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Abstract. The concept of gyrogroups is a generalization of groups which do not explicitly have associativity.
In this paper, we show that every first-countable strongly topological gyrogroup admits a left-invariant
metric generating the original topology of it and every T0 compact paratopological gyrogroup is a Hausdorff
compact topological gyrogroup. Also, some basic properties on topological gyrogroups and paratopological
gyrogroups are discussed.

1. Introduction

The concept of gyrogroup was firstly posed by A. A. Ungar in the study of c-ball of relativistically
admissible velocities with Einstein velocity addition [21]. The Einstein velocity addition ⊕E in the c-ball is
given by the following equation

u ⊕E v =
1

1 + ⟨u,v⟩c2

{u +
1
γu

v +
1
c2

γu

1 + γu
⟨u,v⟩u},

where u,v ∈ R3
c = {v ∈ R3 : ∥v∥ < c} and γu is the Lorentz factor given by

γu =
1√

1 − ∥u∥
2

c2

.

The system (R3
c ,⊕E) does not form a group since ⊕E is not associative. Loosely speaking, a gyrogroup (see

Definition 2.1) is a nonassociative group-like structure that shares many properties with groups and, in fact,
every group may be viewed as a gyrogroup with trivial gyroautomorphisms. It turns out that gyrogroups
share remarkable analogies with groups. Several well-known results in group theory can be naturally
extended to the case of gyrogroups such as the Lagrange theorem [18], the fundamental isomorphism
theorems, the Cayley theorem [19], the orbit-stabilizer theorem, the class equation, and the Burnside lemma
[17].
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Supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20221299, BK20201149), the National Natural Science

Foundation of China (No. 12071408) and Jiangsu University Qinglan Project (2021-11).
Email addresses: lpy91132006@aliyun.com (Piyu Li), srx20212021@163.com (Rongxin Shen)



P. Li, R. Shen / Filomat 37:15 (2023), 5087–5093 5088

From the topological aspect, Atiponrat [1] firstly introduced the notion of topological gyrogroups and the
separation axioms and some basic properties of the topological gyrogroups were studied. In particular, Cai
et al. [9] extended the famous Birkhoff-Kakutani theorem by proving that every first-countable Hausdorff
topological gyrogroup is metrizable [9, Theorem 2.3]. In 2019, M. Bao and F. Lin [5] defined the strongly
topological gyrogroups and proved that every feathered strongly topological gyrogroup is paracompact.
In fact, this kind of spaces has been studied for many years, see [3, 7, 13, 14, 16, 22, 23]. In [2, 12], the
authors studied some separation axioms of paratopological gyrogroups. However, the conditions under
which a paratopolgical gyrogroup turns to be a topological gyrogroup was not considered. As studied
in paratoplogical groups, it happens quite frequently that a paratopological group satisfying a natural
compactness-type condition turns out to be a topological group [20].

In this paper, we study some properties of topological gyrogroups. We mainly show that every first-
countable strongly topological gyrogroup admits a left-invariant metric generating its topology and every
T0 compact paratopological gyrogroup is a topological gyrogroup.

2. Preliminaries

In this section, we introduce the necessary notations, terminologies and some facts about topological
gyrogroups.

Let G be a non-empty set and ⊕ : G × G → G a binary operation on G. Then the pair (G,⊕) is called a
groupoid or a magma. An automorphism φ of a groupoid (G,⊕) is a bijective self-mapping of G, φ : G→ G,
which preserves its groupoid operation, that is,φ(a⊕b) = φ(a)⊕φ(b) for every a, b ∈ G. The symbol Aut(G,⊕)
denotes the set of all automorphisms of a groupoid (G,⊕).

Definition 2.1. ([22]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element e ∈ G such that e ⊕ a = a = a ⊕ e for all a ∈ G.
(G2) For each x ∈ G, there exists a unique inverse element ⊖x ∈ G such that ⊖x ⊕ x = e = x ⊕ (⊖x).
(G3) For all x, y ∈ G, there exists 1yr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕1yr[x, y](z)

for all z ∈ G.
(G4) For any x, y ∈ G, 1yr[x ⊕ y, y] = 1yr[x, y].

Notice that a group is a gyrogroup (G,⊕) such that 1yr[x, y] is the identity function for all x, y ∈ G.

