n ∩Cm-EP

n . To show the converse inclusion, let
us suppose that A ∈ CPI

n ∩C
(k+2)-P
n ∩Cm-EP

n and that A is given by (2.1). By (a), (d) of Lemma 2.3 and (2.5), it follows
that

Σ = Ir, (ΣK)k+1 = Ir and L = 0. (3.10)



K. Zuo et al. / Filomat 37:16 (2023), 5347–5359 5355

Hence by Theorem 3.1 we have that A ∈ Ck-GP
n .

(b) The inclusion Ck-GP
n ⊆ CSD

n ∩ C
(k+2)-P
n ∩ Cm-EP

n follows from Theorem 3.1, Lemma 2.3 and (3.9). To show the
converse inclusion, let us suppose that A ∈ CSD

n ∩ C
(k+2)-P
n ∩ Cm-EP

n and that A is given by (2.1). By Lemma 2.3 and
(2.5), we have

ΣK = KΣ, (ΣK)k+1 = Ir and L = 0.

Hence, by Lemma 2.3 and Lemma 2.4 it follows that A ∈ Ck-GP
n .

( f ) Evidently, by Theorem 3.1, Lemma 2.3 and (2.6), we have that Ck-GP
n ⊆ CCA

n ∩ C(k+2)-P
n ∩ Cm-N

n . Suppose that
A ∈ CCA

n ∩ C(k+2)-P
n ∩ Cm-N

n . From Lemma 2.3 and (2.6), we get that

(ΣK)k+1 = Ir, (ΣL)∗(ΣK)m−1 = 0,

(ΣK)m−1ΣL = 0 and (ΣK)m−1Σ2 = (ΣK)∗(ΣK)m.

By (ΣK)k+1 = Ir, we have that ΣK is nonsingular. Since (ΣK)m−1ΣL = 0, we have L = 0, which implies A ∈ Cbi-EP
n .

According to (c) of Theorem 3.10, we have A ∈ Ck-GP
n .

The proofs of (c), (d) and (e) follow similarly.

Theorem 5 [3] represents necessary and sufficient conditions for the product of two generalized projectors
to be a generalized projector in the case when either one of them is idempotent. In the following theorem,
we will prove that the same result is valid in the case of k-generalized projectors.

Theorem 3.13. Let A,B ∈ Ck-GP
n and let either A or B be idempotent. Then the following statements are equivalent:

(a) AB ∈ Ck-GP
n .

(b) AB ∈ CN
n .

(c) AB = BA.

Proof. We will assume that A is an idempotent.
(a)⇒ (b) : Evidently follows.
(b)⇒ (c) : Suppose that AB ∈ CN

n . Since A is a k-generalized projector and idempotent, by (h) of Lemma 2.3 and
Theorem 3.1, A can be represented as

A = U
[

Ir 0
0 0

]
U∗,

where U is unitary. Hence B can be expressed as

B = U
[

D E
F G

]
U∗,

where D ∈ Cr×r, E ∈ Cr×(n−r), F ∈ C(n−r)×r and G ∈ C(n−r)×(n−r). Since AB ∈ CN
n , we get that

DD∗ + EE∗ = D∗D, D∗E = 0, E∗D = 0 and E∗E = 0.

From E∗E = 0, we have r(E) = r(E∗E) = 0, i.e. E = 0. By B∗ = Bk we have F = 0. Hence B can be expressed as

B = U
[

D 0
0 G

]
U∗.

Evidently, AB = BA.
(c)⇒ (a) : Suppose that AB = BA. by Ak = A∗, Bk = B∗ and AB = BA, we have that

(AB)k = AkBk = A∗B∗ = (BA)∗ = (AB)∗.

Thus, AB ∈ Ck-GP
n .
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4. Characterizations of k-hypergeneralized projectors

In this section, the H-S decomposition will be exploited to establish some characterizations of k-
hypergeneralized projectors. Observe that k-generalized projectors and k-hypergeneralized projectors have
some similar properties.

Theorem 4.1. Let A ∈ Cn×n be given by (2.1) and k ∈ N+ and k ≥ 2. Then A ∈ Ck-HGP
n if and only if L =

0 and (ΣK)k+1 = Ir.

Proof. (⇐) : It is evident.
(⇒) : Suppose that A ∈ Ck-HGP

n . By (2.3) we get

L = 0 and (ΣK)k = K∗Σ−1.

Combining L = 0 with (2.2), we get K∗ = K−1. Hence (ΣK)k+1 = Ir.

Remark 4.2. According to Theorem 3.1 and Theorem 4.1, we have that Ck-GP
n ⊆ Ck-HGP

n .

In Theorem 2.6 in [18], we have the following equivalences:

A ∈ Ck-HGP
n ⇔ A∗ ∈ Ck-HGP

n ⇔ A† ∈ Ck-HGP
n . (4.1)

In the following theorem, we present a similar equivalence related with the group inverse of A.

Theorem 4.3. Let A ∈ Cn×n. The following statements are equivalent:
(a) A ∈ Ck-HGP

n .
(b) A#

∈ Ck-HGP
n and A ∈ CCM

n .

