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Abstract. A generalization of Mallat’s classical multiresolution analysis, based on the theory of spectral
pairs, was considered in two articles by Gabardo and Nashed. In this setting, the associated translation set
is no longer a discrete subgroup of R but a spectrum associated with a certain one-dimensional spectral
pair and the associated dilation is an even positive integer related to the given spectral pair. In this
paper, we continue the study based on this nonstandard setting and introduce vector-valued nonuniform
multiresolution analysis associated with linear canonical transform (LCT-VNUMRA) where the associated
subspace Vµ

0 of the function space L2
(
R,CM

)
has an orthonormal basis of the form

{
Φ(x − λ)e−

ιπA
B (t2

−λ2)
}
λ∈Λ

where Λ = {0, r/N} + 2Z,N ≥ 1 is an integer and r is an odd integer such that r and N are relatively prime.
We establish a necessary and sufficient condition for the existence of associated wavelets and derive an
algorithm for the construction of vector-valued nonuniform multiresolution analysis starting from a vector
refinement mask with appropriate conditions

1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it provides a natural framework
for understanding and constructing discrete wavelet systems. An MRA is an increasing family of closed
subspaces

{
V j : j ∈ Z

}
of L2(R) such that

⋂
j∈Z V j = {0} ,

⋃
j∈Z V j is dense in L2(R) and which satisfies

f ∈ V j if and only if f (2·) ∈ V j+1. Furthermore, there exists an element φ ∈ V0 such that the collection of
integer translates of function φ,

{
φ(· − k) : k ∈ Z

}
represents a complete orthonormal system for V0. The

function φ is called the scaling function or the father wavelet. The concept of MRA has been extended
in various ways in recent years. These concepts are generalized to L2

(
Rd

)
, to lattices different from Zd,

allowing the subspaces of MRA to be generated by Riesz basis instead of orthonormal basis, admitting a
finite number of scaling functions, replacing the dilation factor 2 by an integer M ≥ 2 or by an expansive
matrix A ∈ GLd(R) as long as A ⊂ AZd. On the other hand, Xia and Suter [20] introduced the concept of
vector-valued MRA and orthogonal vector-valued wavelet basis and showed that vector-valued wavelets
are a class of generalized multiwavelets. Chen and Cheng [11] presented the construction of a class of
compactly supported orthogonal vector-valued wavelets and investigated the properties of vector-valued
wavelet packets. Vector-valued wavelets are a class of generalized multiwavelets and multiwavelets
can be generated from the component function in vector-valued wavelets. Vector-valued wavelets and
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multiwavelets are different in the following sense. Vector-valued wavelets can be used to decorrelate a
vector-valued signal not only in the time domain but also between components for a fixed time where
as multiwavelets focuses only on the decorrelation of signals in time domain. Moreover, prefiltering is
usually required for discrete multiwavelet transform but not necessary for discrete vector-valued wavelet
transforms. But all these concepts are developed on regular lattices, that is the translation set is always
a group. Recently, Gabardo and Nashed [13, 14] considered a generalization of Mallat’s [15] celebrated
theory of MRA based on spectral pairs, in which the translation set acting on the scaling function associated
with the MRA to generate the subspace V0 is no longer a group, but is the union of Z and a translate of Z.
More results in this direction can be found in [16–18].

The concept of novel MRA in nonuniform settings was established by Shah et.al [19]. They call it
Nonuniform Multiresolution analysis associated with linear canonical transform (LCT-NUMRA). They also
constructed associated wavelet packets and presented orthogonal decomposition. In this paper, we continue
the study based on this nonstandard setting and introduce vector-valued nonuniform multiresolution
analysis associated with linear canonical transform (LCT-VNUMRA) where the associated subspace Vµ

0 of
L2

(
R,CM

)
has an orthonormal basis of the form

{
Φ(x − λ)e−

−ιπA
B (t2

−λ2)
}
λ∈Λ

where Λ = {0, r/N} + 2Z,N ≥ 1
is an integer and r is an odd integer such that r and N are relatively prime. We establish a necessary and
sufficient condition for the existence of associated wavelets and derive an algorithm for the construction
of vector-valued MRA analysis starting from a vector refinement mask with appropriate conditions. For
more about in the direction of linear canonical transform domains, we refer to [1–9, 12] and the references
therein.

This paper is organized as follows. In Section 2, we review the uniform and non-uniform MRA associated
with LCT and certain properties related to the construction of associated wavelets. In Section 3, we introduce
the notion of LCT-VNUMRA and establish a necessary and sufficient condition for the existence of associated
wavelet. In Section 4, we construct a LCT-VNUMRA starting from a vector refinement mask satisfying
appropriate conditions. In Section 5, we provided the conclusion of the paper.

2. Nonuniform Multiresolution Analysis Associated with Linear Canonical Transform

For the sake of simplicity, we consider the second order matrix µ2×2 = (A,B,C,D) with its transpose
defined by µT

2×2 = (A,B,C,D)T. Let us first introduce the definition of LCT.

Definition 2.1. The LCT of any f ∈ L2(R) with respect to the unimodular matrix µ2×2 = (A,B,C,D) is defined by

L[ f ](ξ) =


∫
R

f (t)Kµ(t, ξ)dt B , 0

√
D exp CDξ2

2 f (Dξ) B = 0.
(1)

whereKµ(t, ξ) is the kernel of linear canonical transform and is given by

Kµ(t, ξ) =
1

√
2πιB

exp
{
ι(At2

− 2tξ +Dξ2)
2B

}
, B , 0

It is here noted that for the case B = 0, the LCT defined by equation (1) corresponds to a chirp multiplication
operation and is therefore of no particular interest to us. As such, in the rest of the article, we will keep our
focus on the case when B , 0. It is here worth noticing that the phase-space transform (1) is lossless if and
only if the matrix µ is unimodular; that is, AD−BC = 1[21]. Several special transforms can be obtained from
the LCT (1). For example, for µ = (1,B, 0, 1), gives the Fresnel transform, for µ = (cosθ, sinθ,− sinθ, cosθ)
the LCT yields us the fractional Fourier transform whereas for µ = (0, 1,−1, 0), we reach at the classical
Fourier transform. Moreover, Bi-lateral Laplace, Gauss-Weierstrass, and Bargmann transform are also its
special cases [10].