Proposition 2.2. ([22]) Let (G,⊕) be a gyrogroup and a, b, c ∈ G. Then:
(1) ⊖(⊖a) = a;
(2) ⊖a ⊕ (a ⊕ b) = b;
(3) ⊖(a ⊕ b) = 1yr[a, b](⊖b ⊖ a);
(4) 1yr[a, b] = 1yr−1[b, a], the inverse of 1yr[b, a].

Definition 2.3. ([1]) A triple (G, τ,⊕) is called a topological gyrogroup if and only if
(1) (G, τ) is a topological space;
(2) (G,⊕) is a gyrogroup;
(3) The binary operation⊕ : G×G→ G is continuous where G×G is endowed with the product topology

and the operation of taking the inverse ⊖(·) : G→ G, i.e. x→ ⊖x, is continuous.

If a triple (G, τ,⊕) satisfies the first two conditions and its binary operation is continuous, we call such
triple a paratopological gyrogroup [2]. Sometimes we will just say that G is a topological gyrogroup
(paratopological gyrogroup) if the binary operation and the topology are clear from the context.

Definition 2.4. ([5]) Let G be a topological gyrogroup. We say that G is a strongly topological gyrogroup if
there exists a neighborhood base U of the identity element e such that, for every U ∈ U, 1yr[x, y](U) = U for
any x, y ∈ G. For convenience, we say that G is a strongly topological gyrogroup with neighborhood base
U of e. Clearly, we may assume that U is symmetric for each U ∈ U.

Throughout this paper, all topological spaces are assumed to be T1, unless otherwise is explicitly stated.
The readers may consult [4, 10] for notations and terminologies not explicitly given here.
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3. First-countable strongly topological gyrogroups

In this section we consider the left-invariant metric on first-countable strongly topological gyrogroups.
We first consider a continuous prenorm on a topological gyrogroup. Let G be a gyrogroup with an

identity element e and N a real-valued function on G. At first, we assume that there is no any topology on
G. We call N a prenorm on G if the following conditions are satisfied for all x, y ∈ G:

(1) N(e) = 0;
(2) N(x ⊕ y) ≤ N(x) +N(y);
(3) N(⊖x) = N(x).

Lemma 3.1. ([5]) Let G be a strongly topological gyrogroup with the symmetric neighborhood baseU at the identity
element e, and let {Un : n ∈ N} and {V(m/2n) : n,m ∈ N} be two sequences of open neighborhoods satisfying the
following conditions (1)-(5):

(1) Un ∈ U for each n ∈N;
(2) Un+1 ⊕Un+1 ⊆ Un, n ∈N;
(3) V(1) = U0;
(4) For any n ≥ 1, put V(1/2n) = Un,V(2m/2n) = V(m/2n−1) for m = 1, · · · , 2n−1, and V((2m + 1)/2n) =

Un ⊕ V(m/2n−1) = V(1/2n) ⊕ V(m/2n−1) for each m = 1, · · · , 2n−1
− 1;

(5) V(m/2n) = G when m > 2n.
Then there exists a prenorm N on G satisfies the following conditions:

(a) for any fixed x, y ∈ G, we have N(gyr[x, y](z)) = N(z) for any z ∈ G;
(b) for any n ∈N, {x ∈ G : N(x) < 1/2n

} ⊆ Un ⊆ {x ∈ G : N(x) ≤ 2/2n
}.

In the proof of the above lemma, the authors defined a real-valued function f on G as follows f (x) =
in f {r > 0 : x ∈ V(r)} for each x ∈ G and N(x) = sup1∈G| f (x ⊕ 1) − f (1)|. One can easily show that
1yr(V( m

2n )) = V( m
2n ) for each n ∈N and m ∈N \ {0}.

Theorem 3.2. Every first-countable strongly topological gyrogroup G admits a left-invariant metric ϱ generating
the original topology of G.

Proof. LetU = {Un : n ∈N} be a countable symmetric neighborhood base at the identity element e such that
1yr[x, y](U) = U for any x, y ∈ G and Un+1 ⊕Un+1 ⊆ Un for each n ∈N. By Lemma 3.1, choose a continuous
prenorm N on G which satisfies N(1yr[x, y](z)) = N(z) for any x, y, z ∈ G and

{x ∈ G : N(x) < 1/2n
} ⊆ Un ⊆ {x ∈ G : N(x) ≤ 2/2n

},
for each integer n ≥ 0. Put BN(1/2n) = {x ∈ G : N(x) < 1/2n

}. It is clear that the open sets BN(1/2n) also form
a base of G at e.

