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Total controllability for noninstantaneous impulsive conformable
fractional evolution system with nonlinear noise and nonlocal

conditions
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Abstract. Noninstantaneous impulsive conformable fractional stochastic differential equation with non-
linear noise and nonlocal condition via Rosenblatt process and Poisson jump is studied in this paper.
Sufficient conditions for controllability for the considered problem are established. The required results are
obtained based on fractional calculus, stochastic analysis, semigroups and Sadovskii’s fixed point theorem.
In the end paper, an example is provided to illustrate the applicability of the results.

1. Introduction

Stochastic differential equations are the right tool to model the systems with the random effects and
external noises (see [1-10]). Stochastic differential equations with impulse arise from many mathematical
model of physical phenomenon in the field of technology, biology, physics and economics [11-13]. Re-
cently, a novel definition named conformable fractional derivative is introduced in [14]. This new fractional
derivative quickly becomes the subject of many contributions in several areas of science. In short time,
many studies and discussion related to conformable fractional derivative have appeared in several areas
of applications, for example, Won Sang [15] discussed the fractional Newton mechanics with conformable
fractional derivative. Rosales-Garcı́a et al [16] applied conformable derivative to experimental Newton’s
law of cooling. Abdellatif et al [17] studied the stability of conformable stochastic systems depending on
a parameter. Abdellatif and Mchiri [18] discussed the partial stability of conformable stochastic systems.
Ahmed [19] studied the conformable fractional stochastic differential equations with control function.
On the other hand, controllability problem is searching for a suitable control function that steers the
proposed dynamical model to a desired final state [20-25]. Many authors studied controllability of nonin-
stantaneous impulsive stochastic differential equations, for example, Yan and Yang [26] studied the optimal
controllability of non-instantaneous impulsive partial stochastic differential systems with fractional secto-
rial operators. Balasubramaniam [27] discussed the controllability of semilinear noninstantaneous impul-
sive ABC neutral fractional differential equations. Malik et al [28] obtained the controllability of Sobolev
type fuzzy differential equation with non-instantaneous impulsive condition. Xin et al [29] investigated
the controllability of nonlinear ordinary differential equations with non-instantaneous impulses. But, the
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controllability of noninstantaneous impulsive conformable fractional stochastic differential equation with
Rosenblatt process and Poisson jump via nonlocal condition have not yet been considered in the literature,
and this fact motivates this work.
The purpose of this paper is to study the controllability of noninstantaneous impulsive conformable frac-
tional stochastic differential equation with Rosenblatt process, Poisson jump and nonlocal condition in the
following form

Dℏ0+y(ϱ) = −Ty(ϱ) +ℜ(ϱ, y(ϱ)) +Qu(ϱ) + ℑ(ϱ, y(ϱ)) dω
dϱ + σ(ϱ, y(ϱ)) dZH

dϱ

+
∫

V h(ϱ, y(ϱ), v)Ñ(dϱ, dv), ϱ ∈ (si, ϱi+1], i ∈ [0,m]
y(ϱ) = 1i(ϱ, y(ϱ)), ϱ ∈ (ϱi, si], i ∈ [1,m]
y(0) + ψ(y) = y0,

(1)

where Dℏ0+ is the conformable fractional derivative with order 1
2 < ℏ < 1, −T is the infinitesimal generator of

an analytic semigroup of bounded linear operators ∆(ϱ), ϱ ≥ 0, on a separable Hilbert space Φ with inner
product ⟨., .⟩ and norm ∥ . ∥ and the control function u(·) is given in L2(J,U), the Hilbert space of admissible
control functions with U a Hilbert space. The symbol Q stands for a bounded linear from U into Φ and 1i is
noninstataneous impulsive function for all i = 1, 2, . . . ,m. Let J = (0,G] is the time interval where, ϱi, si are
fixed number satisfying 0 = s0 < ϱ1 ≤ s1 ≤ ϱ2 < . . . < sm−1 < ϱm ≤ sm ≤ ϱm+1 = G. Let Ξ be another separable
Hilbert space with inner product ⟨., .⟩Ξ and norm ∥ . ∥Ξ . Suppose {ω(ϱ)}ϱ≥0 is S-Wiener process defined
on (Ω,Υ, {Υϱ}ϱ≥0,P) with values in Hilbert space Ξ and {ZH(ϱ)}ϱ≥0 is S-Rosenblatt process with parameter
H ∈ ( 1

2 , 1) defined on (Ω,Υ, {Υϱ}ϱ≥0,P) with values in Hilbert space Y. We are also employing the same
notation ∥ . ∥ for the norm in Φ, Ξ, Λ, L(Ξ,Φ) and L(Φ,Λ) where L(Ξ,Λ) and L(Φ,Λ) denote respectively
the space of all bounded linear operators from Ξ into Λ and Φ into Λ. The functionsℜ, ℑ , σ, h, ψ and 1i
are given functions to be defined later.

