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Abstract. In the present research article, the notion of hesitant fuzzy mapping, contraction hesitant fuzzy
mapping, generalized contraction of hesitant fuzzy mapping are introduced in setting of extended b-metric
structure, which in particular case reduced to b-metric space. The newly introduced concepts are used to
prove hesitant fuzzy fixed point theorems. The main results have extended and unified recent results in
literature. The results are validated with the help of examples. Finally, as an application, the results are
applied to solve integral equation of fredholm type.

1. Introduction and preliminaries

It was M.Frechet [1] who in his doctoral thesis introduced the concept of metric space which has an
extension over usual notion of distance. In 1922, Banach [2] represented most important and powerful
result that is popularly known as Banach Contraction Principle (BCP) in the theory of metric fixed point.
Kannan [3] proved that there exist a mapping which is not continuous in the domain but it have fixed
points.

Chatterjea [4] and Zamfirescu [5] proved fixed point theorems under the contractive mapping on metric
space. In 1969, Nadler [6] introduced the notion of multivalued mappings and extended BCP. Further, In
the year 1981, Heilpern [7] generalized Nadler’s results. In 1987, R.K.Bose [8] extended the Heilpern’s,
fixed point results for non-expansive mapping.

Recently, In 2021, Aliouche and Hamaizia [17] proved fixed point theorems for two multivalued map-
pings in the setting of complete b-metric spaces and extended the main theorem of Khojasteh [21], and
theorem of Demma [22] and Rhoades [23]. In 2022, Savanovié [18] introduced the new type of multivalued
quasi-contractive mapping with nonlinear comparisons functions in b-metric spaces [24]-[31]. In 2022, Ku-
ber Singh [19] introduced the generalized ”a.-contraction” in b-metric space using multivalued mappings.
In 2022, Tassaddiq [20] proved the fixed point theorems for single and multivalued mapping in strong
b-metric spaces.

In 1965, L.A.Zadeh [9] firstly introduced the concept of fuzzy set and gave mathematical model to
undefined collection. Later this set is extended in form of Hesitant fuzzy set by V.Torra [10].
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It was Wilson [33], who in 1931 generalized the notion of metric space by dropping out the property
of symmetry and named it "quasimetric". In literature, different authors have different views about the
origin of quasimetric, for more details and the survey the reader is suggested to see [36]. Further in the
year 1993, Czerwik [11] (see also [34], [35]) coined the term of quasimetric space as b-metric space. After
that quasimetric (b-metric) space was further extended by T.Kamran [12] in the form of extended b-metric
space. It was K.E.Osawaru [13] who designed hesitant fuzzy mappings and utilized this new concept to
prove fixed point theorems.

In this paper, we first time studied fixed point theorem for hesitant fuzzy mappings in the structure
of extended b-metric space. These new type of results are applied is solving some Fredholm type integral
equations.

Definition 1.1. [11] Assume E a non-empty set and 1 <s € R. A distance function d : E X E — [0, oo) satisfying
the following conditions is called b-metric if V C,n,y € E :

@) dCm =0 C=n;
(ii) d(C,n) = d(n,0);
(iii) d(C,y) < sld(C,n) +d(n,»)],

then the pair (E, d) is known as b-metric space.

Definition 1.2. [12] Assume E(# ¢) be a set and ¢ : E X E — [1,00). A distance function dy : E X E — [0, 00)
satisfying the following conditions is called extended b-metric, if V C,1,y € E:

(i) dy(C,n) =0ifand only if C=n;
(ii) dy(C,m) = dy(n, C);
(iii) d(C,y) < P(C,Y)de(C, ) +dep(1, )],

then the pair (E, dy) is known as extended b-metric space. If p(C,y) = sand s > 1, then it is called b-metric space and
if §(C,y) = s = 1 then it is called metric space.

V.Torra [10] generalized Fuzzy sets due to L.A.Zadeh [9] in 1965, by introducing the new notion of the
hesitant fuzzy sets and hesitant fuzzy logic.

Definition 1.3. [10] Suppose E be a non-empty set and S be a family of all subsets of the interval [0,1]. A hesitant
fuzzy set on E is a fuzzy set on E is characterized by the map h : E — S such that h(C) € S. A hesitant fuzzy map
reduces to fuzzy map when h is single-valued for all C in E. Further, we also denote H(E) by a collection of hesitant
fuzzy set on E.

Xia and Xu [14] defined a comparison on hesitant fuzzy membership by comparing their scores. They
defined a score of a hesitant membership value A; € S as

s(Ap) = @ Za

acA,
where 11(A;) denotes the cardinality of A; and s(A;) € [0, 1].

Definition 1.4. [32] Let us assume that h be a hesitant fuzzy set on E. Then the a-cut of a hesitant fuzzy set A is
defined as
W ={C e E:s(h"(Q)) > a} forany a € (0,1]

and
hﬁ)} = C({C € E: s(h*(0)) > {0}}) = C(B)

with o = {0} € S is said to be an a-cut (level set) of a hesitant fuzzy set, where C(B) means the closure of B.
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A relation on the set hesitant fuzzy membership values is defined if s(A;) > s(Az) then A; > A; and A
is similar to Aj; if s(A1) = s(A,) for all A;, A, € S.