The inversion formula corresponding to LCT (1) is defined by

f (t) =
∫
R

L[ f ](ξ)Kµ(t, ξ)dξ.
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Morever the well known Parsevel’s formula of the linear canonical transform (1) may be stated as〈
L[ f ],L[1]

〉
=

〈
f , 1

〉
, for all f , 1,L2(R).

Recently, Shah et.al [19] considered a generalization of the notion of LCT associated with linear canonical
transform, which is called nonuniform multiresolution analysis associated with linear canonical transform (LCT-
NUMRA) and is based on the theory of spectral pairs. In this set up, the associated subspace Vµ

0 of L2(R) has
an orthonormal basis, a collection of translates of the scaling function φ of the form

{
φ(t − λ)e−

ιπA
B (t2

−λ2)
}
λ∈Λ

where Λ = {0, r/N} + 2Z,N ≥ 1 is an integer and r is an odd integer such that r and N are relatively prime.
We first recall the definition of a LCT-VNUMRA (as defined in [19]) and some of its properties.

Definition 2.2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N−1 such that r and N are relatively prime,
a nonuniform multiresolution analysis associated with linear canonical transform is a sequence of closed subspaces{
Vµ

j : j ∈ Z
}

of L2(R) such that the following properties hold:

(a) Vµ
j ⊂ Vµ

j+1 for all j ∈ Z;

(b)
⋃

j∈Z Vµ
j is dense in L2(R);

(c)
⋂

j∈Z Vµ
j = {0};

(d) f (t) ∈ Vµ
j if and only if f (2N·) e−ιπA(1−(2N)2)t2/B

∈ Vµ
j+1 for all j ∈ Z;

(e) There exists a function φ in Vµ
0 such that

{
φ(t − λ)e−

ιπA
B (t2

−λ2) : λ ∈ Λ
}
, is a complete orthonormal basis for Vµ

0 .

Given a LCT- NUMRA
{
Vµ

j : j ∈ Z
}
, we define another sequence

{
Wµ

j : j ∈ Z
}

of closed subspaces of L2(R)

by Wµ
j := Vµ

j+1 ⊖ Vµ
j , j ∈ Z. These subspaces inherit the scaling property of Vµ

j , namely,

f (·) ∈Wµ
j if and only if f (2N·) e2ιπλξ/B

∈Wµ
j+1. (2)

Moreover, the subspaces
{
Wµ

j : j ∈ Z
}

are mutually orthogonal, and we have the following orthogonal
decomposition:

L2(R) =
⊕
j∈Z

Wµ
j = Vµ

0 ⊕

⊕
j≥0

Wµ
j

 . (3)

A set of functions
{
ψ
µ
1 , ψ

µ
1 , . . . , ψ

µ
2N−1

}
in L2(R) is said to be a set of basic wavelets associated with the LCT-

NUMRA
{
Vµ

j : j ∈ Z
}

if the family of functions
{
ψℓ(t − λ)e−

ιπA
B (t2

−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

forms an or-

thonormal basis for Wµ
0 . In view of (2) and (3), it is clear that if

{
ψ1, ψ1, . . . , ψ2N−1

}
is a set of basic wavelets,

then
{
(2N) j/2ψℓ

(
(2N) jt − λ

)
e−

ιπA
B (t2

−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

constitutes an orthonormal basis for L2(R).

3. Vector-valued Nonuniform Multiresolution Associated with Linear Canonical Transform

In this section, we introduce the notion of vector-valued nonuniform multiresolution analysis associated
with linear canonical transform (LCT-VNUMRA) and establish a necessary and sufficient condition for the
existence of associated wavelets.

Let M be a constant and 2 ≤ M ∈ Z. By L2
(
R,CM

)
, we denote the set of all vector-valued functions f(x)

i.e.,

L2
(
R,CM

)
=

{
f(x) =

(
f1(x), f2(x), . . . , fM(x)

)T
: x ∈ R, ft(x) ∈ L2(R), t = 1, 2, . . . ,M

}
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where T means the transpose of a vector. The space L2
(
R,CM

)
is called vector-valued function space. For

f(x) ∈ L2
(
R,CM

)
,
∥∥∥f

∥∥∥ denotes the norm of vector-valued function f and is defined as:

∥∥∥f
∥∥∥

2
=

 M∑
t=1

∫
R

∣∣∣ ft(x)
∣∣∣2dx


1/2

. (4)

For a vector-valued function f(x) ∈ L2
(
R,CM

)
, the integration of f(x) is defined as:∫

R

f(x)dx =
(∫
R

f1(x)dx,
∫
R

f2(x)dx, . . . ,
∫
R

fM(x)dx
)T

.

For any two vector-valued functions f,g ∈ L2
(
R,CM

)
, their vector-valued inner product ⟨f,g⟩ is defined as:

⟨f,g⟩ =
∫
R

f(x)g(x) dx. (5)

With Λ = {0, r/N} + 2Z as defined above, we define the vector-valued nonuniform multiresolution analysis
associated with linear canonical transform (LCT-VNUMRA) as follows:

Definition 3.1. Given a real uni-modular matrix µ = (A,B,C,D) and an integer N ≥ 1 and an odd integer r with
1 ≤ r ≤ 2N − 1 such that r and N are relatively prime, an associated linear canonical vector-valued non-uniform
multiresolution analysis (LCT-LCT-VNUMRA) is a sequence of closed subspaces

{
Vµ

j : j ∈ Z
}

of L2
(
R,CM

)
such

that the following properties hold:

(a) Vµ
j ⊂ Vµ

j+1 for all j ∈ Z;

(b)
⋃

j∈Z Vµ
j is dense in L2

(
R,CM

)
;

(c)
⋂

j∈Z Vµ
j = {0}, where 0 is the zero vector of L2

(
R,CM

)
;

(d) Φ(t) ∈ Vµ
j if and only ifΦ(2Nt)e−ιπA(1−(2N)2)t2/B

∈ Vµ
j+1 for all j ∈ Z;

(e) There exists a function Φ in Vµ
0 such that

{
Φ
µ
0,λ(t) =Φ(t − λ)e−

ιπA
B (t2

−λ2) : λ ∈ Λ
}
, is a complete orthonormal

basis for Vµ
0 . The vector valued functionΦ(x) is called a vector-valued scaling function of the LCT-VNUMRA.