Proof. (a)⇒ (b) : From Lemma 2.7, we get A# = A†. Hence by (4.1) we have A#
∈ Ck-HGP

n .
(b)⇒ (a) : Using that (A#)# = A and the implication (a)⇒ (b) we have that

A#
∈ Ck-HGP

n ⇒ (A#)#
∈ Ck-HGP

n ⇒ A ∈ Ck-HGP
n .

Analogously as in Theorem 3.4, we give several characterizations of k-hypergeneralized projectors in
terms of the following equalities: Ak+1 = A†A, Ak+1 = AA†, Ak+1A† = A† and A†Ak+1 = A†.

Theorem 4.4. Let A ∈ Cn×n with k ∈N+ and k ≥ 2. The following statements are equivalent:
(a) A ∈ Ck-HGP

n .
(b) Ak+1 = A†A.
(c) Ak+1 = AA†.
(d) Ak+1A† = A†.
(e) A†Ak+1 = A†.

Proof. The implications (a)⇒ (b), (a)⇒ (c), as well as equivalences (b)⇔ (d) and (c)⇔ (e) follow evidently.
(b)⇒ (a) : Suppose that Ak+1 = A†A. Then

AAkA = AAk+1 = AA†A = A,
AkAAk = AkAk+1 = AkA†A = Ak−1AA†A = Ak.

Also, AAk and AkA are Hermitian. Thus Ak = A†, i.e. A ∈ Ck-HGP
n .

(c)⇒ (a) : This follows similarly as in the part (b)⇒ (a).

The next theorem represents several characterizations of k-hypergenerali-zed projectors in terms of
certain equalities related to the Moore-Penrose and group inverse of a matrix A ∈ Cn×n.
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Theorem 4.5. Let A ∈ Cn×n with k ∈N+ and k ≥ 2. Then the following statements are equivalent:
(a) A ∈ Ck-HGP

n .
(b) Ak−1 = A†A# and A ∈ CCM

n .
(c) Ak−1 = A#A† and A ∈ CCM

n .
(d) Ak = A†AA# and A ∈ CCM

n .
(e) Ak = A#AA† and A ∈ CCM

n .
( f ) A = (A†)k.

Proof. (a)⇒ (b) : Let A ∈ Ck-HGP
n . Then Ak+2 = A, so by Lemma 2.7, we have

A†A# = A2k = Ak−2Ak+2 = Ak−2A = Ak−1.

(b)⇒ (a) : Multiplying Ak−1 = A†A# by A2 from the right, we get Ak+1 = A†A. Now by Theorem 4.4, it follows
that A ∈ Ck-HGP

n .
(a)⇔ (c) : This follows similarly as in the part (a)⇔ (b).
(b)⇒ (d) : It is evident.
(d)⇒ (a) : From Ak = A†AA#, we obtain that Ak+1 = A†A. Thus, A ∈ Ck-HGP

n according to Theorem 4.4.
(a)⇔ (e) : This follows similarly as in the part (a)⇔ (d).
(a)⇒ ( f ) : Evidently, by A† = Ak we have

(A†)k = Ak2
= (Ak+2)k−2A4 = Ak−2A4 = Ak+2 = A.

( f ) ⇒ (a) : Since A = (A†)k, it follows that A ∈ CEP
n . Multiplying A = (A†)k by Ak+1 from the right, we get

Ak+2 = (A†)kAk+1 = A. Now, by Lemma 2.5 we have that A ∈ Ck-HGP
n .

Remark 4.6. If we take k = 2 in Theorem 4.5, we get Theorem 3 in [1].

Remark 4.7. According to [6], we have the following representations of the core and dual core inverses of a matrix
A ∈ Cn×n:

A #O = A#AA† and A #O = A†AA#.

Evidently, by (e) and (d) of Theorem 4.5, we have that for a k-hypergeneralized projector A, Ak is the core and the dual
core inverse of A, i.e.

Ak = A #O = A #O.

The next theorem gives several characterizations of k-hypergeneralized projectors in terms of the powers
of the Moore-Penrose and group inverses.

Theorem 4.8. Let A ∈ Cn×n and let m, l, k be nonnegative integers such that m + l − k ≥ 1. Then the following
statements are equivalent:

(a) A ∈ Ck-HGP
n .

(b) Am = A†(A#)lAm+l−k and A ∈ CCM
n .

(c) Am = (A†)lA#Am+l−k and A ∈ CCM
n .

Proof. The implications (a)⇒ (b) and (a)⇒ (c) follow straightforwardly from Lemma 2.7.
(b)⇒ (a) : Suppose that Am = A†(A#)lAm+l−k and A ∈ CCM

n . Evidently R(Am) ⊆ R(A∗). Since r(A) = r(A2) we
have that R(A) = R(Am) ⊆ R(A∗). Hence, R(A) = R(A∗), i.e. A ∈ CEP

n . Thus A can be represented by

A = U
[

D 0
0 0

]
U∗,

where U is unitary and D ∈ Cr×r is nonsingular. By Am = A†(A#)lAm+l−k, we have Dk+1 = Ir. Hence, from Lemma
2.5 we get A ∈ Ck-HGP

n .
(c)⇒ (a) : This follows similarly as in the part (b)⇒ (a).
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The next theorem characterizes the class Ck-HGP
n in terms of the classes C(k+2)-P

n , Cm-EP
n and Cbi-EP

n .

