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The group inverse and Moore-Penrose inverse of the product of two
elements and generalized inverse in a ring with involution

Angqi Li?, Junchao Wei®

“College of mathematical science, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. In this paper, using the expression form of the group inverse and Moore-Penrose inverse for the
product of two elements, we present some new characterizations of EP elements, partial isometries, SEP
elements, normal elements and hermitian elements in a ring with involution.

1. Introduction

EP elements, partial isometries, SEP elements, normal elements and Hermitian elements in rings with
involution are characterized by many authors such as [2, 13-23]. For complex matrices, in term of the
rank of a matrix, or other finite dimensional methods, these related matrices are discussed [1, 3]. Also,
the operator analogues of these notions are explored [4, 5]. In [6], products of EP operators on Hilbert
spaces has been studied. In [7], products of EP matrices has been discussed. In [10], products of EP
elements in semigroup has been studied. In this paper, we discuss the expression form of group inverse
and Moore-Penrose inverse for the product of two elements taken from a given set. Using these group

inverses and Moore-Penrose inverses, we give some new and interesting characterizations of EP elements,
partial isometries, SEP elements, normal elements and Hermitian elements.
Let R be aring and a € R. If there exists a* € R such that

adta = a, a*aa® = a*, aa® = d"a.

The element a is called a group invertible element and a* is called a group inverse of a [9, 12, 13], and it is

uniquely determined by these equations. We write R* to denote the set of all group invertible elements of
R.

If a map *: R — R satisfies

@) =a, (a+b) =a +b", (ab)" =b*a".
Then R is said to be an involution ring or a *—ring.
Let R be a +-ring and a € R. If there exists a* € R such that

a=aa*a, a* =a*aa*, (aa*)’ = aa*, (a*a)’ = a*a.
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Then a is called a Moore Penrose invertible element, and a* is called the Moore Penrese inverse of a [8, 11].
Let R* denote the set of all Moore Penrese invertible elements of R.

Ifa e R* N R* and a* = a*, then a is called an EP element.

If a = aa*a, then a is called partial isometry [20]. It is known that a € R* is partial isometry if and only if
a* =at* [15].

The element a € R* N R* is called a SEP element [23] if a* = a* = a*. Clearly, a € R* N\ R" is SEP if and
only a € REP and a € R, Where RE? , R and R°EP are denoted the set of all EP elements, all PI elements
and all SEP elements of R respectively.

If aa* = a*a, then a is called normal. In [15], it is shown thata € R* "R* is normal if and only if a*a* = a*a*
and a € RE? if and only if a*a® = a*a*. We denote the set of all normal elements of R by RN*".

If a = a*, then a is called Hermitian. According to [15], 2 € R* N R* is Hermitian if and only if (a*)* = a*.
We denote the set of all Hermitian elements of R by R7".

2. The group inverse and Moore-Penrose inverse of product of elements

Let a € R* N R*. Taking 7, = {a,a%,(a*)}, y. = {a*,a",(@")} and x, = 1, U y,. Clearly, we have
(@Mt = a*a’a™ and (a*)* = (aa*)*a(aa")*. The following theorem gives the group inverse and Moore-Penrose
inverse of product of two elements in x,.

Theorem 2.1. Let a € R* N R*. Then
(1) If x € T4, then (xy)* = y*x*aa® for each y € x,.
(2) If x € y,, then (xy)* = y*x*a*a for each y € x,.

vixtad® ,x,yenr,

*aat  x e, yey,
(3) (xy)t = y Ta, YEY

y'x'ata ,x ey, yer,

yixt(aa®y, x,y € v,

aa*, y €1,

Proo.f' (1) NOtlng that yy+ - {a+a/ ]/ € Va ’

xaatx® = xatax* = aa® = xfaatx, antx = x,

and
atay® =y*, foreachy € 1,

aa*y* =y*, foreachy € y,.