For every j ∈ Z, define Wµ
j to be the orthogonal complement of Vµ

j in Vµ
j+1. Then we have

Vµ
j+1 = Vµ

j ⊕Wµ
j and Wµ

ℓ ⊥W′µ
ℓ if ℓ , ℓ′. (6)

It follows that for j > J,

Vµ
j = Vµ

J ⊕

j−J−1⊕
ℓ=0

Wµ
j−ℓ (7)

where all these subspaces are orthogonal. By virtue of condition (b) in the Definition 3.1, this implies

L2
(
R,CM

)
=

⊕
j∈Z

Wµ
j , (8)

a decomposition of L2
(
R,CM

)
into mutually orthogonal subspaces.

As in the standard case, one expects the existence of 2N− 1 number of functions so that their translation
by elements of Λ and dilations by the integral powers of 2N form an orthonormal basis for L2

(
R,CM

)
.
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Definition 3.2. A set of functions
{
Ψ
µ
1 ,Ψ

µ
2 , . . . ,Ψ

µ
2N−1

}
in L2

(
R,CM

)
will be called a set of basic wavelets associated

with a given LCT-VNUMRA if the family of functions
{
Ψℓ(t − λ)e−

−ιπA
B (t2

−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

forms an
orthonormal basis for Wµ

0 .

In the following, we want to seek a set of wavelet functions
{
Ψ
µ
1 ,Ψ

µ
2 , . . . ,Ψ

µ
2N−1

}
in Wµ

0 such that{
(2N) j/2Ψℓ

(
(2N) jt − λ

)
e−

ιπA
B (t2

−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

form an orthonormal basis of Wµ
j . By the nested

structure of LCT-LCT-VNUMRA, this task can be reduce to findΨℓµ ∈Wµ
0 such that

{
Ψℓ

(
t − λ

)
e−

ιπA
B (t2

−λ2) :

1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

constitutes an orthonormal basis of Wµ
0 .

Let Φ =
(
φ
µ
1 , φ

µ
2 , . . . , φ

µ
M

)T
be a scaling vector of the given LCT-VNUMRA. Since Φ ∈ Vµ

0 ⊂ Vµ
1 , there

exist M ×M constant matrix sequence {Gλ}λ∈Λ such that

Φ(t) =
√

2N
∑
λ∈Λ

GλΦ
(
2Nt − λ

)
e−

ιπA
B (t2

−λ2). (9)

where Gλ =

∫
R

Φ(t)e−ιπA(1−(2N)2)t2/Bϕ
µ
1,λ(t)dt.

Taking LCT on both sides of equation (9), we obtain

L[Φ(t)](ξ) = Φ̂
(
ξ
B

)
= Gµ

(
ξ

2NB

)
Φ̂

(
ξ

2NB

)
, (10)

where Gµ
(
ξ
B

)
= 1
√

2N

∑
λ∈ΛGµ

λ e−2πιλξ/B, is called symbol or vector refinement mask of the scaling function Φ. By
replacing ξ by ξ/2NB in relation (10), we obtain

Φ̂
(
ξ

2NB

)
= Gµ

(( 1
2NB

)2

ξ

)
Φ̂

(( 1
2NB

)2

ξ

)
,

and then

Φ̂(ξ) = Gµ
(
ξ

2NB

)
Gµ

(( 1
2NB

)2

ξ

)
Φ̂

(( 1
2NB

)2

ξ

)
.

We can continue this and obtain, for any n ∈N,

Φ̂(ξ) = Gµ
(
ξ

2NB

)
Gµ

(( 1
2NB

)2

ξ

)
· · ·Gµ

(( 1
2NB

)n

ξ

)
Φ̂

(( 1
2NB

)n

ξ

)

= Φ̂

(( 1
2NB

)n

ξ

) n∏
m=1

Gµ

(( 1
2NB

)m

ξ

)
.

By taking n→∞ and noting that
∣∣∣∣∣( 1

2NB

)n∣∣∣∣∣ = 1
(2NB)n → 0 as n→∞, the above relation reduces to

Φ̂(ξ) = Φ̂(0)
∞∏

m=1

Gµ

(( 1
2NB

)m

ξ

)
. (11)

As usual, we assume Φ̂(ξ) is continuous at zero, and Φ̂(0) = IM, where IM denotes the identity matrix
of order M ×M. Therefore, equation (11) becomes

Φ̂(ξ) =
∞∏

m=1

Gµ

(( 1
2NB

)m

ξ

)
(12)
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Moreover, it is immediate from (10) that G(0) = IM, which is essential for convergence of the infinite product∏
∞

m=1 Gµ
((

1
2NB

)m
ξ
)
.

We now investigate the orthogonal property of the scaling functionΦ by means of the vector refinement
mask G(ξ).

Lemma 3.3. If Φ ∈ L2
(
R,CM

)
defined by Equation (9) is an orthogonal vector-valued scaling function, then we

have ∑
m∈2Z

Gµ
mGµ

2NB(λ−λ′)+m = 2NBδλ,λ′ IM, ∀ λ, λ
′
∈ Λ, (13)

where δλ,λ′ denotes the Kronecker’s delta.

Proof. Since the scaling function is orthogonal vector-valued, we have

δλ,λ′ IM =

∫
R

Φ(t − λ)e−
−ιπA

B (t2
−λ2)Φ(t − λ′)e−

−ιπA
B (t2−λ′2)dt

=
∑
σ∈Λ

∫
R

Gµ
σΦ

(
2NBt − 2NBλ − σ

)∑
σ∈Λ

Gµ
σΦ

(
2NBt − 2NBλ′ − σ

)
dt

=
∑
σ∈Λ

∑
σ∈Λ

Gµ
σ

{∫
R

Φ
(
2NBt − 2NBλ − σ

)
Φ

(
2NBt − 2NBλ′ − σ

)}
dtGµ

σ

=
1

2NB

∑
σ∈Λ

∑
σ∈Λ

Gµ
σ

{∫
R

Φ
(
t − 2NBλ − σ

)
Φ

(
t − 2NBλ′ − σ

)}
dtGµ

σ .