2. Preliminaries

In this section, some definitions and results are given which will be used throughout this paper.
Definition 2.1 (see [14]). Let 0 < ℏ ≤ 1. The conformable fractional derivative of order ℏ of a function f (·)
for ϱ > 0 is defined as follows

dℏ f (ϱ)
dϱℏ

= lim
ν→0

f (ϱ + νϱ1−ℏ) − f (ϱ)
ν

.

For ϱ = 0, we adopt the following definition:

dℏ f (0)
dϱℏ

= lim
ϱ→0+

dℏ f (ϱ)
dϱℏ

.

The fractional integral Iℏ(·) associated with the conformable fractional derivative is defined by

Iℏ( f )(ϱ) =
∫ ϱ

0
sℏ−1 f (s)ds.

Let (Ω,Υ,P) be a complete probability space equipped with a normal filtration Υϱ, ϱ ∈ [0,G] where Υϱ is
the σ-algebra generated by random variables {ω(s),ZH(s), s ∈ [0,G]} and all P-null sets. Let (V,Φ, ρ(dv)) be
a σ-finite measurable space. Given stationary Poisson point process (pϱ)ϱ≥0, which is defined on (Ω, η,P)
with values in V and with characteristic measure ρ. We will denote by N(ϱ, dv) be the counting measure
of pϱ such that Ñ(ϱ,Θ) := E(N(ϱ,Θ)) = ϱρ(Θ) for Θ ∈ Ψ. Define Ñ(ϱ, dv) := N(ϱ, dv) − ϱλ(dv), the Poisson
martingale measure generated by pϱ.
Fix a time interval [0,G] and let {ZH(ϱ), ϱ ∈ [0,G]} represents one-dimensional Rosenblatt process with
parameter H ∈ (1/2, 1). The Rosenblatt process with parameter H > 1

2 can be written as

ZH(ϱ) = ζ(H)
∫ ϱ

0

∫ ϱ

0

[∫ ϱ

y1∨y2

∂KH′

∂v
(v, y1)

∂KH′

∂v
(v, y2)

]
dB(y1)dB(y2)
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where KH(ϱ, s) is given by

KH(ϱ, s) = cHs
1
2−H

∫ ϱ

s
(v − s)H− 3

2 vH− 1
2 dv, f or s < ϱ,

with cH =
√

H(2H−1)
β(2−2H,H− 1

2 )
and β(·, ·) denotes the Beta function, KH(ϱ, s) = 0 when ϱ ≤ s,

{B(ϱ), ϱ ∈ [0,G]} is a Brownian motion, H′ = H+1
2 and ζ(H) = 1

H+1

√
H

2H−1 is a normalizing constant. The
covariance of the Rosenblatt process ZH(ϱ), ϱ ∈ [0,G] satisfy
E(ZH(ϱ)ZH(s)) = 1

2 (s2H + ϱ2H
− |s − ϱ|2H).

Let S ∈ L(Φ,Φ) be an operator defined by Sen = λnen with finite trace Tr(S) =
∑
∞

n=1 λn < ∞ where
λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n = 1, 2, ...) is a complete orthonormal basis in
Φ.
We define the infinite dimensional S-Rosenblatt process on Φ as

ZH(ϱ) = ZS(ϱ) =
∞∑

n=1

√
λnenzn(ϱ)

where (zn)n≥0 is a family of real, independent Rosenblatt process.
In order to define Wiener integrals with respect to the S-Rosenblatt process, we introduce the space L0

2 :=
L0

2(Φ,Λ) of all S-Hilbert Schmidt operatorsχ : Φ→ Λ.We recall thatχ ∈ L(Φ,Λ) is called a S-Hilbert-Schmidt
operator, if

∥χ∥2L0
2

:=
∞∑

n=1

∥

√

λnχen∥
2 < ∞

and that the space L0
2 equipped with the inner product ⟨ϑ, χ⟩L0

2
=

∑
∞

n=1⟨ϑen, χen⟩ is a separable Hilbert space.
Letϕ(s); s ∈ [0,G] be a function with values in L0

2(Φ,Λ), the Wiener integral ofϕwith respect to ZS is defined
by ∫ ϱ

0
ϕ(s)dZS(s) =

∞∑
n=1

∫ ϱ

0

√

λK∗H(ϕen)(y1, y2)dB(y1)dB(y2)

where

K∗H(ϑ)(y1, y2) =
∫ G

y1∨y2

ϑ(r)
∂K
∂r

(r, y1, y2)dr.

For more details (see [30).
Lemma 2.1 (see [31]). If χ : [0,G] → L0

2(Φ,Λ) satisfies
∫ G

0 ∥χ(s)∥2
L0

2
< ∞ then the above sum in (2.2) is well

defined as Λ-valued random variable and we have

E
∥∥∥∥∥∫ ϱ

0
χ(s)dZH(s)

∥∥∥∥∥2

≤ 2Hϱ2H−1
∫ ϱ

0
∥χ(s)∥2L0

2
ds.

