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Abstract. We will give some sufficient conditions, which imply the conjecture of Sendov. We use convexity
methods in order to prove the main result.

1. Introduction

Let D = {z ∈ C : |z| ≤ 1} be the closed unit disk in C. Let C[z] denote the set of polynomials
P(z) = a0zn + a1zn−1 + a2zn−3 + an−1z + an,where ak ∈ C, k ∈ {0, 1, 2, . . . ,n} and n ∈N∗.
We will prove sufficient conditions regarding the roots of a polynomial P ∈ C[z] which imply the following
conjecture, attributed to the bulgarian mathematician Blagovest Sendov.

Conjecture 1.1. If all the roots of a polynomial P ∈ C[z] lie inD and z∗ is an arbitrary root of the polynomial P then
the disk {z ∈ C : |z − z∗| ≤ 1} contains at least one root of P′.

In [6] it is proved the Conjecture 1.1 holds for sufficiently high degree polynomials. This result turns back
our attention to the particular cases.
In [5] the author proved the following results:

Theorem 1.2. Let P ∈ C[z], P(z) = zn + a1zn−1 + . . . + an. If P(z1) = 0 and |P′(z1)| < n, then the disk |z − z1| < 1
contains at last one critical point of P.

Theorem 1.3. Let P(z) be a polynomial whose zeros z1, z2, z3, . . . , zn (n > 2) lie in |z| ≤ 1 such that |z1| = 1. Then
the disk |z − z1| < 1 always contains a zero of P′(z) = 0.

This theorems imply the following interesting corollary.

Corollary 1.4. Let zk, k ∈ {1, 2, 3, . . . ,n − 1} be the affixes of the vertices of a regular n gone inscribed the unit circle
|z| = 1.
If z0 is an arbitrary point inD, then in case of polynomial Q(z) = (z − z0)

∏n−1
k=1 (z − zk) the Sendov conjecture holds.
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Proof. Indeed, in case of zk, k ∈ {1, 2, . . . ,n − 1} we have |zk| = 1 and consequently Theorem 1.3 implies the
assertion.
In case of z0 ∈ D we have |z0| < 1. Let z∗ be the affixum of the n-th vertice of the regular n gon. Then the
complex numbers z∗z1, z∗z2, z∗z3, . . . , z∗zn−1 are the roots of the equation

zn−1 + zn−2 + zn−3 + . . . + z + 1 = 0.

Since |z∗| = 1,we get

|Q′(z0)| =
n−1∏
k=1

|z0 − zk| =

n−1∏
k=1

|z∗z0 − zkz∗| =
∣∣∣∣ n−1∏

k=1

(z∗z0 − zkz∗)
∣∣∣∣ =∣∣∣∣(z∗z0)n−1 + (z∗z0)n−2 + . . . + z∗z0 + 1
∣∣∣∣ ≤

|z∗z0|
n−1 + |z∗z0|

n−2 + . . . + |z∗z0| + 1 =
|z0|

n−1 + |z0|
n−2 + . . . + |z0| + 1 < n. (1)

Thus Sendov’s conjecture holds in case of the root z0 too.

Interesting results about Sendov conjecture are also obtained by Kumar, see [7].
The aim of this paper is to deduce new conditions regarding the roots of a polynomial P which imply the
conjecture of Sendov like the previous theorems and corollary.
In order to prove the main result we need the following lemmas.

2. Preliminaries

Lemma 2.1 (Krein-Milman). A compact convex subset of a Hausdorff locally convex topological vector space is
equal to the closed convex hull of its extreme points.

Lemma 2.2 (Gauss-Lucas). If P is a (nonconstant) polynomial with complex coefficients, then all the zeros of the
derivative P′ belong to the convex hull of the zeros of P.

3. The Main Result

Theorem 3.1. Let P ∈ C[z], P(z) = zn + a1zn−1 + . . . + an be a complex polynomial. Suppose that all the roots of the
polynomial P are in the unit diskD. Suppose that z∗ is a root of P and the circle |z− z∗| = 1 intersects ∂D at the points
A and B. Let the closed set K be limited by the arc 5.0ptAB

⌢
of the circle |z − z∗| = 1, which does not belong toD and

the line segment [AB] and let the set Ω be defined by Ω = D \ K .
If in case of a fixed k ∈ {1, 2, 3, . . . ,n− 1} the equation P(k)(z) = 0 has a root inK , then the |z− z∗| < 1 disk contains a
root of P′(z) = 0.