Liao and Xu [15] said that the relation is not true for some special cases. To resolve this issue, Chen,
Xu and Xia [16] defined the deviation degree. The deviation degree of a hesitant fuzzy membership value

Ay € Sis given as
d(Ar) = \/@ Y (@ sAy

acA,

and defined a comparisons on sets of a hesitant fuzzy membership value as

(i) A1 < Ay if s(A1) < s(A2) or if s(A1) = s(A2) and d(A;) > d(Ay),
(ii) A = Az if s(A1) = s(A2) and d(A;) = d(A2),
(111) Al > A if S(Al) = S(Az) and d(Al) < d(Az)

We illustrate this with the following example.

Example 1.5. Let the pair (Z,d) represent a b-metric space and the distance function d is defined as d(C,n) =
|C - r)l2 VY C,neZ. Suppose h: E = {1 < C <6} — Sis a hesitant fuzzy map, where

h(Q) = {% € [0,1], s is a multiple of C, s < 10}.

Then, we prove the comparison on sets of hesitant fuzzy membership value using deviation degree.

Solution: First we find the value of hesitant fuzzy map on the interval [1, 6] and then get the score of hesitant fuzzy
membership values and deviation degree of a hesitant fuzzy membership on the interval [1,6]. Finally, we compare
the values.

h(1) = {1,0.5,0.33,0.25,0.2,0.17,0.14,0.13,0.11,0.1},
h(2) = {0.5,0.25,0.17,0.13,0.1},
h(3) = {0.33,0.17,0.11},
h(4) = {0.25,0.13},
h(5) = {0.2,0.1},
h(6) = {0.16}.

Then,

s(h(1)) = —n(hl(l)) Y s

ach(1)

= 11—0(1 +0.5+0.33+0.25+02+0.17 + 0.14 + 0.13 + 0.11 + 0.1) = 0.29,
s(h(2)) = %(0.5 +0.25+0.17 +0.13+0.1) = 0.23,
s(h(3)) = %(0.33 +0.17 +0.11) = 0.20,
s(h(4)) = %(0.25 +0.13) = 0.19,

s(h(5)) = %(.2 +0.1) = 0.15,
s(h(6)) = 0.16.
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and

aBW) = | [ Y@= s, A0y = s Y

aeh(1) ach(2

(@ —s(h(2)7
)

A = [ Y@= sOON, d@) = [ Y a=s(h@)y

ach(3) ach(4)
1 1
d(h(5)) = \/@ ﬂ;@)w—s(h(smz, d(h(6)) = \/@ ﬂ;@)m—sm(é)»z.

Let a« = {0.1,0.3} then
1 1
s(a) = M;a = 5(0.1+03) = 02

If we take o = {0.1}, then s(0.1) = 0.2 and d(0.1) = % If we take a = {0.3}, then 5(0.3) = 0.2 and d(0.3) =
Therefore, ifa =01 <a =03 = d(a =0.1) > d(a =0.3).

2
[$7]

Definition 1.6. [13] A hesitant fuzzy subset h of E is a hesitant fuzzy approximate quantity iff its o level set is a
convex subset of EVa € S and suprep{h(0)*} = {1}

Example 1.7. Let the pair (Z,d) represent a b-metric space and the distance function d is given as d(C,n) =
|IC - r]l2 Y, neZ. Supposeh : E ={1 < C <3} — S is a hesitant fuzzy map, where,

h(Q) = {% € [0,1], s is a multiple of C, s < 6}.

Then, supcee{h(C)*} = {1}.
Solution: Firstly, we find the values of hesitant fuzzy map on the interval [1,3].

K(1) = {1,0.5,0.33,0.25,0.2,0.17}, h(2) = {0.5,0.25,0.17}, h(3) = {0.33,0.17),
then supcepth(Q)*) = {1}.

Definition 1.8. [13] Let W(E) C H(E) be a collection of hesitant fuzzy approximate quantities of E and h,k € W(E)
and o € S. Then the a set-space of h and k is defined as

Pa (I’l, k) = inf‘:eha,qekad(g 77)/

p(h, k) = supq pa(h, k).
If h, k € W(E) then the fuzzy approximate quantity h is said to be more precise than k represented by h C k if and only
if h(C) < k(C) for each C € E.

Definition 1.9. [13] Let h,k € W(E) and a € S. Then the « set-distance of h and k is defined as
Dy(h, k) = HD(hq, ka)

where, HD denotes the Hausdorff distance.
Let h,k € W(E) and o € S. Then the distance between h and k is defined as

D, k) = supa Da(h, k).

Definition 1.10. [13] Assume E(# ¢) be a set with (E,d) a metric space. W(E) be a sub collection of hesitant fuzzy
approximate quantities of H(E). Then the hesitant mapping is defined as Hr : E — W(E) such that Hr(C) € W(E) for
each C € E.



A. Bamel et al. / Filomat 37:14 (2023), 4743-4760 4747

Definition 1.11. [13] Assume E(# ¢) be a set with (E,d) a metric space. W(E) be a sub collection of hesitant fuzzy
approximate quantities of the collection of H(E) of hesitant fuzzy sets of E. Then the pair of hesitant fuzzy maps is
defined as Hr,, Hr, : E — W(E) such that

D(Hr, (C), Hr,(n)) < a1p(C, Hr, (Q)) + azp(n, Hr,(n)) + asp(n, Hr, (C)) + aap(C, Hr, (1)) + asd(C, n),
forany C,n € E, where Y2 a; < 1, aj = ay or az = ay (a; € R).
Theorem 1.12. [13] Let (E, d) be a metric space and Hr,, Hr, : E — W(E) hesitant maps such that
D(H,(C), Hr, (1)) < a1p(C, Hf, (Q)) + a2p(n, H, (1)) + asp(n, H, (C)) + asp(C, H, (1)) + asd(C, 1),

forany (,n € E, where Y7, a; < 1, and a; = a; or a3 = a4 (a; € R*). Then 3" € E such that {C'} € Hf, (") and
{C*} € HE,(C") also hold.