Taking σ = 2m and σ = 2n, where m,n ∈ Z, we have

δλ,λ′ IM =
1

2NB

∑
σ∈Λ

∑
σ∈Λ

Gµ
σ

〈
Φ

(
t − 2NBλ − σ

)
,Φ

(
t − 2NBλ′ − σ

)〉
Gµ
σ

=
1

2NB

∑
m∈N0

∑
n∈N0

Gµ
2m

〈
Φ

(
t − 2NBλ − 2m

)
,Φ

(
t − 2NBλ′ − 2n

)〉
Gµ

2n

=
1

2NB

∑
m∈N0

Gµ
2mGµ

2NB(λ−λ′)+2m.

Therefore, identity (13) follows.

Taking σ =
r

NB
+ 2m and σ = 2n, where m,n ∈ Z, we have

δλ,λ′ IM =
1

2NB

∑
σ∈Λ

∑
σ∈Λ

Gµ
σ

〈
Φ

(
t − 2NBλ − σ

)
,Φ

(
t − 2NBλ′ − σ

)〉
Gµ
σ

=
1

2NB

∑
m∈2Z

∑
n∈2Z

Gµ
r

NB+2m

〈
Φ

(
t − 2NBλ −

r
NB
− 2m

)
,

Φ
(
t − 2NBλ′ − 2n

)〉
Gµ

2n

=
1

2NB

∑
m∈2Z

Gµ
2mGµ

2NB(λ−λ′)+2m.

Thus, in both the cases, we get the desired result.
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We denote Ψ0 = Φ, the scaling function, and consider 2N − 1 functions Ψµ
ℓ , 1 ≤ ℓ ≤ 2N − 1, in Wµ

0 as
possible candidates for wavelets. Since (1/2NB)Ψµ

ℓ (1/2NBt) ∈ Vµ
−1 ⊂ Vµ

0 , it follows from property (d) of
Definition 3.1 that for each ℓ, 0 ≤ ℓ ≤ 2N − 1, there exists a uniquely supported sequence

{
Hℓ
λ

}
λ∈Λ, 1≤ℓ≤2N−1

of M ×M constant matrices such that

Ψ
µ
ℓ (t) =

√

2N
∑
λ∈Λ

Hλ,ℓΦ (2Nt − λ) e−
ιπA

B (t2
−λ2). (14)

On taking the LCT on both sides of Equation (14), we have

Ψ̂
µ
ℓ

(
2N

ξ
B

)
= Hµ

ℓ

(
ξ
B

)
Φ̂

(
ξ
B

)
, (15)

where

Hµ
ℓ

(
ξ
B

)
=

1
√

2N

∑
λ∈Λ

Hµ
λ,ℓ e−2πιλξ/B. (16)

In view of the specific form of Λ =
{
0,

r
N

}
+ 2Z, we observe that

Hµ
ℓ

(
ξ
B

)
= Hµ,1

ℓ

(
ξ
B

)
+ e−2πιξ/NBHµ,2

ℓ

(
ξ
B

)
, 0 ≤ ℓ ≤ 2N − 1, (17)

where Hµ,1
ℓ and Hµ,2

ℓ are M ×M constant symmetric matrix sequences.

Lemma 3.4. Consider a LCT-VNUMRA on R as in Definition 3.1. Suppose that there exist 2N − 1 functions
Ψk, k = 1, 2, . . . , 2N − 1 in V1. Then the family of functions{

Ψk(t − λ)e−
ιπA

B (t2
−λ2) : λ ∈ Λ, k = 0, 1, . . . , 2N − 1

}
(18)

forms an orthonormal system in V1 if and only if

2N−1∑
r=0

Hµ
k

(
ξ

2NB
+

r
4N

)
Hµ
ℓ

(
ξ

2NB
+

r
4N

)
= δk,ℓ IM, 0 ≤ k, ℓ ≤ 2N − 1. (19)

Proof. Firstly, we will prove the necessary condition. By the orthonormality of the system {Ψk(t −
λ)e−

ιπA
B (t2

−λ2)
}λ∈Λ, k=0,1,...,2N−1, we have〈

Ψk(t − λ),Ψℓ(t − σ)
〉
=

∫
R

Ψk(t − λ)e−
ιπA

B (t2
−λ2)Ψℓ(t − σ)e−

ιπA
B (t2−σ2) dt = eιπ

A
B (λ2

−σ2)δk,ℓ δλ,σ IM,

where λ, σ ∈ Λ and k, ℓ ∈ {0, 1, 2, . . . , 2N − 1}. Above relation can be recast in LCT domain as

δk,ℓ δλ,σIM =

∫
R

Ψ̂k

(
ξ
B

)
e
−2πιξλ

B Ψ̂ℓ

(
ξ
B

)
e

2πιξσ
B dξ

=

∫
R

Ψ̂k

(
ξ
B

)
Ψ̂ℓ

(
ξ
B

)
e
−2πιξ

B (λ−σ)dξ.

Taking λ = 2m and σ = 2n, where m,n ∈ Z, we have

δk,ℓ δm,nIM =
1
B

∫
R

e
−4πιξ

B (m−n)Ψ̂k

(
ξ
B

)
Ψ̂ℓ

(
ξ
B

)
dξ

=
1
B

∫
[0,BN]

e
−4πιξ

B (m−n)
∑
j∈Z

Ψ̂k

(
ξ
B
+N j

)
Ψ̂ℓ

(
ξ
B
+N j

)
dξ.
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Define

Fk,ℓ

(
ξ
B

)
=

∑
j∈Z

Ψ̂k

(
ξ
B
+N j

)
Ψ̂ℓ

(
ξ
B
+N j

)
, 0 ≤ k, ℓ ≤ 2N − 1.