Now, for arbitrary x and y in G, put ϱN(x, y) = N(⊖x ⊕ y). Let us show that ϱ is a metric on G. Let us
show that ϱN is a metric on G generating the original topology on G.

(1) Clearly, ϱN(x, y) = N(⊖x ⊕ y) ≥ 0, for every x, y ∈ G. At the same time, ϱN(x, x) = N(e) = 0, for
each x ∈ G. Assume that ϱN(x, y) = N(⊖x ⊕ y) = 0, that is, N(⊖x ⊕ y) = 0. Then, for each n ∈ N,
⊖x ⊕ y ∈ {x ∈ G : N(x) < 1/2n

} ⊆ Un. Since {e} =
⋂

n∈NUn, it follows that ⊖x ⊕ y = e, that is, x = y.
(2) For every x, y ∈ G, by [22, Theorem 2.11], we have

ϱN(x, y) = N(⊖x ⊕ y) = N(⊖(⊖x ⊕ y))
= N(1yr[⊖x, y](⊖y ⊕ x)) = N(⊖y ⊕ x) = ϱN(y, x).

(3) For every x, y, z ∈ G, it follows from [22, Theorem 2.11] that
ϱN(x, y) = N(⊖x ⊕ y)

= N((⊖x ⊕ z) ⊕ 1yr[⊖x, z](⊖z ⊕ y))

≤ N(⊖x ⊕ z) +N(1yr[⊖x, z](⊖z ⊕ y))

= ϱN(x, z) + ϱN(z, y)
Thus, ϱN is a metric on G. In the following, we show ϱN is left-invariant, that is, ϱN(x, y) = ϱN(z ⊕ x, z ⊕ y)
for all x, y, z ∈ G. Indeed,
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(⊖x ⊕ y) ⊕ 1 ∈ V(r)
⇔ ⊖x ⊕ (y ⊕ gyr[y,⊖x](1)) ∈ V(r)
⇔ y ⊕ gyr[y,⊖x](1) ∈ x ⊕ V(r)
⇔ z ⊕ (y ⊕ gyr[y,⊖x](1)) ∈ z ⊕ (x ⊕ V(r)) = (z ⊕ x) ⊕ V(r)
⇔ (z ⊕ y) ⊕ gyr[z, y](gyr[y,⊖x](1)) ∈ (z ⊕ x) ⊕ V(r)
⇔ ⊖(z ⊕ x) ⊕ ((z ⊕ y) ⊕ gyr[z, y]gyr[y,⊖x](1)) ∈ V(r)
⇔ (⊖(z ⊕ x) ⊕ (z ⊕ y)) ⊕ gyr[⊖(z ⊕ x), z ⊕ y]gyr[z, y]gyr[y,⊖x](1) ∈ V(r)
⇔ gyr[⊖x, y]gyr[y, z]gyr[z ⊕ y,⊖(z ⊕ x)](⊖(z ⊕ x) ⊕ (z ⊕ y)) ⊕ 1 ∈ V(r)

It follows that
N(⊖x ⊕ y) = N(gyr[⊖x, y]gyr[y, z]gyr[z ⊕ y,⊖(z ⊕ x)](⊖(z ⊕ x) ⊕ (z ⊕ y)))

= N(⊖(z ⊕ x) ⊕ (z ⊕ y)).
This implies that ϱN(x, y) = ϱN(z ⊕ x, z ⊕ y) for all x, y, z ∈ G and ϱN is left-invariant.

Since BN(ε) is the spherical ϱN-neighborhood of the identity element e of radius ε, it follows that the the
spherical ϱN-neighborhood of x is precisely the set x ⊕ BN(ε). Take any point x ∈ G. Since the sets BN(1/2n)
form a base of e, and G is a strongly topological gyrogroup, the sets x ⊕ BN(1/2n) constitute a base of G at x.
Thus the metric ϱN generating the original topology of the space G, that is, G is metrizable by a left-invariant
metric.