We suppose that 0 ∈ ρ(T), the resolvent set of T, and ∥ ∆(ϱ) ∥≤M for some constant M ≥ 1 and every ϱ ≥ 0.
The collection of all strongly-measurable, square-integrable, X-valued random variables, denoted by
L2(Ω,Λ), is a Banach space equipped with norm

∥ y(·) ∥L2(Ω,Λ)= (E ∥ y(., ω) ∥2)
1
2 ,

where the expectation, E is defined by E(y) =
∫
Ω

y(ω)dP.
Let C(J,L2(Ω,Λ)) be the Banach space of all continuous maps from J into L2(Ω,Λ) satisfying the condition
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supϱ∈J E ∥ y(ϱ) ∥2< ∞.
Define C̄ = {y : y(ϱ) ∈ C(J,L2(Ω,Λ))}, with norm ∥ · ∥C̄ defined by

∥ · ∥C̄ = (sup
ϱ∈J

E|y(ϱ)|2)
1
2 .

Obviously, C̄ is a Banach space.
We impose the following conditions on data of the problem:
(H1)ℜ : J ×Λ→ Λ is a continuous function, and there exists M1, M2 > 0 such that the functionℜ satisfies
the Lipschitz condition:

E ∥ ℜ(ϱ1, y) −ℜ(ϱ2, x) ∥2≤M1(|ϱ1 − ϱ2| + E ∥ y − x ∥2),

for 0 ≤ ϱ1, ϱ2 ≤ G, y, x ∈ Λ, and the inequality

E ∥ ℜ(ϱ, y) ∥2≤M2(E ∥ y ∥2 +1) (2)

holds for (ϱ, y) ∈ J ×Λ.
(H2) The function ℑ : J ×Λ→ L(Ξ,Λ) satisfies the following conditions:
(i) for each ϱ ∈ J, the function ℑ(ϱ, .) : Λ → L(Ξ,Λ) is continuous and for each y ∈ Λ; the function
ℑ(., y) : J→ L(Ξ,Λ) is Υϱ-measurable;
(ii) for each positive number d ∈ N, there is a positive function hd(·) : (0,G]→ R+ such that

sup
∥y∥2≤d

E ∥ ℑ(ϱ, y) ∥2S≤ hd(ϱ),

the function s→ hd(s) ∈ L1((0,G],R+) and there exists a Λ2 > 0 such that

lim
d→∞

inf

∫ ϱ
0 hd(s)ds

d
= Λ2 < ∞, ϱ ∈ (0,G].

(H3) The function σ : J ×Λ→ L0
2(Φ,Λ) satisfies the following conditions:

(i) for each ϱ ∈ J, the function σ(ϱ, .) : Λ→ L0
2(Φ,Λ) is continuous and for each

y ∈ Λ; the function σ(., y) : J→ L0
2(Φ,Λ) is Υϱ-measurable;

(ii) for each positive number d ∈ N, there is a positive function h̄d(·) : (0,G]→ R+ such that

sup
∥x∥2≤d

E ∥ σ(ϱ, y) ∥2L0
2
≤ h̄d(ϱ),

the function s→ h̄d(s) ∈ L1((0,G],R+) and there exists a Λ3 > 0 such that

lim
d→∞

inf

∫ ϱ
0 h̄d(s)ds

d
= Λ3 < ∞, ϱ ∈ (0,G],

(H4) The function h : J ×Λ × V → Λ satisfies the following two conditions:
(i) The function h(ϱ, ., .) : Λ × V → Λ is continuous.
(ii) for each positive number d ∈ N, there is a positive function χd(·) : J→ R+ such that

sup
∥x∥2≤d

∫
V

E∥h(ϱ, y, v)∥2λ(dv) ≤ χd(ϱ),

the function s→ χd(s) ∈ L1((0,G],R+), and there exists a Λ4 > 0 such that

lim
d→∞

inf

∫ ϱ
0 χd(s)ds

d
= Λ4 < ∞, ϱ ∈ (0,G].
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(H5) The function 1i : (ϱi, si] ×Λ→ Λ is continuous and satisfies the following two conditions:
(i) There exist a constant M3 > 0 , such that

E ∥1i(ϱ, y)∥2 ≤M3(E∥y∥2 + 1), ∀ y ∈ Λ; ϱ ∈ (ϱi, si], i = 1, 2, . . . ,m.

(ii) There exist a constant M4 > 0 , such that

E ∥1i(ϱ, y) − 1i(ϱ, x)∥2 ≤M4 E ∥y − x∥2, ∀ y, x ∈ Λ; ϱ ∈ (ϱi, si], i = 1, 2, . . . ,m.