Then, we have

δk,ℓ δm,nIM =
1
B

∫
[0,BN]

e
−4πιξ

B (m−n)Fk,ℓ

(
ξ
B

)
dξ

=
1
B

∫
[0,BN]

e
−4πιξ

B (m−n)

2N−1∑
s=0

Fk,ℓ

(
ξ
B
+

s
2

) dξ,

and

2N−1∑
s=0

Fk,ℓ

(
ξ
B
+

s
2

)
= 2δk,ℓ IM. (20)

On taking λ =
r
N
+ 2m and σ = 2n, where m,n ∈ Z, we obtain

0 =

∫
R

Ψ̂k

(
ξ
B

)
e
−2πιξλ

B Ψ̂ℓ

(
ξ
B

)
e

2πιξσ
B dξ

=
1
B

∫
[0,BN]

e
−2πιξ

B ( r
N+2m+2n)Ψ̂k

(
ξ
B

)
Ψ̂ℓ

(
ξ
B

)
dξ

=
1
B

∫
[0,BN]

e−4πι ξB (m−n)e−2πι ξB
r
N

∑
j∈Z

Ψ̂k

(
ξ
B
+N j

)
Ψ̂ℓ

(
ξ
B
+N j

)
dξ

=
1
B

∫
[0,BN]

e−4πι ξB (m−n)e−2πι ξB
r
N Fk,ℓ

(
ξ
B

)
dξ

=
1
B

∫
[0,B/2)

e−4πι ξB (m−n)e−2πι ξB
r
N

2N−1∑
s=0

e−2πι r
N sFk,ℓ

(
ξ
B
+

s
2

) dξ.

We conclude that

2N−1∑
s=0

e−2πι r
N sFk,ℓ

(
ξ
B
+

s
2

)
= 0. (21)

Also we have
2N−1∑

j=0

Fk,ℓ

(
ξ
B
+

j
2

)
=

∑
j∈Z

Ψ̂k

(
ξ
B
+

j
2

)
Ψ̂ℓ

(
ξ
B
+

j
2

)
.

Therefore, equations (20) reduces to

∑
s∈Z

Ψ̂k

(
ξ
B
+

j
2

)
Ψ̂ℓ

(
ξ
B
+

j
2

)
= 2δk,ℓ IM. (22)
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Moreover, we have

Fk,ℓ

(
2Nξ

B

)
=

∑
j∈Z

Ψ̂k

(
2N

(
ξ
B
+

j
2

))
Ψ̂ℓ

(
2N

(
ξ
B
+

j
2

))

=
∑
j∈Z

Hµ
k

(
ξ
B
+

j
2

)
Φ̂

(
ξ
B
+

j
2

)
Φ̂

(
ξ
B
+

j
2

)
Hµ
ℓ

(
ξ
B
+

j
2

)

=
∑

j=n.2N

Hµ
k

(
ξ
B
+ nN

)
Φ̂

(
ξ
B
+ nN

)
Φ̂

(
ξ
B
+ nN

)
Hµ
ℓ

(
ξ
B
+ nN

)

+
∑

j=n.2N+1

Hµ
k

(
ξ
B
+ nN +

1
2

)
Φ̂

(
ξ
B
+ nN +

1
2

)
Φ̂

(
ξ
B + nN + 1

2

)
Hµ
ℓ

(
ξ
B + nN + 1

2

)
+ · · ·+

+
∑

j=n.2N+(2N−1)

Hµ
k

(
ξ
B
+ nN +

2N − 1
2

)
Φ̂

(
ξ
B
+ nN +

2N − 1
2

)
Φ̂

(
ξ
B + nN + 2N−1

2

)
Hµ
ℓ

(
ξ
B + nN + 2N−1

2

)
= Hµ

k

(
ξ
B

) 
∑

j=n.2N

Φ̂
(
ξ
B
+ nN

)
Φ̂

(
ξ
B
+ nN

) Hµ
ℓ

(
ξ
B

)
+Hµ

k

(
ξ
B +

1
2

) 
∑

j=n.2N+1

Φ̂
(
ξ
B
+ nN +

1
2

)
Φ̂

(
ξ
B
+ nN +

1
2

) Hµ
ℓ

(
ξ
B +

1
2

)
+ · · ·

+Hµ
k

(
ξ
B +

2N−1
2

) 
∑

j=n.2N+(2N−1)

Φ̂
(
ξ
B
+ nN +

2N − 1
2

)
Φ̂

(
ξ
B
+ nN +

2N − 1
2

)
Hµ
ℓ

(
ξ
B +

2N−1
2

)
= 2

{
Hµ

k

(
ξ
B

)
Hµ
ℓ

(
ξ
B

)
+Hµ

k

(
ξ
B +

1
2

)
Hµ
ℓ

(
ξ
B +

1
2

)
+ · · ·+

Hµ
k

(
ξ
B +

2N−1
2

)
Hµ
ℓ

(
ξ
B +

2N−1
2

)}
= 2

2N−1∑
j=0

Hµ
k

(
ξ
B
+

j
2

)
Hµ
ℓ

(
ξ
B
+

j
2

)
.

Therefore, we have

∑
j∈Z

Ψ̂k

(
ξ
B
+

j
2

)
Ψ̂ℓ

(
ξ
B
+

j
2

)
= 2

2N−1∑
j=0

Hµ
k

(
ξ

2NB
+

j
4N

)
Hµ
ℓ

(
ξ

2NB
+

j
4N

)
.
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By using (22), we conclude that

2N−1∑
j=0

Hµ
k

(
ξ

2NB
+

j
4N

)
Hµ
ℓ

(
ξ

2NB
+

j
4N

)
= δk,ℓ IM.

Now we will prove the sufficiency.
By equations (15), we have

∑
j∈Z

Ψ̂k

(
ξ
B
+

j
2

)
Ψ̂ℓ

(
ξ
B
+

j
2

)

=
∑
j∈Z

Hµ
k

(
ξ

2NB
+

j
4N

)
Φ̂

(
ξ

2NB
+

j
4N

)
Hµ
ℓ

(
ξ

2NB
+

j
4N

)
Φ̂

(
ξ

2NB
+

j
4N

)

= Hµ
k

(
ξ

2NB +
n
2

) 
∑

j=n.2N

Φ̂
(
ξ

2NB
+

n
2

)
Φ̂

(
ξ

2NB
+

n
2

) Hµ
ℓ

(
ξ

2NB +
n
2

)