Then
xaa*x*aa*, y € 1, g . .
=aa"aa* = aa”,

oY Nxfaat =
(y)(y"x"aa”) = x(yy™)x"aa {xa+ax#aﬂ+, Y€ Va
(xy)(y+x#aa+)(xy) = ga+x]/ =Xy,

L I (o ST
e )oy) =y (any =y ey = e ey,

atay*xtaat, y e 1,
*Paat) () (vt xtaat) = = y*xtaa*.
(y )(xy)(y ) {aa+y+x#aa+/ ey, y

Hence (xy)* = y*x*aa™ for each y € x,.
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(2) Noting that xaa*x* = xa*ax* = (aa*)* = x*a*ax for each x € y,. Then

xaa*x*ata, y € 1,
#

+. 4+

(ey)(y*x*ata) = x(yy*)xtata = {

= (aa")'ata = a*a,
xatax"ata, y €y,
(xy)(y*x*a*a)(xy) = a*axy) = xy,

a‘ta,y e,

(' ata)(xy) = y* (Fa*ax)y = y*(ad")'y = {M yere’

atay*x'ata, y e 1,
*xfata)(xy)(ytxtata) = = y*x*ata.
(v )xy)(y ) {MW#M, yeye Y
Hence (xy)* = y*x*a*a for each y € x,.
(3) If x, y € 1,4, then

# # #

(y)(y*x*aa®) = x(yy*)x*aa® = (xaa*x*)aa* = aa*aa® = aa”,

(xy)(y*x"aa")(xy) = aa"xy = xy,
(y*x*aa*)(xy) = y*(x*aa*x)y = y'a*ay = a'a,
(' xtaa®)(xy)(y'x*aa") = a*ay*x*aa® = y¥x*taa®.
Hence (xy)* = y*x*aa®.
If x € 14, Y € Y4, then the proof of (1) implies (xy)* = y*x*aa™.
If x € Y4, ¥ € 1,, then the proof of (2) implies (xy)* = y*x*a*a.
If x, y € y,, then x(aa*)* = x = (aa*)*x, x* = (aa")*x* and xx* = a*a, this gives

(xy)(y*x* (@a")) = x(yy")x* (aa")" = x(aa"y x* (aa")" = (aa")’,

('t (@a"Y)(xy) = y* (<" (@a")x)y = y'aa”y = (aa"y’,
(xy)(y*x* (@a*))(xy) = (aa*)'(xy) = xy,
(v*x* (aa®) ) ey)(y* " (aa®)") = (aa®)'y*x* (aa®)" = y*x* (aa®)".
Hence (xy)* = y*x*(aa®). O

Using Theorem 2.1, the following theorem gives a new form characterization of generalized inverses.

Theorem 2.2. Leta € R* N R*. Then
(1) a € REP if and only if (xy)* = y*x"a*a for some x € T, and y € x,.
(2) a € R if and only if (xy)* = y*x*aa* for some x € 1, and y € x,.
(3) a € RSE if and only if (xy)* = y*x*a‘a for some x € 7, and y € x,.
(4) a € RN if and only if (xy)* = y*x*(a) a*a*a for some x € T, and y € x,.
(5) a € RH if and only if (xy)* = y*x*a(a*)* for some x € 1, and y € x,.

Proof. (1) => Assume thata € REP. Then aa* = a*a. By Theorem 2.1(1), we have (xy)* = y*x*aa* = y*x*ata
forall x € 7, and all y € x,.
&= From the assumption and Theorem 2.1(1), we have

y*x*aat = y*x*ata, forsomex € t,and y € x,.

If y € 1,4, then

(aa)aat = (yyH)xtaat = y(y*xtaa®) = y(y*x*ata) = (yy*)(xPata) = aatxata,
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aat = aatan® = (xaa*x")aa* = x(aa*x*aat) = x(aatx*ata) = (xaatxMata = ad*ata = aa®.

Hence a € RFP.
If y € y,, then
#

atax*aa® = (yy*)x*aat = y(y*xPaat) = y(y*x*ata) = ataxtata,

aa* = aa*aa™ = (xatax")aat = x(atax’aa®) = x(aTax*ata) = (xatax)ata = aa*ata = aa®.
Hence a € REP.
(2) = Suppose thata € RP!. Thena* = a*. It follows from Theorem 2.1(1), that (xy)* = y*x*aa* = y*x*aa*

forallx € 7, and all y € x,.
&= By Theorem 2.1(1) and the assumption, one has

vy x*aat = y*x'aa®, for somex € v, and y € x,.

Noting that x € 7,. Then
xaatx® y et
xyytxt =9 -
xatax®, y €y,
This gives

# #

aa* = aa*aa* = xyy*xtaat = xy(y*x*aa®) = xy(y*x*aa*) = (xyy*x*)aa* = aa*aa* = aa*.
Hence a € R"! by [15, Theorem 1.5.2].