Definition 1.13. [13]Let s be the coefficient of a b-metric space (E, d) and h be a hesitant fuzzy set on E. Then the o
cut of a hesitant fuzzy set of b-metric space is defined as

ha ={C € E:s(h(0)) > a},

forany a € (0,1], and
oy = C({C € E - s(1(C)) > {O}}),
with o = {0} € S is said to be an a cut of a hesitant fuzzy set, where C(B) means the closure of B.

Definition 1.14. [13] Assume E(# ¢) be a set and the pair (E, d) represents a b-metric space. W(E) be a sub collection
of hesitant fuzzy approximate quantities of H(E). Then the hesitant fuzzy mapping on b-metric space is defined as

Hp: E — W(E),
such that Hr(C) € W(E) for each C € E.

Definition 1.15. [13] Let s be the coefficient of a b-metric space (E,d). Then the hesitant fuzzy map Hr : E — W(E)
on b-metric space is said to be a contraction hesitant fuzzy map on b-metric space if

D(Hr,, H,) < ad(C,7),
forany C,n € E, wherea € (0,1) and s > 1.

Definition 1.16. [13] Let E be a non-empty set and s be the coefficient of a b-metric space (E,d). W(E) be a sub
collection of hesitant approximate quantities of the collection H(E) of hesitant fuzzy sets of E. Then the generalized
contraction of hesitant fuzzy maps on a b-metric space is defined as

HF1/HF2 :E— W(E),
such that

1
D(Hr, (), Hr(m) < ~[mp(C, Hr, Q) + a2p(n, Hex () + asp(n, H, (O) + asp(C, Hy, () +asdo(C, )],
forany C,n € E where ay + ap + slas + as] + as < 1,and a; = a, or a3 = as (a; € R").

Theorem 1.17. [12] Assume E(# ¢) be a set and (E, d) be a complete extended b-metric space and d; is a
continuous functional. Assume T : E — E and 3 (j € E such that:

d(Tn, T%n) < kdy(n, Tn) for each 1 € O(Cp) = orbit of (o

where k € [0,1) be such that for (o € E, limyuseo®(Cn, Cn) < 1, here G, = T"(C), n=1,2,3.... . Then

T"Cyp — C € E. Therefore, C is a fixed point of T if and only if G(C) = d(C, TC) is T-orbitally semi continuous
at C.
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2. Main Results

In this section, first we introduce the new notion of hesitant and contractive fuzzy mapping on extended
b-metric space in the following way.

Definition 2.1. Assume E(# ¢) be a set and the pair (E,d) be an extended b-metric space. Also, let the collection
H(E) of hesitant fuzzy sets E has a sub collection W(E) of hesitant approximate quantities. Then the hesitant fuzzy
mapping on extended b-metric space is defined as Hr : E — W(E) such that Hr(C) € W(E) for each C € E.

Definition 2.2. Let (E,d) be an extended b-metric space with coefficient ¢(C, 1) and ¢ : EX E — [1,00). Then the
hesitant fuzzy map Hr : E — W(E) on extended b-metric space is called contraction hesitant fuzzy map on extended
b-metric space if

D(Hr,, Hr,) < adg(C, ),

forany C,n € E, where a € (0, _¢(é,n))'

Remark 2.3. (i) If ¢(C, 1) = s and s > 1, then contraction hesitant fuzzy map on extended b-metric space
became contraction hesitant fuzzy map on b-metric space.
(ii) If ¢(C,n) = s and s = 1, then contraction hesitant fuzzy map on extended b-metric space became
contraction hesitant fuzzy map on metric space.

Definition 2.4. Assume E(# ¢) be a set and ¢(C, 1) be coefficient of an extended b-metric space (E,dy). Also, let
the collection H(E) of hesitant fuzzy sets E has a sub collection W(E) of hesitant approximate quantities. Then the
generalized contraction of hesitant fuzzy maps on an extended b-metric space is defined as Hr,, Hr, : E — W(E) such
that

D(Hr, (0), Hr,()) < [a1p(C, He, (0)) + azp(n, Hr, (0)) + asp(n, Hr, (0))

1
¢(C,m)
+asp(C, Hr, () + asdy(C, )],

forany C,n € E, where a; + ay + ¢(C, n)laz + as] +as < 1, and ay = ap or a3 = a4 (a; € R*).

Remark 2.5. (i) If (C,n7) = s and s > 1, then generalized contraction hesitant fuzzy map on extended
b-metric space became generalized contraction hesitant fuzzy maps on b-metric space.
(ii) If ¢(C,n) = s and s = 1, then generalized contraction hesitant fuzzy map on extended b-metric space
became generalized contraction hesitant fuzzy map on metric space.

Lemma 2.6. Let E be an extended b-metric space with C € E, h € W(E) and {(} is a hesitant fuzzy set whose
hesitant membership function is equal to the hesitant characteristic function of the set {C}. If {C} C h then
pa(C,h) =0foreacha € S.

Proof: If {C} C hthen C € h, for each @ € S and & is an approximate quantity. So, pa(C, h) = infye;,dy(C, 1) = 0.