The authors in [8, Corollary 3.14] proved every first-countable left ω-narrow strongly topological gy-
rogroup is separable. Since, by Proposition 3.2, every first-countable strongly topological gyrogroup admits
a left-invariant metric generating the original topology. Hence, the following result improves [8, Corollary
3.14].

Proposition 3.3. The left ω-narrow topological gyrogroup G admits a left-invariant metric ϱ generating the original
topology of G. Then G is separable.

Proof. Let G be a first-countable left ω-narrow topological gyrogroup and {Un : n ∈ N} a local base at the
identity element e ∈ G.

First we construct a countable subset C of G such that C ⊕ Un = G for each n. Indeed, for each n ∈ N,
take a countable subset An ⊆ G such that An ⊕Un = G. Put Cn = An ∪ (⊖An)∪ {e} and C =

⋃
∞

n=1 Cn. Then Cn
and C are countable subsets of G.

We claim that C is dense in G. To see this, let U be an arbitrary non-empty open subset of G. Fix a point
x ∈ U. There exist n ∈ N such that B(x, 1

n ) = {y ∈ G : ϱ(x, y) < 1
n } ⊆ U. Take m > n. Then C ⊕ B(e, 1

m ) = G.
It follows that there exist h ∈ C and um ∈ B(e, 1

m ) such that x = h ⊕ um. Hence um = ⊖h ⊕ x ∈ B(e, 1
m ). This

implies that ϱ(⊖h ⊕ x, e) < 1
m . Since ϱ is a left-invariant metric on G, ϱ(x, h) = ϱ(⊖h ⊕ x, e) < 1

m <
1
n . It follows

that h ∈ B(x, 1
n ) ⊆ U, which completes the proof.

At the end of this section, we give a result about first-countable right ω-narrow topological gyrogroups.

Proposition 3.4. Every first-countable right ω-narrow topological gyrogroup is separable.

Proof. Let G be a first-countable right ω-narrow topological gyrogroup and {Un : n ∈ N} a local base at the
identity element e ∈ G consisting of symmetric open subsets.

For each n ∈ N, take a countable subset An ⊆ G such that Un ⊕ An = G. Put A =
⋃
∞

n=1 An. Then A is a
countable subsets of G and Un ⊕ A = G for each n ∈N.

We claim that A is dense in G. To see this, let U be an arbitrary non-empty open subset of G. Fix a point
x ∈ U. Then there exists an open neighborhood Un of e such that Un ⊕ x ⊆ U. Since Un ⊕A = G, there exists
un ∈ Un and a ∈ A such that un ⊕ a = x. It follows that

a = ⊖un ⊕ x ∈ Un ⊕ x ⊆ U.
This implies that A is dense in G and G is separable.
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4. Paratoplogical gyrogroups

In this section, we consider some conditions under which a paratopological gyrogroup is a topological
gyrogroup.

Proposition 4.1. Let X be a compact Hausdorff paratopological gyrogroup. Then the inverse operation in X is
continuous and, therefore, X is a topological gyrogroup.

Proof. Let e be the identity element of X. Since X is Hausdorff, the set M = {(x, y) ∈ X × X : x ⊕ y = e} is
closed in X × X.

Now, take any closed subset F of X, and put P = (X × F) ∩M. Then F and X × F are compact, P closed
in X × F, since M is closed. It follows that P is compact. Now, (x, y) ∈ P if and only if y ∈ F and x ⊕ y = e,
that is, x = ⊖y. It follows that the image of P under the natural projection of X × X onto the first factor
X is precisely ⊖F. Since F is compact and the projection mappings is continuous, we conclude that ⊖F is
compact, and therefore, closed in X. Thus, the inverse operation in X is continuous, which completes the
proof.

In the following, we establish that a T0 compact paratopological gyrogroup is a topological gyrogroup.
To begin with, we give a property of the Alexandroff specialization order in compact spaces. Given a
topological space (X, τ), the Alexandroff specialization order is the partial order defined as

x ≤τ y if and only ifx ∈ clτ{y}.

For the Alexandroff specialization order, the following result was established.

Theorem 4.2. ([15]) Let (X, τ) be a T0 compact topological space. For each x ∈ X, the set

P(x) = {y ∈ X : y ≤τ x}

has a minimal element.

With the method in [15, Theorem 2.4], we give the following result.