(3) = Since a € REP, ¢* = g* = g* and a*a = aa* by [15, Theorem 1.5.3]. Hence (xy)* = y*x*a*a by
Theorem 2.1(1) for all x € 7, and all y € x,.

< Using the assumption (xy)™ = y*x*a*a and Theorem 2.1(1), we have
y*x*aat = y*x*ata, for some x € v, and y € x,.

This gives
aa* = aaaa* = (xyy*xhyaat = xy(y*xtaat) = xy(y*xta'a)

= (xyy*x")a‘a = aa*a*a = (aa*a*a)a*a = aa*a*a.

Hence a € REP, one gets

# #

aat =aa"a*a = a"aa’a = ataa’a = a’a.

Thus a € REP by [15, Theorem 1.5.3].
(4) = Froma € RN, we have aa* = a*a and a € RFP. This gives

(@ Yataa = @*)ataa* = (a*)'a* = aa*.

Hence, by Theorem 2.1(1), (xy)* = y*x*aa™ = y*x*(a*)'a*a‘a for x € 7, and y € x,.
&= The assumption and Theorem 2.1(1) give y*x*aa* = y*x*(a*)"a*a*a for some x € 7, and some y € x,.
It follows that
aa* = aa*aat = (xyytxMaat = xy(ytxtaa®) = xy(y*xt (@) atata)
= (xyy*x")(a*)ata'a = aa*(a*)ata'a = (@*)ata'a
and

a' =aaat =a'(@*)ataa =ata'a.

Hence a € RN by [15, Theorem 1.3.2].

(5) = Since a € R, g™ = 4" = (a*)* = (a*)". Hence, by Theorem 2.1(1), one has (xy)* = y*x*aa* =
y*x*a(a*) for all x € 7, and all y € x,.

&= The hypothesis and Theorem 2.1(1) imply

y*xtaa® = y*xta(a®)’, for some x € v, and y € x,.
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This induces
aa* = aa*aa* = (xyy*xMaat = xy(y*xa@®)’) = aa*a(@*)* = a@a*)".

Applying the involution on the equality, one gets

aat =ata* =ata(ata’) = ata(aa®) = atalat,

2 2

a=aata=a"a"ata=a"a"

Hence a € RE?, this induces aa™ = a*a* = a*a*. Thus a € RE* by [15, Theorem 1.4.2]. O

Corollary 2.3. Leta € R* N\ R*. Then
(1) a € REP if and only if aa*a*a™ = a*aaa*.
(2) a € R if and only if aa*a*a* = a*a*aa*.
(3)a € R ifand only ifata*a®™ = a*a’a*.
(4) a € RH ifand only if aa*a*a* = a*a’a*.
(5) a € RN if and only if aa*a*a* = a*a‘a*a.

Proof. (1) = Sincea € REF, aa™ = a*a, a* = a*, it follows that
aata'at =ataaat = aat = a'ataa” = a*a’aa*.
&= By Theorem 2.1(1), we have
(ﬂ(ﬂ#)*)-'— — ((a#)*)+a#aa+ — ((a#)+)*a#aa+

+ 4+ #

= (ata’a® a‘ataa"aat = aata*a”

ata’at)a"ant = aa
and
a@))t = (@) ataa = a*ataat.
(a@™)")

From the assumption, we have (a(a*)")" = (a(a*)*)", this gives a(a*)* = a(a*)*. Applying the involution on
the equality, one has a*a* = a*a*. Hence a € REP by [15, Theorem 1.2.1].

(2) = From a € R°EP, we have a* = a* = a* and aa* = a*a. This gives aa*a*a* = aa*a*a* = a*aa
atataa*.

<= Noting that

gt —

@) =a*a*aa” and (a(@®))* = aata’at.
Hence by the assumption, we have (a*)* = (a(a*)*)*, this gives
a? = a(@®y, ata® = ata(@®) = (%), a* = (T a®)" = a'a*a.

Hence a € R°E? by [15, Theorem 1.5.3].
(3) = Since a € RP!, a* = a*. This implies that a*ata® = a*a*a*.
& Assume thata*a*a* = a*a*a*. Thenaa*a*a* = aa*a*a*, one gets

(aa*a*a™)* = (aa*a*a*)*.