Lemma 2.7. Let the pair (E, d) be an extended b-metric space having coefficient ¢(C, y) then

Pa(C, 1) < O(C, )dy(C, 1) + pa(n, W],

forany (,n € E.
Proof: We know that

Pa(C,h) = infyep,dy(C, )
< infyen, P Vdp(C, 1) + do(n, )]
< O Pinfyen,dy(C,n) + infyen,dy(n, )]
= O(Cds(C,m) + pa(n, )]

The proof is complete.
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Lemma 2.8. Let the pair (E,dy) be an extended b-metric space having coefficient ¢(C,y). If {Co} C h and
h € W(E) then for each k € W(E) we have that p,(Co, k) < D,(h, k).
Proof: We know that

PU((CI k) = infneka d(p(C, T]),
< Supcen,infye, do(C, 1),
< Da(it, K.

The proof is complete.

Lemma 2.9. Assume (E, d;) be a complete extended b-metric space having coefficient ¢(C, ) and h € W(E).
Then

Pa(C, h) < (C, )y (C, 1),

if {n} c h.
Proof: By lemma 2.7 we can say that, for any 1 € E, we have that

Pa(C h) < PG, )dp(C, ) + pa(n, b))

Since 1) € h, then using lemma 2.6, we can say that p,(n, 1) = 0, then

Pa(C 1) < (T, )dy(C, 1)

The proof is complete.

Theorem 2.10. Assume the pair (E, d) be a complete extended b-metric space having coefficient ¢(C, 17) and
Hp,, Hr, : E = W(E) hesitant maps such that

D(HF, (C), Hr, (1) < @[MP(C, HF, (C)) + azp(n, Hr, (1)) + asp(n, Hr, (C))
+agp(C, H,(17)) + asdy(C, )],

forany C,n € Ewithay +a; + ¢(C, n)[as +as] + a5 < 1,and a; = a, or a3 = a4 (a; € R*). Then 3 C* € E such that
{C'} € Hr,(C') and [T’} € Hi, (') hold.

Proof: Let Cy € E then Hp, (o) € W(E). Let C; € Hp,(Cp) then there is C; € E such that {; € Hp,(C1) € W(E).
So, dy(C1, C2) < D(HF, (Co), Hr,(C1))- Also there is (3 € E such that (3 C Hr,(C2) € W(E). So, continuing in this
manner, we have that there is (,, € E such that

{Cons1} C HE (Con),

and
{Cont2} € HE,(Cons1),
so that
dy(Con+1, Conv2) < D(HF, (Can), HE, (Can+1)) 1)
and

do(Conv2, Cons3) < D(HE,(Con+1), HF, (Can+2)) 2)
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If n = 0, then from equation (1)

dy(C1,C2) < D(HFl(CO) HE,(C1))
< QD(C @ )[ﬂlp(CO/HFl(CO)) + axp(C1, HE,(C1)) + asp(C1, Hr, (Co)) + asp(Co, H,(C1)) + asds(Co, C1)]

< mp(Co, Hr, (Co)) + a2p(C1, HE,(C1)) + asp(Ca, HE, (Co)) + aap(Co, HE,(C1)) + asdy(Co, C1)
< mdy(Co, 1) + a2dy(Ca, C2) + a3dy(C, C1) + asd(Co, C2) + asdp(Co, C1)
< a1dy(Co, C1) + a2d(C1, C2) + asp(Co, C2)[d(Co, C1) + dyp(C1, C2)] + asdy(Co, C1)
< (@1 + ¢(Co, C2)as + as)dp(Co, C1) + (a2 + P(Co, C2)as)dy(Cr, C2)

(a1 + (o, C2)as + as)
= 0= a2 - plco, Goag) 0
< tdy(Co, C1)

where

_ (a1 + ¢(Co, C2)as + as)
(1 —a— P(Co, Co)as)

Butay +a, + P(C,n)az +as]+as <1,and ay = ap oraz = a4 (a; € RY) gives a1 + ¢(C, n)az +as < 1 —a, — d(C, n)as
so that if a3 > a4, implies that 0 < t < 1.

If n = 0, then from equation (2)

dy(C2, C3) < D(HR,(C1), Hr, (C2))
< D(HH (C2), Hr,(G1))

¢(C o ———[m1p(Co, HF,($2)) + a2p(Ch, HE,(C1)) + asp(Ci, Hr, (C2)) + asp(Ca, HE,(C1)) + asd(Ca, C2)]

< mp(Ca, Hr, (C2)) + a2p(C1, HE,(C1)) + asp(Ca, HE, (C2)) + aap(Ca, HE,(C1)) + asdy(C1, C2)
< mdy(Ca, C3) + a2dy(Ca, C2) + a3dy(Ca, C3) + asdy(Ca, Co) + asdp(Ca, C2)

< mdy(Ca, G3) + a2dy (Ca, C2) + azp(Ca, G3)[dg (T, Co) + dyp(Ca, 83)] + asdy (Cr, C2)

< (a2 + P(C1, G3)as + as)dy(C1, C2) + (a1 + P(C1, C3)az)d (L2, C3)

< (a2 + ¢(C1, C3)as + as)

= A= ar— (@, Gy )
< (a2 + P(Cq, C3)az + as) (a1 + P(Co, C2)ay + a5)d (o, 01)
T (1-a -G, Gs) (1-a2— oo, CJag) ©
< tfdy(Co, C1)
where
f= (a2 + P(Ca, C3)as + as)
(-1 -G, G)as)
and