(H6) The function ψ : C(J,Λ)→ Λ satisfies the following two conditions:
(i) There exist a constant M5 > 0 , such that

E ∥ψ(y)∥2 ≤M5(E∥y∥2 + 1), ∀ y ∈ Λ.

(ii) There exist a constant M6 > 0 , such that

E ∥ψ(y) − ψ(x)∥2 ≤M6 E ∥y − x∥2, ∀ y, x ∈ Λ.

Definition 2.2. An Υϱ-adapted stochastic process y(ϱ) : J→ Λ is said to be a mild solution of problem (1) if
the following stochastic integral equation is verified:

y(ϱ) =



∆
(
ϱℏ

ℏ

)
[y0 − ψ(y)] +

∫ ϱ
0 sℏ−1∆

(
ϱℏ−sℏ

ℏ

) [
ℜ(s, y(s)) +Qu(s)

]
ds

+
∫ ϱ

0 sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
ℑ(s, y(s))dω(s) +

∫ ϱ
0 sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
σ(s, y(s))dZH(s)

+
∫ ϱ

0 sℏ−1∆
(
ϱℏ−sℏ

ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (0, ϱ1]

1i(ϱ, y(ϱ)), ϱ ∈ (ϱi, si], i = 1, 2, ...,m,

∆
(
ϱℏ−sℏi
ℏ

)
1i(si, y(si)) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

) [
ℜ(s, y(s)) +Qu(s)

]
ds

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
ℑ(s, y(s))dω(s) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
σ(s, y(s))dZH(s)

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (si, ϱi+1], i = 1, 2, . . . ,m.

3. Main result

In this section, we study the controllability for the system (1).
Definition 3.1. The system (1) is said to be controllable on J, if for every y0, y1 ∈ Λ, there exists a control
u ∈ L2(J,U) such that the mild solution y(ϱ) of the system (1) satisfies y(G) = y1, where y1 and G are the
preassigned terminal state and time respectively.
To establish the result, we need the following additional hypothesis
(H7) The linear operator Π from U into Λ defined by

Πu =
∫ G

0
sℏ−1∆

(
Gℏ − sℏ

ℏ

)
Qu(s)ds

has an inverse operatorΠ−1 which takes values in L2(J,U)\kerΠ,where the kernel space ofΠ is defined by
kerΠ = {y ∈ L2(J,U) : Πy = 0} and there exist positive constant MQ, MΠ such that ∥Q∥2 =MQ, ∥Π−1

∥
2 =MΠ.

Theorem 3.1. If the assumptions (H1)-(H7) are satisfied. Then, the system (1) is controllable on J provided
that

36
{

1 +
MΠMQM2G2ℏ−1

2ℏ − 1

}{
M5 +M3(M2 + 1) +

M2G2ℏ−1M2

2ℏ − 1
+

Tr(S)M2G2ℏ−1

2ℏ − 1
Λ2

+
2HM2G2H+2ℏ−2

2ℏ − 1
Λ3 +

M2G2ℏ−1

2ℏ − 1
Λ4

}
< 1. (3)
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and

ℓ1 = 4M6 +
4M2M1G2ℏ−1

2ℏ − 1
+M4(1 + 4M2) < 1. (4)

Proof. Consider the map ℧ on C̄ defined by

(℧y)(ϱ) =



∆
(
ϱℏ

ℏ

)
[y0 − ψ(y)] +

∫ ϱ
0 sℏ−1∆

(
ϱℏ−sℏ

ℏ

) [
ℜ(s, y(s)) +Qu(s)

]
ds

+
∫ ϱ

0 sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
ℑ(s, y(s))dω(s) +

∫ ϱ
0 sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
σ(s, y(s))dZH(s)

+
∫ ϱ

0 sℏ−1∆
(
ϱℏ−sℏ

ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (0, ϱ1]

1i(ϱ, y(ϱ)), ϱ ∈ (ϱi, si], i = 1, 2, ...,m,

∆
(
ϱℏ−sℏi
ℏ

)
1i(si, y(si)) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

) [
ℜ(s, y(s)) +Qu(s)

]
ds

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
ℑ(s, y(s))dω(s) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
σ(s, y(s))dZH(s)

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (si, ϱi+1], i = 1, 2, . . . ,m.

where

u(ϱ) =



Π−1
{y1 − ∆

(
Gℏ
ℏ

)
[y0 − ψ(y)] −

∫ G

0 sℏ−1∆
(

Gℏ−sℏ
ℏ

)
ℜ(s, y(s))ds

−

∫ G

0 sℏ−1∆
(

Gℏ−sℏ
ℏ

)
ℑ(s, y(s))dω(s) −

∫ G

0 sℏ−1∆
(

Gℏ−sℏ
ℏ

)
σ(s, y(s))dZH(s)

−

∫ G

0 sℏ−1∆
(

Gℏ−sℏ
ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv)}(ϱ), ϱ ∈ (0, ϱ1]

Π−1
{y1 − ∆

(
Gℏ−sℏi
ℏ

)
1i(si, y(si)) −

∫ G

si
sℏ−1∆

(
Gℏ−sℏ
ℏ

)
ℜ(s, y(s))ds

−

∫ G

si
sℏ−1∆

(
Gℏ−sℏ
ℏ

)
ℑ(s, y(s))dω(s) −

∫ G

si
sℏ−1∆

(
Gℏ−sℏ
ℏ

)
σ(s, y(s))dZH(s)

−

∫ G

si
sℏ−1∆

(
Gℏ−sℏ
ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv)}(ϱ), ϱ ∈ (si, ϱi+1], i = 1, 2, . . . ,m.