Since
(a(@)"" = (a(aa®) a(aa®))" = aatata® and (a@@®))* = aa*aa”.
We yield a(a*)* = a(a")", that is,
a(aa®ya(aa®y = a(a®).
Multiplying the equality on the left by a*, one has (aa*)*a(aa®)* = (a*)*. This induces (a*)* = (a*)* = (a")*, so

at =a*. Thusa € R".
(4) = Froma € RH”, we have a = a* and a € REP. This gives aa*a*a* = aa*aa™ = aa* = a*a’a™.
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&= Suppose that aa*a‘a™ = a*a’a*. Multiplying the equality on the left by (aa*), we get
aat =aataa’.
Again multiply the last equality on the right by aa*, we have
a'a’ =aataa’.
This implies that a% = g®a*. Hence a € REP by [15, Theorem 1.2.2]. It follows that

aa*a*at = ataatat = a'at and ata’a® = aa* = ad®.

So a‘a™ = aa®. Hence a € R by [15, Theorem 1.4.2].

(5) = By the hypothesis, we get aa* = a*a and a € REP. This induces aa*a’a* = a*taa’a® = a*a‘aa* =
ata‘ata.

&= Since aa*a*a* = a*a*a*a, by Theorem 2.1(1) and (2), we have

(a@@"))* = ((@")a)*.

This gives a(a*)* = (a*)*a. So a*a* = a*a®. Thusa € RN, [J
Theorem 2.4. Let a € R* N R*. Then

(1) a € REP if and only if xy € REP for some x, y € 7,

(2) a € RE? if and only if xy € REP for some x,y € y,.

(3) Ifa € RSP, then xy € RSEP for any x,y € 1,
(4) Ifa € RSEP, then xy € RSP for any x,y € y,.

Proof. (1) => Assume thata € RE” and x, y € 7,. Then
Y ataat = ytataat = it

and
yixtaa® = yix*.

We claim that y*x* = y*x*.
In facta* = a, this gives ((a*)")* = ((a")*)* = ((@*)*)* = a*. Hence

at ,y=a a,y=a
y'=4 @ ,y=d" ={a,y=d" =y"
(@) y=@y)y \a,y=@"

and x* = x*. This implies (xy)* = y*x*aa* = y*x* = y*x* = y*xTaa” = (xy)*. Hence xy € REP.

& Suppose that xy € REP. Then (xy)* = (xy)*. Since x, y € 1,, by Theorem 2.1(1) and (3), we have

y*xtaa® = yixtaa®.
This induces
aa* = aa*aa* = (xyy*x*aat = xy(y*xtaa®) = xy(yix*aa®)
= (xyy*x*)aa* = aa"aa" = aa”.

Hence a € REP.

(2) = Froma € R and x, y € y,, we have

ata=aa" = (aa")" = (aa")*
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and

a Y= a* (a+)#, y= at
]/+ — (El*)+ Y= a — (ﬂ*)#, y= a4 — y#'
@ y=@" | a ,y=@"
This gives

()t = y*xfata = y'x*t(ad®) = (xy)*.

Hence xy € REP.
&= The assumption and Theorem 2.1(2), (3) imply

yrxtata = y*x*(aa®y".

It follows that

ata = (aa"ya*ta = (xyy*xata = (xy)ytxtata

= (y)y*x* (@) = (yy*x)(aa) = (aa*) (aa®) = (aa"Y.

Hence a € RFP,
(3) Since a € RSP, 7, C RSEP. This implies for any x, y € 7,, we have

Noting that a* = a* = a*. Then
(xy)* = yixtaa® = yixt = y'xt = (y)"
Hence xy € R5EP,
(4) From a € RSP, we have y, C R%”. This induces that

*

x'=x%, y* =y foranyx,y € y,.

Hence
(y)* = y'xt(@a®) = y'xt = y'xt = (xy)”.
Thus xy € RSP, O

Leta € REP. Then it is known thata + 1 —aa* € R"' and (@ + 1 — aa®)™! = a* + 1 — aa®.