Proof. Let denote the closed convex hull of the roots of P(k)(z) = 0 by C(k). The Gauss-Lucas theorem implies
the inclusions:

C(n − 1) ⊂ C(n − 2) ⊂ . . . ⊂ C(k) ⊂ . . . ⊂ C(1) ⊂ C(0). (2)

The setsK and Ω are convex.
According to the conditions of the theorem, we have C(k) ∪K , ∅ for some k ∈ {1, 2, 3, . . . ,n − 1}.

The inclusions (2) imply C(1) ∩K , ∅. (3)

The extreme points of C(1) are between the roots of P′(z) = 0. Suppose all the extreme points are elements
of Ω, then the convexity of Ω and the Krein-Milman theorem would imply C(1) ⊂ Ω and this contradicts
(3). This contradiction shows that K contains extreme points of C(1) and these extreme points are roots of
P′(z) = 0.
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Taking particular cases of the proved result, we get interesting conditions regarding to the roots of a
polynomial which imply the Sendov’s conjecture.

Corollary 3.2. Suppose that the degree of the polynomial Q ∈ C[z] is less than n−2 and all the roots of the polynomial

P(z) = zn + a1zn−1 + a2zn−2 +Q(z)

are in the unit diskD. If z∗ is a root of the polynomial P which satisfies one of the following two inequalities

∣∣∣∣−a1 +
√

a2
1 −

2n
n−1 a2

n
− z∗
∣∣∣∣ < |z∗|2

, (4)

or

∣∣∣∣−a1 −

√
a2

1 −
2n

n−1 a2

n
− z∗
∣∣∣∣ < |z∗|2

, (5)

then the Sendov’s conjecture holds in case of z∗, that is the disc |z − z∗| < 1 contains a critical point.

Proof. We have P(n−2)(z) = 0⇔ n(n − 1)z2 + 2(n − 1)a1z + 2a2 = 0.
The conditions (4) and (5) imply that

C(n − 2) ∩K , ∅.

Thus the derivative of order n− 2 of P has a root inK and Theorem 1.3 implies Sendov’s conjecture in case
of the root z∗.

Corollary 3.3. Suppose that the degree of the polynomial Q ∈ C[z] is less than n−1 and all the roots of the polynomial
P(z) = zn

− nαzn−1 +Q(z) are in the unit diskD. If z∗ is a root of the polynomial P which satisfies |α− z∗| < |z
∗
|

2 , then
the Sendov’s conjecture holds in case of z∗, that is the disc |z − z∗| < 1 contains a critical point.

Proof. We have P(n−1)(z) = n(n − 1)(n − 2) . . . 2z − n!α with the root z0 = α. The inequality |α − z∗| < |z∗ |
2 , is

equivalent to |z0 − z∗| < |z∗ |
2 , which implies z0 ∈ K . Thus the derivative of order n − 1 of P has a root in K

and Theorem 1.3 implies Sendov’s conjecture in case of the root z∗.
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Example 3.4. Let P(z) = z3 + a1z2 + a2z+ a3 be the monic polynomial with the roots z1 =
1
2 + i 1

3 , z2 =
1
3 + i 1

2 , z3 =
5
6 + i 1

10 .

We use the notations of Corollary 1.4: α = z1+z2+z3
3 = 5

6 + i 14
45 and z∗ = 5

6 + i 1
10 .We have |α− z∗| = 19

90 <
1
2

√
143
180 =

|z∗ |
2 ,

and consequently the conjecture of Sendov holds in case of z∗ = z3.
A simple calculation shows that 3 >

∣∣∣P(z1)
∣∣∣ and 3 >

∣∣∣P(z2)
∣∣∣, thus according to Theorem 1.2 Sendov’s conjecture holds

in case of z1 and z2.
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