It will be shown that the operator ℧ from C̄ into itself has a fixed point.
For each positive integer d, set ℘d = {y ∈ C̄, ∥ y ∥2

C̄
≤ d}.

We claim that there exists a positive number d such that ℧(℘d) ⊂ ℘d. If it is not true, then for each positive
number d, there is a function yd(·) ∈ ℘d, but ℧(yd) < ℘d, that is ∥ (℧yd)(ϱ) ∥2

C̄
> d for some ϱ = ϱ(d) ∈ J, where

ϱ(d) denotes that ϱ is dependent of d.
From (H1)-(H7), we have,
for ϱ ∈ (0, ϱ1]

∥ ℧yd ∥
2
C̄ ≤ 36 sup

ϱ∈J

{
E∥∆

(
ϱℏ

ℏ

)
[y0 − ψ(y)]∥2 + E ∥

∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
ℜ(s, y(s))ds ∥2

+E ∥
∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
Qu(s)ds ∥2

+E ∥
∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
ℑ(s, y(s))dω(s) ∥2

+E ∥
∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
σ(s, y(s))dZH(s) ∥2

+

∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2
}
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≤ 36
{

1 +
MΠMQM2G2ℏ−1

2ℏ − 1

}{
M2[E∥y0∥

2 +M5(d + 1)]

+
M2G2ℏ−1M1(d + 1)

2ℏ − 1
+

Tr(S)M2G2ℏ−1

2ℏ − 1

∫ G

0
hd(s)ds

+
2HM2G2H+2ℏ−2

2ℏ − 1

∫ G

0
h̄d(s)ds +

M2G2ℏ−1

2ℏ − 1

∫ G

0
χd(s)ds

}
+

36MΠMQM2G2ℏ−1E∥y1∥
2

2ℏ − 1
. (5)

From (H5), we have for ϱ ∈ (ϱi, si]

∥ ℧yd ∥
2
C̄≤ sup

ϱ∈J
E∥1i(ϱ, y(ϱ))∥2 ≤M3(d + 1). (6)

From (H1)-(H7), we have, for ϱ ∈ (si, ϱi+1]

∥ ℧yd ∥
2
C̄ ≤ 36 sup

ϱ∈J

{
E∥∆

ϱℏ − sℏi
ℏ

 1i(si, y(si))∥2

+E ∥
∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
ℜ(s, y(s))ds ∥2 +E ∥

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
Qu(s)ds ∥2

+E ∥
∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫ s

si

ℑ(τ, y(τ))dω(τ)ds ∥2

+E ∥
∫ ϱ

si

sℏ−1)∆
(
ϱℏ − sℏ

ℏ

)
σ(s, y(s))dZH(s) ∥2

+

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2
}

≤ 36
{

1 +
MΠMQM2G2ℏ−1

2ℏ − 1

}{
M2M3(d + 1)

+
M2G2ℏ−1M2(d + 1)

2ℏ − 1
+

Tr(S)M2G2ℏ−1

2ℏ − 1

∫ G

si

hd(s)ds

+
2HM2G2H+2ℏ−2

2ℏ − 1

∫ G

si

h̄d(s)ds +
M2G2ℏ−1

2ℏ − 1

∫ G

si

χd(s)ds
}

+
36MΠMQM2G2ℏ−1E∥y1∥

2

2ℏ − 1
. (7)

Combining (5), (6), (7) in the inequality d ≤∥ (℧yd)(t) ∥2
C̄

then dividing both sides of the inequality by d and
taking the lower limit d→ +∞, we get

36
{

1 +
MΠMQM2G2ℏ−1

2ℏ − 1

}{
M5 +M3(M2 + 1) +

M2G2ℏ−1M2

2ℏ − 1
+

Tr(S)M2G2ℏ−1

2ℏ − 1
Λ2

+
2HM2G2H+2ℏ−2

2ℏ − 1
Λ3 +

M2G2ℏ−1

2ℏ − 1
Λ4

}
≥ 1.