_ (a1 + P(Co, C)ag + as)
T (1—ay— P(Co, Ca)as)

Butay +a, +P(C, n)las +as] +as < 1,and a; = a; oraz = a4 (a; € R*) gives a1 + ¢(C, nag +as < 1 —ax —P(C, n)az
so that if a4 > a3, implies that 0 < f < 1. Thenaz = a4 and 0 < tf < 1 for both cases.
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If n = 1, then from equation (1)

dy(Cs,Cs) < D(HF,(C2), HE,(C3))
< @[MP(CL Hr, (C2)) + a3p(Co, His (G5)) + a3p(Co, Hey (02)) + asp(Co, Hes (03) + asdo(Co, C3)]

< mp(C2, Hr, (C2)) + a2p(Cs, HE,(C3)) + asp(Cs, HE, (C2)) + aap(Ca, HE,(C3)) + asdy(Ca, C3)
< mdy(Ca, C3) + a2dy(C3, Ca) + a3dy(Cs, C3) + asdp(Ca, Ca) + asdp(Ca, C3)
< mdy(Co, C3) + a2dy(Cs, Ca) + asp(Ca, Ca)[d(Ca, C3) + dyp(Cs, Ca)] + asdy (T2, C3)
< (a1 + P(C2, Ca)as + as)dy(Ca, C3) + (a2 + P(Co, Ca)ag)d(Cs, Ca)

(1 + P(Co, Ca)ay + as)
> (1 — a2 — P(Ca, Ca)ag) (G2, Ca)
< (11 + §(Co, Ca)ay + as) (a2 + §(Cq, C3)as + as) (a1 + ¢(Co, C2)ag + as)

T (1 —a2—P(C2, Ca)ag) (1 —a1—P(Cy,C3)az) (1 —az — (Co, C2)as) d5(Co, C1)
< (1) fdg(Co, C1)
- (a1 + P(Ci, Civn)ay + as)
0t 9 Gy = 17024
Similarly,
@2 + (G Civalis #85) _ oy 55

(1 -a1 — ¢, Cira)az)
and ¢(C;, Civ2) = $(C, 1) V i € N and we also know that ¢(C, n) > 1.
After adusting t and f, we get 0 < #*f < 1 and

dy(Ca, Ca) < (%) fdy(Co, C1)

If n = 1, then from equation (2)

dy(Cs, C5) < D(HF,(G3), Hr, (C4))
< D(HF,(C4), HF,(C3))

= CP(Cal @) [a1p(Ca, HF, (C4)) + a2p(C3, Hr,(C3)) + asp(Cs, Hr, (Ca)) + aap(Ca, H,(C3)) + a5d(Ca, Ca)l

< m1p(Ca, Hr, (Ca)) + a2p(C3, HE,(C3)) + asp(Cs, HE, (Ca)) + asp(Ca, HE,(C3)) + asdy(Cs, Ca)
< a1dy(C4, Cs) + a2dy(C3, Ca) + a3dyp(Cs, Cs5) + asdp(Ca, Ca) + asdp(Cs, Ca)
< mdy(Ca, Cs) + aady(Cs, Ca) + asp(Cs, C5)[d(Cs, Ca) + dyp(Ca, Cs)] + asdy(Ca, Ca)
< (a2 + ¢(C3, Cs)as + as)dy(C3, Ca) + (a1 + P(C3, C5)az)dp(Ca, Cs)

(a2 + P(Cs, C5)as + as)
= (1 —a; — P(Cs, Cs)az) Ap(Ca Ca)
< (H)dy(Co, C1), 0 < (tf)* <1

Similarly,
dy(Cs, Ce) < (Ef)*tdy(Co, 1),

d(Ce, C7) < (H)*dy(Co, C1),

Continue this process, for n terms with 7 is even

< (a1 + P(Cpa, C)ay + as)
T (1-ay- (P(Cn—zl Cn)ag)
< (tf)"Mdy(Co, C).

d¢(Cn—1r Cn)

de(Cr-2, Cn-1)
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For n is odd, we have

< (a2 + P(Cuz, Cy)az + as)
T (1 =a1 — ¢(Cu2, Cu)az)
< (t)" ' dy(Co, o).
Continue this process, we have that for any n € IN and n even.
dy(C1, Cu) < P(Cr, C)ldp(Cr, C2) + dp(C2, C3) + dp(Cs, Ca) + o +dy(Cn-1,Cn)]
< (G, L )[(ﬂl + ¢(Co, C2)ay + as) N (a1 + ¢(Co, Ca)ag + as) (a2 + P(C1, C3)as + as)
=R gy - ¢(Co, C2)as) (1 —ap — P(Co, C2)as) (1 —ay — P(Cy, C3)az)
N (a1 + ¢(Co, C2)ag + as) (a2 + ¢(C1, C3)az + as) (a1 + P(Co, Ca)as + as)
(1 —a, — P(Co, 02)as) (1 —a1 — (G, C3)as) (1 —ax — Pp(Ca, Cadag)