Theorem 4.9. The following statements hold:
(a) Ck-HGP

n = C(k+2)-P
n ∩ Cm-EP

n .

(b) Ck-HGP
n = C(k+2)-P

n ∩ Cbi-EP
n .

Proof. (a) Using Theorem 4.1, Lemma 2.3 and (2.5), we can verify that Ck-HGP
n ⊆ C(k+2)-P

n ∩ Cm-EP
n . Conversely, by

(d) of Lemma 2.3 and (2.5), we have that A ∈ C(k+2)-P
n ∩ Cm-EP

n if and only if

(ΣK)k+1 = Ir, K∗K(ΣK)m−1 = (ΣK)m−1,

L∗Σ−1(ΣK)m−1 = 0 and (ΣK)m−1ΣL = 0.

Since (ΣK)k+1 = Ir, it follows that ΣK is nonsingular. Now, by (ΣK)m−1ΣL = 0 we have that L = 0. Now, from
Theorem 4.1, we get that C(k+2)-P

n ∩ Cm-EP
n ⊆ Ck-HGP

n .
(b) By Theorem 4.1 and Lemma 2.3, we have that Ck-HGP

n ⊆ C(k+2)-P
n ∩Cbi-EP

n . Conversely, according to (d) and (1)
of Lemma 2.3, we obtain that

A ∈ C(k+2)-P
n ∩ Cbi-EP

n ⇒ (ΣK)k+1 = Ir and L∗K = 0,

which implies (ΣK)k+1 = Ir and L = 0. Hence, it follows from Theorem 4.1 that C(k+2)-P
n ∩ Cbi-EP

n ⊆ Ck-HGP
n .

Remark 4.10. If we take k = 2 in (b) of Theorem 4.9, we obtain Theorem 3 from [2].

Next theorem represents certain relations between different classes of matrices among which are classes
of k-generalized and k-hypergeneralized projectors.

Theorem 4.11. The following stetements hold:
(a) Ck-GP

n = CPI
n ∩ C

k-HGP
n .

(b) Ck-GP
n = CSD

n ∩ C
k-HGP
n .

(c) Ck-GP
n = CCA

n ∩ Ck-HGP
n .

(d) Ck-GP
n = CN

n ∩ C
k-HGP
n .

Proof. (a) By Theorem 3.1, (a) of Lemma 2.3 and Remark 4.2, it is clear that Ck-GP
n ⊆ CPI

n ∩ C
k-HGP
n .

Conversely, according to (a) of Lemma 2.3 and Theorem 4.1, we have

A ∈ CPI
n ∩ C

k-HGP
n ⇒ Σ = Ir, L = 0 and (ΣK)k+1 = Ir

⇒ Σ = Ir, L = 0 and Kk+1 = Ir.

Then it follows from Theorem 3.1 that CPI
n ∩ C

k-HGP
n ⊆ Ck-GP

n .
(b) By Theorem 3.1, (e) of Lemma 2.3 and Remark 4.2, we have that Ck-GP

n ⊆ CSD
n ∩ C

k-HGP
n .

Conversely, by item (e) of Lemma 2.3 and Theorem 4.1, it follows that

A ∈ CSD
n ∩ C

k-HGP
n ⇒ KΣ = ΣK, L = 0 and (ΣK)k+1 = Ir.

Evidently, by Lemma 2.3 and Lemma 2.4 it follows that A ∈ Ck-GP
n . Hence, CSD

n ∩ C
k-HGP
n ⊆ Ck-GP

n .
(c) By Theorem 3.1, (b) of Lemma 2.3 and Remark 4.2, it is easy to check that Ck-GP

n ⊆ CCA
n ∩ Ck-HGP

n .
Conversely, from (b) of Theorem 4.9, we get that

A ∈ CCA
n ∩ Ck-HGP

n ⇒ A ∈ CCA
n ∩ C(k+2)-P

n ∩ Cbi-EP
n .

Hence, by (c) of Theorem 3.10 we have A ∈ Ck-GP
n . Therefore, CCA

n ∩ Ck-HGP
n ⊆ Ck-GP

n .
(d) By Remark 4.2 and Lemma 2.4, it follows that Ck-GP

n ⊆ CN
n ∩ C

k-HGP
n .

Conversely, in view of (c) of Lemma 2.3 and Theorem 4.1, we have

A ∈ CN
n ∩ C

k-HGP
n ⇒ KΣ = ΣK, L = 0 and (ΣK)k+1 = Ir,

which implies A ∈ Ck-GP
n by Lemma 2.3 and Lemma 2.4. Hence, CN

n ∩ C
k-HGP
n ⊆ Ck-GP

n .
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