This contradicts (3). Hence for positive d, ℧(℘d) ⊂ ℘d.
Next we will show that the operator ℧ has a fixed point on ℘d, which implies that equation (1) has a mild
solution. We decompose℧ as℧ = ℧1 +℧2,where the operators℧1 and℧2 are defined on ℘d, respectively,
by
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(℧1y)(ϱ) =


∆

(
ϱℏ

ℏ

)
[y0 − ψ(y)] +

∫ ϱ
0 sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
ℜ(s, y(s))ds, ϱ ∈ (0, ϱ1]

1i(ϱ, y(ϱ)), ϱ ∈ (ϱi, si], i = 1, 2, ...,m,

∆
(
ϱℏ−sℏi
ℏ

)
1i(si, y(si)) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
ℜ(s, y(s))ds,

ϱ ∈ (si, ϱi+1], i = 1, 2, . . . ,m.

(℧2y)(ϱ) =



∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
Qu(s)ds

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

)
ℑ(s, y(s))dω(s) +

∫ ϱ
si

sℏ−1∆
(
ϱℏ−sℏ

ℏ

)
σ(s, y(s))dZH(s)

+
∫ ϱ

si
sℏ−1∆

(
ϱℏ−sℏ

ℏ

) ∫
V h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (si, ϱi+1], i = 0, 1, . . . ,m.

0, otherwise.

For ϱ ∈ J, we will show that ℧1 verifies a contraction condition while ℧2 is a compact operator.
To prove that℧1 satisfies a contraction condition, we take y1, y2 ∈ ℘d, then for each ϱ ∈ J and by conditions
(H1), (H5) and (H6)
we have for ϱ ∈ (0, ϱ1]

E ∥ (℧1y1)(ϱ) − (℧1y2)(ϱ) ∥2 ≤ 4
{
E ∥ ψ(y1) − ψ(y2) ∥

+E ∥
∫ ϱ

0
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
[ℜ(s, y1(s)) −ℜ(s, y2(s))]ds ∥2

}
≤

{
4M6 +

4M2M1G2ℏ−1

2ℏ − 1

}
E ∥ y1(ϱ) − y2(ϱ) ∥2, (8)

for ϱ ∈ (ϱi, si]

E ∥ (℧1y1)(ϱ) − (℧1y2)(ϱ) ∥2 ≤ E ∥ 1i(ϱ, y1(ϱ)) − 1i(ϱ, y2(ϱ)) ∥2

≤ M4 E ∥ y1(ϱ) − y2(ϱ) ∥2 (9)

and for ϱ ∈ (si, ϱi+1]

E ∥ (℧1y1)(ϱ) − (℧1y2)(ϱ) ∥2 ≤ 4E ∥ ∆

ϱℏ − sℏi
ℏ

 (1i(si, y1(si)) − 1i(si, y2(si))) ∥2

+4E ∥
∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
[ℜ(s, y1(s)) −ℜ(s, y2(s))]ds ∥2

≤

[
4M2M4 +

4M2M1G2ℏ−1

2ℏ − 1

]
E ∥ y1(ϱ) − y2(ϱ) ∥2 . (10)

Combining (8), (9) and (10) , we get

E ∥ (℧1y1)(ϱ) − (℧1y2)(ϱ) ∥2 ≤

[
4M6 +

4M2M1G2ℏ−1

2ℏ − 1
+M4(1 + 4M2)

]
E ∥ y1(ϱ) − y2(ϱ) ∥2

≤ ℓ1E ∥ y1(ϱ) − y2(ϱ) ∥2,

therefore,

sup
ϱ∈J

E ∥ (℧1y1)(ϱ) − (℧1y2)(ϱ) ∥2≤ ℓ1 sup
ϱ∈J

E ∥ y1(ϱ) − y2(ϱ) ∥2
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hence,

∥ ℧1y1 −℧1y2 ∥
2
C̄≤ ℓ1 ∥ y1 − y2 ∥

2
C̄ .

Thus, ℧1 is a contraction.
To prove that ℧2 is compact, first we prove that ℧2 is continuous on ℘d.
Let {yn} ⊂ ℘d with yn → Λ in ℘q and rewrite u(t) = u(t, y) the control function defined above. Then for each
s ∈ J, yn(s)→ y(s), and by H2(i), H3(i) and H4(i), we have
ℑ(s, yn(s))→ ℑ(s, y(s)), as n→∞,
σ(s, yn(s))→ σ(s, y(s)), as n→∞ and
h(s, yn(s), v)→ h(s, y(s), v), as n→∞.
By the dominated convergence theorem, we have,

∥ ℧2yn −℧2y ∥2C̄= sup
ϱ∈J

{
E ∥

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
Q(u(s, yn) − u(s, y))ds

+

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
[ℑ(s, yn(s)) − ℑ(s, y(s))]dω(s)

+

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
[σ(s, yn(s)) − σ(s, y(s))]dZH(s)

+

∫ ϱ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫
V

[h(s, yn(s), v) − h(s, y(s), v)]Ñ(ds, dv) ∥2
}
→ 0,

as n→∞, that is continuous.
Next we prove that the family {℧2y : y ∈ ℘d} is an equicontinuous family of functions.
Let ϵ > 0 small, si < ϱα < ϱβ ≤ ϱi+1, then