F oo J46(Co, 1)
S AL, ClE+f + E2f + () + ()t + e + (tf)" " t1dy(Co, Cr).
If n is odd then we have that
dy(C1,Cn) < P(Cr, Cu)ld(Ca, C2) +dgp(Ca, C3) + dp(Ca, Ca) + oo +dy(Cu-1,Cn)]
< B, C )[(111 + ¢(Co, C2)ay + as) N (a1 + ¢(Co, C2)ag + as) (a2 + P(C1, C3)az + as)
ST A - (Co, Q)aw) | (1= a2 — (Lo, G)as) (1= a1 — Py, Ca)as)

N (a1 + @(Co, C2)ag + as) (az + P(C1, C3)az + as) (a1 + P(Ca, Ca)ay + as)
(1 —a, — P(Co, &2)as) (1 —a1 — (G, C3)as) (1 —ax — Pp(Ca, Cadag)

et Jdo(Co, 1)
SO ClE+Ef +Ef + () + )+ o + (t)"1dy(Co, C1).-

Next we shall show that any sequence {C,} in E is Cauchy. Let k,/ € N with (k > I) then if k is even, we have
that

do(Cr, Cr) < PG, ClA(Cr Qi) + dp(Cret, Cren) + cvveenn +dp(Cr-1,Ci)]
< @ TIEN T+ EN '+ N+ + ()P 1d(Co, Cr)
< QAN THL+ () + (E) + (f)° + o)1 (Co, C1)
and if k is odd, we have that

d¢(Cn—1r Cn)

d¢)(Cn—2/ Cn—l)

do(C1, Ck) < P8, Tl (Tl Cren) + dp(Crat, Cran) + e +dp(Cr-1, Cr)]
<O QLN + EHT + EH)2 + o + (L) 1dg(Co, Cr)
< (G, COEN T+ () + (E) + (E) + e (¢ 1dg (o, 1)
Since,
5 y 1
=S 90,0
For k is even, then we take the coefficients of RHS
1
-1 2 3 k—1-1
O, CEN) THL+ () + )+ ) + e tH < POk
UL+ () + (EF)? + ()P + s tH"11< L

[$(C, TP
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For n'" term we put/—1=n
n 2 3 k—n 1
AL+ )+ )+ () + s (tH) " < —[¢(Cn—1,Ck)]2’

weknow that0 < tf < 1then (tf)" — 0as n — co. Then RHS of inequality became zero. So, d(C;, Gi) < efork
is even. The same is true if k is odd.

Therefore, the sequence {C,} in E is a cauchy sequence. Thus 3 * € E such that {C,} — " asn — oo.
Since (E, d) is a complete space. Now,

po(C, HE,(C)) < (T, n)[dy (T, Cans1) + HE, (Conv1, He, ()]

po(C, HE,(C)) < @(T', 1)[dy (T, Can+1) + D(Can, Hr,(T))] 3)
But

D(Can, Hr,(C) < ¢>(C [alp(CZHrHFl(CZn)) +aop(C', HE,(C")) + asp(C, Hr, (Can)) + aap(Con, H, (C7))

+ ﬂ5d¢(C2m &)

< m1dy(Con, Conv1) + a2[d (T, Cone1) + D(Can, He, ()] + a3d (T Cone1)

+ a4[d$(Con, Con+1) + D(Con, HE,(C))] + asdy(Con, T°)

< (a1 + a4)d(Con, Conv1) + (@2 + a3)dy (T, Cous1) + (a2 + a4) D(Con, HE,(C)) + asdy(Can, C°)

(1 +aq) (a2 + az)
< (1_1a—2_4)d¢(C2mC2n+1) + (Za%)dqb@ Cons1) + (—)dqb(CanC )
Using this value in equation (3)
(111 + ﬂ4) (ﬂz + 113)

Po(C HR(€)) < ()| do (T, Canen) +

(1_;—{1) 6(Con, T )]

) ¢(C2n,C2n+1)+ ) dy(C', Con+1)

(1- (1-

po(C',HE,(CY)) — 0 as n — oo. Therefore, {C'} € Hr,(C*), Using Lemma 2.6. Similarly, we can prove
{C*} € Hr,(C") and the proof is complete.

Remark 2.11. (i) If we put ¢((,n) = s and s > 1, in theorem 2.10 then this result also hold for hesitant
fuzzy map on b-metric space.
(ii) If we put ¢(C,17) = s and s = 1, in theorem 2.10 then this result also hold for hesitant fuzzy map on
metric space.

Corollary 2.12. Let E(# ¢) be aset and (E, d) be a complete extended b-metric space. Hr : E — W(E) hesitant
self map such that

D(HF(C),HF(U)) <ady(C,m) 4)

forany (,n€E, a< ( Then Jaunique C* € E such that {C'} € Hp(C") holds.

Proof: We have our de31red result {C'} € Hp(C") if we put Hr = Hr, = Hr,, a; =0fori=1,2,3,4andas =a
in above theorem.
Next, to prove uniqueness of C*. Suppose 4 C* # 1* * C Hp(1"), then we have

dy (T, ") < D1(Hp(CY), He(17"))
< D(Hp(C"), Hr(1"))
<ady(C, 1)

1 LR * % .
So,0<a< e @ contradiction, therfore, C* = n* and the proof is complete.
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Remark 2.13. (i) If we put ¢(C*,n") = s and s > 1, in corollary 2.12 then this result also hold for hesitant
fuzzy map on b-metric space.

(ii) If we put ¢(C",1") = s and s = 1, in corollary 2.12 then this result also hold for hesitant fuzzy map on
metric space.