Theorem 4.3. Every T0 compact paratopological gyrogroup (G, τ) is a Hausdorff compact topological gyrogroup.

Proof. In the following proof, we will show that (G, τ) is Hausdorff. Thus, together with Proposition 4.1,
one can get the result. First we give the following claim.

Claim 1. (G, τ) is T1.
Indeed, take x ∈ G. By Theorem 4.2, there is a minimal element, say t, of the set P(x). It is clear that {t}

is τ-closed. Now for each y ∈ S, since the right translation x 7→ x ⊕ y is a homeomorphism, {t ⊕ y} is also
τ-closed. Since (G, τ) is a paratopological gyrogroup, if x ∈ clτ{y}, we have t ⊕ x ∈ clτ{t ⊕ y} which implies
that t ⊕ x = t ⊕ y. It follows that x = y. Thus, (G, τ) is a T1 space.

Claim 2. (G, τ) is Hausdorff.
Indeed, let (G, τ) be a T1 compact paratopological gyrogroup. Let (xδ)δ∈D be a net in G which τ-converges

to points x, y ∈ G. Put
⊖τ = {⊖U|U ∈ τ}.

It is clear that (G,⊖τ) is also compact. We may assume without loss of generality that (xδ)δ∈D ⊖ τ-converges
to some point z ∈ G. Hence,the net (⊖xδ)δ∈D τ-converges to ⊖z, and thus, ⊖z ⊕ x ∈ clτ{e} and ⊖z ⊕ y ∈ clτ{e}.
Since (G, τ) is a T1 space, x = z and y = z, i.e., x = y. We conclude that (G, τ) is a Hausdorff space.

We do not know whether a regular locally compact paratopological gyrogroup is a topological gy-
rogroup. We give the following question.

Question 4.4. Is a regular locally compact paratopological gyrogroup a topological gyrogroup?
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When consider the separation property of paratopological gyrogroup, the micro-associative paratopo-
logical gyrogroup and locally gyroscopic invariant paratopological gyrogroup were proposed in [2] and
[12], respectively.

Definition 4.5. ([2]) A paratopological gyrogroup G is micro-associative if for any neighborhood U ⊆ G of
the identity e, there are neighborhoods W ⊆ V ⊆ U of e such that a ⊕ (b ⊕ V) = (a ⊕ b) ⊕ V for any a, b ∈W.

Definition 4.6. ([12]) Let G be a paratopological gyrogroup and B a local base at the identity e of G. We say
that B is locally gyroscopic invariant if there is an open neighborhood U of e such that 1yr[a, b]V ⊆ V for
each V ∈ B and a, b ∈ U. A paratopological gyrogroup G is called locally gyroscopic invariant if G has a
locally gyroscopic invariant base at the identity.

In [12, Remark 2.9], the authors said that they do not know what are different for micro-associative
paratopological gyrogroups and locally gyroscopic invariant paratopological gyrogroups. For this question,
we give the following proposition.

Proposition 4.7. A locally gyroscopic invariant paratopological gyrogroup G is micro-associative.

Proof. Let G be a locally gyroscopic invariant paratopological gyrogroup andB a locally gyroscopic invariant
base at the identity e of G. Then there exists an open neighborhood U0 of e such that 1yr[a, b]V ⊆ V for each
V ∈ B and a, b ∈ U0. Without loss of generality, assume that V ⊆ U0. Thus we have 1yr[a, b]V ⊆ V for each
V ∈ B and a, b ∈ V. It follows that 1yr[a, b]V = V for each V ∈ B and a, b ∈ V. For any neighborhood U ⊆ G
of the identity e, take W = V ∈ B such that W = V ⊆ U and 1yr[a, b]V = V for all a, b ∈W = V. This implies
that a ⊕ (b ⊕ V) = (a ⊕ b) ⊕ 1yr[a, b]V = (a ⊕ b) ⊕ V for all a, b ∈W, which completes the proof.

But we do not know whether a micro-associative paratopological gyrogroup is a locally gyroscopic
invariant paratopological gyrogroup. For micro-associative paratopological gyrogroup and locally gyro-
scopic invariant paratopological gyrogroup, we give the following question.

Question 4.8. Is a regular locally compact locally gyroscopic invariant (respectively, micro-associative) paratopolog-
ical gyrogroup a topological gyrogroup?
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