+Hµ
k

(
ξ

2NB +
n
2 +

1
4N

) 
∑

j=n.2N

Φ̂
(
ξ

2NB
+

n
2
+

1
4N

)
Φ̂

(
ξ

2NB
+

n
2
+

1
4N

) Hµ
ℓ

(
ξ

2NB +
n
2 +

1
4N

)
+ · · ·

+Hµ
k

(
ξ

2NB +
n
2 +

2N−1
4N

) 
∑

j=n.2N

Φ̂
(
ξ

2NB
+

n
2
+

2N − 1
4N

)
Φ̂

(
ξ

2NB
+

n
2
+

2N − 1
4N

)
Hµ
ℓ

(
ξ

2NB +
n
2 +

2N−1
4N

)
= 2

{
Hµ

k

(
ξ

2NB

)
Hµ
ℓ

(
ξ

2NB

)
+Hµ

k

(
ξ

2NB +
1

4N

)
Hµ
ℓ

(
ξ

2NB +
1

4N

)
+ · · ·+

Hµ
k

(
ξ

2NB +
2N−1

4N

)
Hµ
ℓ

(
ξ

2NB +
2N−1

4N

)}
= 2δk,ℓ IM.

It proves the orthonormality of the system
{
Ψk(x − λ)e−

ιπA
B (t2

−λ2) : λ ∈ Λ, k = 0, 1, . . . , 2N − 1
}
.

Theorem 3.5. Suppose
{
Ψk(x − λ)e−

ιπA
B (t2

−λ2)
}
λ∈Λ, k=0,1,...,2N−1

is the system as defined in Lemma 3.4 and orthonormal

in V1. Then this system is complete in Wµ
0 ≡ Vµ

1 ⊖ Vµ
0 .

Proof. Since the system (18) is orthonormal in V1. By Lemma 3.4 we have,{
Hµ

k

(
ξ

2NB

)
Hµ
ℓ

(
ξ

2NB

)
+Hµ

k

(
ξ

2NB
+

1
4N

)
Hµ
ℓ

(
ξ

2NB
+

1
4N

)
+ · · · +Hµ

k

(
ξ

2NB
+

2N − 1
4N

)
Hµ
ℓ

(
ξ

2NB
+

2N − 1
4N

)}
= δk,ℓ IM.

We will now prove its completeness.
For fk ∈Wµ

0 , there exists constant matrices
{
Pµ
λ,k

}
such that
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fk(t) =
√

2N
∑
λ∈Λ

Pµ
λ,kΦ

(
2Nt − λ

)
e−
−ιπA

B (t2
−λ2), 0 ≤ k ≤ 2N − 1.

Above relation can be written in the LCT domain as

f̂k

(
ξ
B

)
= Pµk

(
ξ

2NB

)
Φ̂

(
ξ

2NB

)
, (23)

where

Pµk (ξ) =
1√
qN

∑
λ∈Λ

Pµ
λ,ke−2πιλξ/B.

On the other hand, fk < Vµ
0 and fk ∈Wµ

0 implies∫
R

fk(t)Φ(t − λ)e−
−ιπA

B (t2
−λ2) dt = 0, λ ∈ Λ.

This condition is equivalent to

∑
n∈Z

f̂k

(
ξ
B
+

n
2

)
Φ̂

(
ξ
B
+

n
2

)
= 0, ξ ∈ R.

Therefore, the identities (10) and (23) give for all ξ ∈ R,

∑
n∈Z

Pµk

(
ξ

2NB
+

j
4N

)
Φ̂

(
ξ

2NB
+

j
4N

)
Gµ

(
ξ

2NB
+

j
4N

)
Φ̂

(
ξ

2NB
+

j
4N

)
= 0.

As similar to the identity (19) in Lemma 3.4, we have for 0 ≤ k ≤ 2N − 1,

Pµk

(
ξ

2NB

)
Gµ

(
ξ

2NB

)
+Pµk

(
ξ

2NB
+

1
4N

)
Gµ

(
ξ

2NB
+

1
4N

)
+ · · ·+Pµk

(
ξ

2NB
+

2N − 1
4N

)
Gµ

(
ξ

2NB
+

2N − 1
4N

)
= 0.

(24)

Let

Pµk′
(
ξ

2NB

)
=

(
Pµk

(
ξ

2NB

)
,Pµk

(
ξ

2NB
+

1
4N

)
, . . . ,Pµk

(
ξ

2NB
+

2N − 1
4N

))
,

G̃µ
(
ξ

2NB

)
=

(
Gµ

(
ξ

2NB

)
,Gµ

(
ξ

2NB
+

1
4N

)
, . . . ,Gµ

(
ξ

2NB
+

2N − 1
4N

))
,

Hµ
k′

(
ξ

2NB

)
=

(
Hµ

k

(
ξ

2NB

)
,Hµ

k

(
ξ

2NB
+

1
4N

)
, . . . ,Hµ

k

(
ξ

2NB
+

2N − 1
4N

))
.

Then, equation (19) implies that for any ξ ∈ R, the column vectors in 2NM × M matrix G̃µ and the
column vectors in 2NM ×M matrix Hµ

k′ are orthogonal for k = 0, 1, . . . , 2N − 1 and these vectors form an
orthogonal basis of 2NM dimensional complex Euclidean space C2NM.

Equation (24) implies that the column vectors in 2NM×M matrix Pµk′ and the column vectors of 2NM×M
matrix G̃µ are orthogonal. Therefore, there exists an M ×M matrix Qk(ξ) such that

Pµk

(
ξ
B

)
= Qµ

k

(
ξ
B

)
Hµ

k

(
ξ
B

)
, ξ ∈ R, 0 ≤ k ≤ 2N − 1.
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Therefore, from equations (15) and (23), we have

f̂k

(
ξ
B

)
= Pµk

(
ξ

2NB

)
Φ̂

(
ξ

2NB

)
= Qµ

k

(
ξ

2NB

)
Hµ

k

(
ξ

2NB

)
Φ̂

(
ξ

2NB

)
= Qµ

k

(
ξ

2NB

)
Ψ̂k

(
ξ
B

)
.

By using the orthonormality of the system (18), we have∫
R

f̂k

(2Nξ
B

)
f̂k

(2Nξ
B

)
dξ =

∫
R

Qµ
k

(
ξ
B

)
Ψ̂k

(2Nξ
B

)
Ψ̂k

(2Nξ
B

)
Qµ

k

(
ξ
B

)
dξ.