Example 2.14. Assume E = {0,1,2} and(E, d) is a complete extended b-metric space. Define dy : E X E — [0, 00)
and ¢ : EXE — [1,00) by dy(C,n) = |C —n| and

,C=1

,C#nand {,1n € {0,1}
,C#nand (1 €{0,2}
,C#nand 1 € {1,2}

D(HF(C), Hr(n)) =

— NI O

Define hesitant fuzzy mapping Hr : E — W(E) and W(E) is a subcollection of hesitant fuzzy approximate quantities
of H(E).

0 ,t=02
LT
1ot=1

O NI

HFo(t) = HF1(t) = { 1=0 ’ HFz(t) = {

,t=1,2
Define a : E — (0,1] by a(C) = %for all C € E. Now we obtain that

{0y ,C=01

[Hr(Ol; = {{1} =2

Then we find the condition for D(Hp(C, Hr(1))) < ady(C, 7).
Solution: We know « (set-distance) that is

D(HF(C), Hr(n)) = Sup,-1 D1(HF(Q), Hr (1))
= HD([Hr(Ql, [HF(M]1)-

If we take C = 0 and n = 1, then we get

D(Hr(0), Hr(1)) = HD([Hr(0)]1, [HF (1)]
— HD(0,0)
=0

)

1
2

from the above corollary 2.12, we say that

D(HF(0), He(1)) < ady(C, 1)
0 < ady(0,1)

This condition (4) is hold and similarly, on setting C = 0 and n = 2, then we get

D(HF(0), Hr(2)) = HD([HF(0)]1, [HF(2)]
= HD(0,1)

)

1
2
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Then,

D(HE(0), Hr(2)) < ady(C, 1)
é < adg(C, 1)

<2a

Q1| =

<a

s|=

1 1

10 = 1)
¢(C,n) <10

Hence, condition (4) holds, if 1 < ¢(C, n) < 10.
Similarly, we take C = 1 and n = 2, then we get

D(HF(1), Hr(2)) = HD([HF(1)]1, [HF(2)]
= HD(0,1)

)

1
2

Then,

Hence, condition (4) holds, if 1 < ¢(C, 1) < 5. Therefore all the conditions of corollary 2.12 and there exist a point
0 € E such that 0 € [Hp(0)]1 is a hesitant fuzzy fixed point.

Theorem 2.15. Assume E(# ¢) be a complete extended b-metric space. Suppose Hr, and Hr, be hesitant
fuzzy mapping from E into W(E). If 3 a constant a € [0, 1), such that for each (,n € E,

,Hes(n) + plo, Hr
D(H: 0 Hrs (1) < 0 e G, i (), pln i, 2o B PR ®)

then 3 C* € E such that C* € Hg,(C*) and C* € H,(CY).
Proof: Let (y € E and {; C Hr,(Cp). Then 3 C; € E C Hr,((1)
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and

dy(Cr, C2) < Dr(HF, (Co), HE,(C1))
< D(HF,(Co), Hr,(C1))

a p(Co, Hr,(C1)) + p(C1, HE, (Co))
< 5o, 3 max{dy(Co, C1), p(Co, HF,(Co)), p(C1, HE, (C1)), T+ 6o, C)

a dy(Co, C2) +dy(Cr, C1)
5o, 3 max{dy(Co, C1),d(Co, C1),dy(C1, C2), 1+ 6o, 0)

a dy(Co, C2)
—qb(Co, @) max{dy(Co, C1),d(C1, C2), T3 o oG )

a P(Co, C1)ldy(Co, C1) + dy(C1, C2)]
< 50,3 max{d(Co, C1), dy(C1, C2), 1+ 6, &)

}

IA

IA

But, we know that

¢(Co, C1) (a+b) a+b, YabeR" and ¢(Co, C1) = 1.

1+¢(Co, C1)
Set,
¢, Cin1) =p(C,nVi=0,1,2,3,..
d(CLCZ) = (P(C, max d(CO/ Cl) d(Cl/ CZ)
< (P(C )d(CO/ Cl)

Also, since (; € E and (; € HE,(C1). Then 3 (3 € E such that (3 € Hr,(Cp) and

dy(Ca2, G3) < D1(HF,(C1), HE, (C2))

< D(H,(C1), Hr, (G2))

) ‘P(Cic 5 (G, o), UG, Hi (@) p(Co i (C0), (Cl'Hﬂfj);b:ci%HB(C”)}
qb(cl,cz) max{dy(C1, C2), do(C, Ca), dg (Lo, Ca), % |

o d¢(51'52>

- mz oo 1)

Continue this process, we have a sequence {C, € E} with nn > 0 such that

Cons1 € Hr, (Con),

and

Con+2 C HE, (Cons1),

4756



A. Bamel et al. / Filomat 37:14 (2023), 4743-4760
such that

d(j)(Cnr Cn+1) < Dl (HFZ(Cn—l)/ HF1 (Cn))
< D(HFZ(Cn—l)r HF1 (Cn))
< m max{dy(Cn-1, Cu), P(Cu, HE, (C1)), P(Ci-1, HF, (Cu-1)),
P(Cn—lr HFl (Cn)) + P(Cn, HFg(Cn—l))
1+ (P(Cn—l/ Cn)
max{dq’J(Cn—lr Cn)/ d(,/)(Cn/ Cn+1)/ drp(Cn—lz Cn)/

d(P(Cn—ll Cn+1)
"1+ @(Cn-1,Cn)

Coty Co)ldo (et Co) + Ao (Cony G
(o Coot, o (G G, 2 )[fi @(2 _1)C )¢( )