Theorem 2.5. Let a € R* N R*. Then
(1) xy+1-aa" € R and (xy + 1 — aa®)™! = y*x*aa® + 1 — aa®, where x, y € 1.
(2) a € R ifand only if (xy + 1 — aa®)™! = y*x*aa*a*a + 1 — aa® for some x, y € 7,
(3)a € REP if and only if (xy + 1 — aa®)™ = y*x*aa™ + 1 — aa® for some x, y € 1,.
ae if and only if (xy + 1 — aa®)™! = y*x*aa* + 1 — aa® for some x, y € 1,
(4) RSEP d Zy'(y 1 #)1 y#+ 41 # y
(5) a € RH ifand only if (xy + 1 — aa®)™' = y¥xta(@®)" + 1 — aa® for some x, y € 7,.
(6) a € RN if and only if (xy + 1 — aa®)™! = y*xTaa*a®(a*)" + 1 — aa” for some x, y € 7,.

Proof. (1) Since x,y € 7,, (xy)* = y*x*aa* and (xy)(xy)* = aa® by Theorem 2.1(3). Hence (xy + 1 —aa®)™! =
yixtaa® + 1 - aa®.

(2) = Suppose that a € RP!. Then a* = a*a*a by [15, Theorem 1.5.2]. It follows from (1) that (xy + 1 —
aa®)™t = y*x*taa® + 1 - aa* = y*xtaa*ata + 1 - aa® for all x, y € 1,.

<= From the assumption and (1), we have

vixtad'aa +1-ad® = (xy + 1 —aa®)™! = y'x*aa® + 1 - aa® for some x,y € 1.

This gives
yixtaad'a‘a = y*x*aa® for some x,y € 1,.
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Since x, y € T,, xyy'x*™ = xaa*x* = aa*, one gets

# # + o H#

aataa’a‘a = (xyy*xMaa*a‘a = xy(y*x*aa*a’a) = xy(y*x*aa")

- #oobyo ok
= (xyy"x")aa" = aa"aa” = aa”,

e.g.,
ad’a*a = aa® and a = a?a”* = ?a’a*a = aa*a.

Hence a € RPL.
(3) = The condition a € RE” implies aa* = aa*. Hence, by (1),
(xy +1-aa®)™! = y*xaa* + 1 - ad® forallx,y € 1,.
<= From the assumption and (1), we have
vixtaa® +1-aa" = (xy + 1 -aa") ™ = y*x*aa® + 1 - aa® for somex,y € 1,,
e.g.,
yixtaa® = y'x*aa® for some x,y € 1,.

This infers

aa* = aa*aa* = (xyy*x)aat = xy(y*xTaat) = xy(y*x*aa")
= (xyy*x*)aa* = aa*aa" = aa®.

Hence a € REP.

(4) = Froma € R°?, we have aa* = aa* by [15, Theorem 1.5.3]. Hence (xy + 1 —aa*)™! = y*x*aa* + 1 - aa*
for all x,y € 7, by (1).

&= The assumption and (1) imply

yixtad® +1—aa" = (xy + 1 —aa®)™! = y*x*aa* + 1 - aa® for some x,y € 1,
e.g.
’ ot # o
y'xtaa" = y'x"aa" for some x,y € T,.

This induces
aa® = aa*aa® = (xyy*x")aa" = xy(y*xtaa®) = xy(y*x*an’)

= (xyy*x*)aa* = aa*aa" = aa.

Hence a € R°E? by [15, Theorem 1.5.3].
(5) = Since a € RH, 4" = (a*)*. By (1), we have

(xy +1-ad")™! = y*x*aa® + 1 - ad* = y*x*a(@®)" + 1 - aa”.
&= By the hypothesis and (1), one yields
vixta(a®) = y*x*aa® for some x,y € 1,
Multiplying the equality on the left by xy, one gets
a(@®y = aa®.
Noting that (a*)* = a*a(a*)*aa*. Then we have
at =atadtaat = ata(@*yaat = (%)

and aa® = a(a*)* = aa*. So a € RF’ and a* = a* = (a*)*. Thus a € RH*".
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(6) = Suppose thata € RN". Then a € REP and aa* = a*a, this leads to

aa*a’(@") = a*aa (a*) =aa = aa* = aa”.
Hence, by (1), we are done.
<= From the (1) and the assumption, one obtains

yixtaata®(a") = y*x*aa® for some x,y € 1,.
Multiplying the equality on the left by xy, one gets

aa*a®(a")* = aa®.

Multiplying the last equality on the right by aa*, one has aa* = aa*. Hence a € REF and
at =ataat = atad® = a*(aa'a* (")) = a*a* ("),

a'a* =ata’ = a'a®(@")a* = a'a"(ad") = a'at = a'a”.

Thusa € RN, O
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