Therefore, we have ∫
R

f̂k

(2Nξ
B

)
f̂k

(2Nξ
B

)
dξ = 2

∫ 1/2

0
Qµ

k

(
ξ
B

)
Qµ

k

(
ξ
B

)
dξ.

This shows that Pk(µξ) has the series expansion and let the constant M ×M matrices
{
Rµ
λ,k

}
λ∈Λ,k=0,1,...,2N−1

be
its coefficients. Therefore, we have

fk(t) =
∑
λ∈Λ

Rµ
λ,kΨk(t − λ)e−

−ιπA
B (t2

−λ2).

It proves the completeness of the system
{
Ψk(x − λ)e−

−ιπA
B (t2

−λ2)
}
λ∈Λ, k=0,1,...,2N−1

in W0.

If Ψµ
0 ,Ψ

µ
1 , . . . ,Ψ

µ
2N−1 ∈ Vµ

1 are as in Lemma 3.4, one can obtain from them as orthonormal basis for
L2

(
R,CM

)
by following the standard procedure for construction of wavelet from a given MRA. It can be easily

checked that for every j ∈ Z, the collection
{√

2NΨk

(
(2N) j t − λ

)
e−
−ιπA

B (t2
−λ2) : λ ∈ Λ, k = 0, 1, . . . , 2N − 1

}
is a

complete orthogonal system for Vµ
j+1. Therefore, it follows immediately from (8) that the collection{√

2NΨk

(
(2N) j t − λ

)
e−
−ιπA

B (t2
−λ2) : λ ∈ Λ, k = 0, 1, . . . , 2N − 1

}
forms a complete orthonormal system for L2

(
R,CM

)
.

4. Construction of LCT-VNUMRA

The main goal of this section is to construct a LCT-VNUMRA starting from a vector-valued refinement
mask of the form

Gµ
(
ξ
B

)
= Gµ

λ,1

(
ξ
B

)
+ e−2πι r

N
ξ
B Gµ

λ,2

(
ξ
B

)
, (25)

where N > 1 is an integer and r is an odd integer with 1 ≤ r ≤ 2N − 1 such that r and N are relatively
prime and Gµ

λ,1

(
ξ
B

)
and Gµ

λ,2

(
ξ
B

)
are M × M constant symmetric matrix sequences. In other words, we

establish conditions under which the solutions of scaling equation (9) generate a LCT-VNUMRA in L2(R)
or equivalently, we find a sufficient for the orthonormality of the system

{
Φ(t−λ)e−

−ιπA
B (t2

−λ2) : λ ∈ Λ
}
, where

Λ = {0, r/N} + 2Z. Therefore, the scaling vector Φ associated with given LCT-VNUMRA should satisfy the
scaling identity

Φ̂
(2Nξ

B

)
= Gµ

(
ξ
B

)
Φ̂

(
ξ
B

)
. (26)
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We further assume that:

2N−1∑
s=0

Gµ
(
ξ

2NB
+

s
4N

)
Gµ

(
ξ

2NB
+

s
4N

)
= IM. (27)

Theorem 4.1. Let Gµ
(
ξ
B

)
be the vector-valued refinement mask associated with the vector-valued scaling functionΦ

of LCT-VNUMRA and satisfies the condition (27) together with Gµ(0) = IM and Gµ
(
ξ
B

)
= Gµ

(
ξ
B

)
,∀ ξ ∈ R. Then,

a sufficient condition for the collection
{
Φ(x − λ)e−

−ιπA
B (t2

−λ2)
}

:λ∈Λ
to be orthonormal in L2

(
R,CM

)
is the existence of

a constant C > 0 and of a compact set E ⊂ R that contains the neighbourhood of the origin such that∣∣∣∣∣∣Gµ

(
ξ

(2N)kB

)∣∣∣∣∣∣ ≥ C, ∀ ξ ∈ R, k ∈ Z. (28)

Proof. Let us assume the existence of a constant C and of the compact set E ⊂ K with properties satisfied
above. For any k ∈N, we define

1k

(
ξ
B

)
=


k∏

j=1

Gµ

(
ξ

(2N)kB

)χE

(
ξ

(2N)kB

)
.

As the interior of the compact set E contains 0, 1k → Φ̂ pointwise as k → ∞. Therefore, there exists
a constant W > 0 such that

∣∣∣Gµ
(
ξ
B

)
− Gµ(0)

∣∣∣ ≤ W|ξ|, for all ξ ∈ R, and thus
∣∣∣Gµ

(
ξ
B

) ∣∣∣ ≥ 1 −W|ξ|. Since E is
bounded, we can find an integer k0 ∈ Z such that W|ξ| < (2N)k, for k > k0, ξ ∈ E and hence, there exists a
constant C1 > 0 such that

χE

(
ξ
B

)
≤ C1

∣∣∣Φ̂ (
ξ
B

) ∣∣∣, for all ξ ∈ R.

Thus, we have ∣∣∣∣∣1k

(
ξ
B

)∣∣∣∣∣ ≤ C1


k∏

j=1

∣∣∣∣∣∣Gµ

(
ξ

(2N)kB

)∣∣∣∣∣∣

∣∣∣∣∣∣Φ̂

(
ξ

(2N)kB

)∣∣∣∣∣∣ = C1

∣∣∣∣∣Φ̂ (
ξ
B

)∣∣∣∣∣ .
Therefore, by Lebesgue dominated convergence theorem the sequence

{
1k

}
converges to Φ̂ in L2-norm.

We will now compute by induction the integral∫
R

1k(ξ) 1k(ξ)χ(λ−σ)(ξ) dξ, where λ, σ ∈ Λ.