E ∥ (℧2y)(ϱβ) − (℧2y)(ϱα) ∥2

≤ E ∥
∫ ϱα−ϵ

si

sℏ−1
(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
Qu(s)ds ∥2

+ ∥

∫ ϱα

ϱα−ϵ
sℏ−1

(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
Qu(s)ds ∥2

+ ∥

∫ ϱβ

ϱα

sℏ−1∆

ϱℏβ − sℏ

ℏ

 Qu(s)ds ∥2

+E ∥
∫ ϱα−ϵ

si

sℏ−1
(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
ℑ(s, y(s))dω(s) ∥2

+ ∥

∫ ϱα

ϱα−ϵ
sℏ−1

(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
ℑ(s, y(s))dω(s) ∥2

+ ∥

∫ ϱβ

ϱα

sℏ−1∆

ϱℏβ − sℏ

ℏ

ℑ(s, y(s))dω(s) ∥2
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+E ∥
∫ ϱα−ϵ

si

sℏ−1
(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
σ(s, y(s))dZH(s) ∥2

+ ∥

∫ ϱα

ϱα−ϵ
sℏ−1

(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) )
σ(s, y(s))dZH(s) ∥2

+ ∥

∫ ϱβ

ϱα

sℏ−1∆

ϱℏβ − sℏ

ℏ

 σ(s, y(s))dZH(s) ∥2

+E ∥
∫ ϱα−ϵ

si

sℏ−1
(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) ) ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2

+ ∥

∫ ϱα

ϱα−ϵ
sℏ−1

(
∆

ϱℏβ − sℏ

ℏ

 − ∆ (
ϱℏα − sℏ

ℏ

) ) ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2

+ ∥

∫ ϱβ

ϱα

sℏ−1∆

ϱℏβ − sℏ

ℏ

 ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2 .

We see that E ∥ (℧2y)(ϱβ) − (℧2y)(ϱα) ∥2 tends to zero independently of y ∈ ℘d as ϱβ → ϱα, and with ϵ
sufficiently small, since the compactness of ∆(ϱ) for ϱ > 0 implies the continuity in the uniform operator
topology (see [28]). Similarly, we can prove that the function ℧2y, y ∈ ℘d are equicontinuous at ϱ = 0.
Hence ℧2 maps ℘d into a family of equicontinuous functions.
It remains to prove that µ(ϱ) = {(℧2y)(ϱ) : y ∈ ℘d} is relatively compact in ℘d. Obviously, µ(0) is relatively
compact in ℘d.
Let si < ϱ ≤ ϱi+1 be fixed and let ϵ be a given real number satisfying si < ϵ < ϱ, for y ∈ ℘d, we define

(℧ϵ2y)(ϱ) =

∫ ϱ−ϵ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
Qu(s)ds +

∫ ϱ−ϵ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
ℑ(s, y(s))dω(s)

+

∫ ϱ−ϵ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
σ(s, y(s))dZH(s)

+

∫ ϱ−ϵ

si

sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫
V

h(s, y(s), v)Ñ(ds, dv), ϱ ∈ (si, ϱi+1], i = 1, 2, . . . ,m.

Since u(s) is bounded and ∆(ϱ) is a compact operator, then the set
µϵ(ϱ) = {(℧ϵ2y)(ϱ) : y ∈ ℘d} is relatively compact in Λ for every ϵ, si < ϵ < ϱ.
Moreover, for every y ∈ ℘d, we have

E ∥ ℧2y −℧ϵ2y ∥2C̄≤ 16 sup
ϱ∈J

{
E ∥

∫ ϱ

ϱ−ϵ
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
Qu(s)ds ∥2

+E ∥
∫ ϱ

ϱ−ϵ
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
ℑ(s, y(s))dω(s) ∥2

+E ∥
∫ ϱ

ϱ−ϵ
sℏ−1∆

(
ϱℏ − sℏ

ℏ

)
σ(s, y(s))dZH(s) ∥2

+E ∥
∫ ϱ

ϱ−ϵ
sℏ−1∆

(
ϱℏ − sℏ

ℏ

) ∫
V

h(s, y(s), v)Ñ(ds, dv) ∥2
}
.