For k = 1, we have∫
R

11

(
ξ
B

)
11

(
ξ
B

)
e−2πι ξB (λ−σ) dξ

=

∫
R

Gµ
(
ξ

2NB

)
Gµ

(
ξ

2NB

)
χE

(
ξ

2NB

)
e−2πι ξB (λ−σ) dξ

= (2N)
∫

E
Gµ

(
ξ
B

)
Gµ

(
ξ
B

)
e−2πι (2N)ξ

B (λ−σ) dξ

= 4N
∫ B/2

0

2N−1∑
s=0

Gµ
(
ξ
B
+

1
4N

)
Gµ

(
ξ
B
+

1
4N

)
e−πι

ξ
B (λ−σ)s

 e−2πι (2N)ξ
B (λ−σ) dξ.
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If λ − σ ∈ 2Z, then the expression in the brackets in the above integral is equal to IM by (27) and thus∫
R

11

(
ξ
B

)
11

(
ξ
B

)
e−2πι ξB (λ−σ) dξ = 4N

∫ B/4N

0
IMe−2πι (2N)ξ

B (λ−σ)dξ

= 2
∫

[0,B/2)
IMe−2πι ξB (λ−σ)dξ

= δλ,σ IM.

On the other hand, if λ = 2m, σ = 2n + r/N, where m,n ∈ Z, then the same expression will vanish and
the integral becomes ∫

R

11

(
ξ
B

)
11

(
ξ
B

)
e−2πι ξB (λ−σ) dξ = 0.

When k ≥ 2, we have∫
R

1k

(
ξ
B

)
1k

(
ξ
B

)
e−2πι ξB (λ−σ) dξ

=

∫
R

Gµ

(
ξ

(2N)1B

)
Gµ

(
ξ

(2N)2B

)
. . .Gµ

(
ξ

(2N)kB

)
Gµ

(
ξ

(2N)kB

)
Gµ

(
ξ

(2N)k−1B

)

. . . Gµ
(

ξ
(2N)1B

)
e−2πι ξB (λ−σ)dξ

= (2N)k
∫

E
Gµ

(
(2N)k−1ξ

B

)
Gµ

(
(2N)k−2ξ

B

)
. . .Gµ

(
ξ
B

)
Gµ

(
ξ
B

)
Gµ

(
(2N)ξ

B

)
. . . Gµ

(
(2N)k−1ξ

B

)
e−2πι (2N)kξ

B (λ−σ)dξ

= (2N)k
∫

E

 k−1∏
ℓ=0

Gµ

(
(2N)ℓξ

B

)
 k−1∏
ℓ=0

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

= (2N)k
∫

E

 k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

) Gµ
(
ξ
B

)
Gµ

(
ξ
B

) k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

= 2(2N)k
∫ B/2

0

 k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

) Gµ
(
ξ
B

)
Gµ

(
ξ
B

) k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

= 2(2N)k
∫ B/4N

0

 k−1∏
ℓ=2

Gµ

(
(2N)ℓξ

B

)
2N−1∑

s=0

Gµ
(2Nξ

B
+

s
2

)
Gµ

(
ξ
B
+

s
2

)
Gµ

(
2Nξ

B +
s
2

)
Gµ

(
ξ
B +

s
2

)]  k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

= 2(2N)k
∫ B/4N

0

 k−1∏
ℓ=2

Gµ

(
(2N)ℓξ

B

) S
(
ξ
B

)  k−1∏
ℓ=2

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ
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where

S
(
ξ
B

)
=

2N−1∑
s=0

Gµ
(2Nξ

B
+

s
2

)
Gµ

(
ξ
B
+

s
2

)
Gµ

(2Nξ
B
+

s
2

)
Gµ

(
ξ
B
+

s
2

) .
Since the refinement mask Gµ

(
ξ
B

)
can be expressed as (25), therefore, the above relation becomes

S
(
ξ
B

)
= Gµ

λ,1

(
ξ
B

)
Gµ
λ,1

(
ξ
B

)
Gµ
λ,2

(
ξ
B

)
Gµ
λ,2

(
ξ
B

)
= Gµ

(
2Nξ

B

)
Gµ

(
2Nξ

B

)
.

Thus, we have∫
R

1k

(
ξ
B

)
1k

(
ξ
B

)
e−2πι ξB (λ−σ) dξ

= (2N)k
∫

E/2N

 k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

)
 k−1∏
ℓ=1

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

= (2N)k−1
∫

E

 k−2∏
ℓ=0

Gµ

(
(2N)ℓξ

B

)
 k−2∏
ℓ=0

Gµ

(
(2N)ℓξ

B

)e−2πι (2N)kξ
B (λ−σ)dξ

=

∫
R

1k−1

(
ξ
B

)
1k−1

(
ξ
B

)
e−2πι ξB (λ−σ) dξ

Therefore for any k ∈ Z, we have∫
R

1k

(
ξ
B

)
1k

(
ξ
B

)
e−2πι ξB (λ−σ) dξ = δλ,σ, λ, σ ∈ Λ.

Passing to the limit as k→∞ and using Plancherel’s formula, we obtain∫
R

Φ(x − λ)e
−2ιπA

B (t2
−λ2)Φ(x − σ)e

−2ιπA
B (t2−σ2) dx =

∫
R

Φ̂(ξ)Φ̂(ξ)e
−2ιπA

B (λ2
−σ2) dξ = δλ,σ, λ, σ ∈ Λ

which proves the desired orthonormality.

5. Conclusion

In this paper, we continue the study based on this nonstandard setting and introduced vector-valued
nonuniform multiresolution analysis associated with linear canonical transform (LCT-VNUMRA). We es-
tablish a necessary and sufficient condition for the existence of associated wavelets and derive an algorithm
for the construction of vector-valued MRA analysis starting from a vector refinement mask with appropriate
conditions.
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[17] G. Ólafsson, Continuous action of Lie groups onRn and frames, International Journal of Wavelets Multiresolution and Information

Process,3 (2005) 211-232.
[18] F. A. Shah and M. Y. Bhat, Vector-valued nonuniform multiresolution analysis on local fields, International Journal of Wavelets

Multiresolution and Information Process,113(4) (2015) 1550029, 27pp.
[19] F. A. Shah and W. Z. Lone and H. Mejjaoli, Nonuniform Multiresolution Analysis Associated with Linear Canonical Transform,

Journal of Pseudo-Differential Operators and Applications 21(2021) 1-17.
[20] X. G. Xia and B. W. Suter, Vector-valued wavelets and vector filter banks, IEEE Transactions in Signal Process, 44(3) (1996) 508–518.
[21] T.Z. Xu, B. Z. Li, Linear Canonical Transform and Its Applications, Science Press, Beijing, China, (2013)