We see that for each y ∈ ℘d, ∥ ℧2y−℧ϵ2 ∥
2
C̄
→ 0 as ϵ→ 0+. Therefore, there are relative compact sets arbitrary

close to the set µ(ϱ) = {(℧2y)(ϱ) : y ∈ ℘d}, hence the set µ(ϱ) is also relatively compact in ℘d.
Thus, by Arzela-Ascoli theorem ℧2 is a compact operator. These arguments enable us to conclude that
℧ = ℧1 +℧2 is a condensing map on ℘d, and by the fixed point theorem of Sadovskii there exists a fixed
point y(·) for ℧ on ℘d. Thus, the system (1) is controllable on J.
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4. Example

In this section, we present an example to illustrate our main result.
Let us consider the following noninstantaneous impulsive conformable fractional stochastic differential
equation with Rosenblatt process and nonlocal condition:

D
3
4
0+y(ϱ, z) + ∂2

∂z2 y(ϱ, z) = 3−ϱy(ϱ, z) + η(ϱ, z) + e−ϱy(ϱ, z) dω(ϱ)
dt

+
sin ϱ

1+sin ϱ y(ϱ, z) dZH(ϱ)
dϱ +

∫
V h̄(ϱ, y(ϱ, z), v)Ñ(dϱ, dv), ϱ ∈ (0, 2

3 ] ∪ ( 4
3 , 2], 0 ≤ z ≤ π,

y(ϱ, 0) = y(ϱ, π) = 0, ϱ ∈ (0, 2],
y(ϱ, z) = 2

5 e−(ϱ− 1
4 ) |y(ϱ,z)|

1+|y(ϱ,z)| , ϱ ∈ ( 2
3 ,

4
3 ], 0 ≤ z ≤ π,

y(0, z) +
∑2

i=1 ciy(ϱi, z) = y0(z), 0 ≤ z ≤ π,

(11)

where D
3
4
0+ is conformable fractional derivative of order ℏ = 3

4 , ω is a Wiener process and ZH is a Rosenblatt
process with Hurst parameter H ∈ ( 1

2 , 1).
Let Λ = Φ = Ξ = U = L2([0, π]) and T be defined by Tm = −( ∂

2

∂z2 )m with domain D(T) = {ξ ∈ Λ : ξ, dξ
dz are

absolutely continuous, and ( d2

dz2 )ξ ∈ Λ, ξ(0) = ξ(π) = 0}.
Then −T generates a strongly continuous semigroup ∆(·) which is compact, analytic, and self-adjoint.
Furthermore, −T has discrete spectrum with eigenvalues n2, n ∈ N and the corresponding normalized
eigenfunctions given by

en =

√
2
π

sin ny, n = 1, 2, ...

In addition (en)n∈N is a complete orthonormal basis in Λ. Then

−Tξ =
∞∑

n=1

n2
⟨ξ, en⟩en, ξ ∈ D(T).

Furthermore,−T is the infinitesimal generator of an analytic semigroup of bounded linear operator, {∆(ϱ)}ϱ≥0
on Λ and is given by

∆(ϱ)ξ =
∞∑

n=1

e−n2ϱ
⟨ξ, en⟩en , ξ ∈ Λ, ϱ ≥ 0.

with ∥∆(ϱ)∥ ≤ e−ϱ ≤ 1.
We define the bounded operator Q : U→ Λ by Q = I.
In order to define the operator S : Φ → Φ, we choose a sequence {λn}n∈N ⊂ R+, set Sen = λnen, and assume
that

Tr(S) =
∞∑

n=1

√
λn < ∞.

We defineℜ : J × Λ → Λ, ℑ : J × Λ → L(Ξ,Λ), σ : J × Λ → L0
2(Y,X),h : J × Λ × V → Λ, 11 : ( 2

3 ,
4
3 ] × Λ → Λ

and ψ : C(J,Λ)→ Λ by
ℜ(ϱ, y) = e−ϱy(ϱ, z), ℑ(ϱ, y)(z) = e−ϱy(ϱ, z), σ(ϱ, y)(z) = sin ϱ

1+sin ϱ y(ϱ, z), h = h̄(ϱ, y(ϱ, z), v), 11(ϱ, y(ϱ)) =
2
5 e−(ϱ− 1

4 ) |x(ϱ,·)|
1+|x(ϱ,·)| and ψ =

∑2
i=1 ciy(ϱi, z), respectively and J = (0, 2]. Then ℜ, ℑ, σ, h, 11 and ψ satisfy

(H1)-(H6),

36
{

1 +
MΠMQM2G2ℏ−1

2ℏ − 1

}{
M5 +M3(M2 + 1) +

M2G2ℏ−1M2

2ℏ − 1
+

Tr(S)M2G2ℏ−1

2ℏ − 1
Λ2

+
2HM2G2H+2ℏ−2

2ℏ − 1
Λ3 +

M2G2ℏ−1

2ℏ − 1
Λ4

}
< 1
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and

4M6 +
4M2M1G2ℏ−1

2ℏ − 1
+M4(1 + 4M2) < 1.

Hence, according to Theorem 3.1, the system (11) is controllable on J = (0, 2].

Conclusion

In this article, By using Sadovskii’s fixed point theorem, fractional calculus and stochastic analysis,
we studied the controllability of noninstantaneous impulsive conformable fractional stochastic differential
equation with nonlinear noise and nonlocal condition via Rosenblatt process and Poisson jump. In the end
paper, an example was provided to illustrate the applicability of the results.
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