}

dqb(Cn—l; Cov1) + d(P(Cn/ Cn)
L+ ¢(Cu-1,Cn)

<1 }
(P(Cn—l/ Cn)

< m max{d(Co-1,Cn), dp(Cu, Cut1)

<2 |
- (P(Cn 1, Cn

< (P(C ) max dq)(Cn 1, Cn) dd)(Cn/ Cn+1)

= qb(c )d¢(Cn -1,Cn)

- <P(C, m
To prove that every sequence in E is Cauchy. Let p, g € IN with (p is greater than g). Then,

d(Cy, Cg) < (G [d(Cq, Cor1) + d(Coen, Cq+2) F o, +d(Cp-1,Cp)]
< O M| (7=)1d(Co, 1) + ( Y (Lo, C1) + oo

< oG mn)

)" dy(Co, C1)

p-1
qb(c m ql)(C,) ) d(Co, 0]

a
G 5en ST o

We also know that, 0<(a>(cn))<1 So, for n" term((f)cq)) — 0 asn — oo. Then

(G, G) <e

<P(C,

) 4 L Y d(o, ¢

Therefore, the sequence {,} in E is a cauchy sequence.
Thus 3 C* € E such that {C,} — (" as n — oo. Since (E, d) is a complete space. Now,

po(C', HE,(C)) < (T, m)Id(C, Cani1) + Hr, (Conv1, Hp, (C))]
< (T, AT, Conir) + D(Can, HR, (C))]

niH 2 y */H 1 n
D(Can, Hi, (C)) < @ max{d(Can, ©), p(Cans He, (Con)), p(C, Hi, (©)), 2 (Con, Hry(€)) + PIC, Hir, (Con)

}

1+ ¢, m)
< amax{d(Can, C), d(Can, Con+1), (T, )A(T", Can+1) + D(Can, HE,(T))],
O(C, 1)[d(Can, Cans1) + D(Con, H,(C))] + d(T, C2n+1)}

L+ ¢(C,m)
< a max{d(Can, C°), d(C", Cons1)}

<ad(Con, C)

Using this value in equation (6), then

Po(C, HE,(T)) < ¢(C, MId(C, Cansr) + a d(Can, C)]

4757
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po(C', He,(CY) = 0as n — co.

Therefore, {C'} C Hr,(C") Using lemma 2.6.
Similarly, we can prove {C*} C Hf,(C") and the proof is complete.

Remark 2.16. 1. If we put ¢(C,17) = s and s > 1, in theorem 2.15 then this result also hold for hesitant
fuzzy map on b-metric space.
2. If we put ¢(, 1) = s and s = 1, in theorem 2.15 then this result also hold for hesitant fuzzy map on
metric space.

3. Application

In this section, we establish the application of the fixed point theorem for an integral equation of
Fredholm type.

C(u) = f] N(u,v,C(v))dv + h(u), u,v € [i,]] (7)

Assume E = C([i, j], R) be the space of all continuous real valued functions defined on [i,j] and the metric
dy : EXE —[0,00), ¢ : EXE — [1,00) are defined by

do(C, 1) = supueg; 1) — )R with $(C, n) = L] + ()] + 3.

We know that (E, d,) is a complete extended b-metric space. Assume T : E — E the operator is given by:

TC(u) = f] N(u,v,C(v))dv + h(u) Y u,veli/j]

The integral equation (7) has a solution if and only if T has a fixed point.
Statement: Assume the following conditions are satisfied:

() N:[i,j1x[i,j/1xR = Rand & : [i, j] = R are continuous functions.
(i) da € (0,1) such that

IN(, v, {(v)) = N(u, v, TC(v))| < a |C(v) — TC(v)| for each u,v € [i, j] and C € E.
Then the fredholm integral equation (7) has a unique solution.
Proof: We know that (E, dy) is a complete extended b-metric space. Assume T : E — E the operator is given
by:
i
e = [ N o, Loldo +hw) o€ [ ]
Further, letting that the following condition is satisfied:

IN(u,v,C(v)) = N(u,v, TC(v))| < %lC(v) —TC(v)| foreachu,v e [i,jland (€ E

Employing that integral equation (7) exihibit a solution. T satisfies all the conditions of theorem 1.17. For
any C € E, we have:

]
ITC00) = TP < ( [ NG, 60 = N, Te(o)ide)
ITC) = TTCw)P < 1) - T

ITCw) - T < 3120) = TCE) ®
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Therefore, T has a fixed point.
But from the contraction of hesitant fuzzy map on extended b-metric space. we have:

D(Hr(C), Hr(n)) < ady(C, 1) ©)

forany {,n € E, wherea € (0, @) and we also know that ¢(C, ) > 1.
From the equations (8) and (9), we get similar results. So, T has a fixed point and also say that C = 1 and
equation (7) possesses a solution. So, Fredholm integral equation (7) has a solution.

Remark 3.1. 1. If we put ¢(C, ) = s and s > 1, in equation (9) then this result also hold for hesitant fuzzy
map on b-metric space.
2. If we put ¢(C,17) = s and s = 1, in equation (9) then this result also hold for hesitant fuzzy map on
metric space.

4. Conclusion

In this article, The concept of hesitant fuzzy mapping, contraction hesitant fuzzy mapping and general-
ized contraction of hesitant fuzzy mappings are introduced in the framework of extended b-metric spaces,
which in particular case reduces to b-metric spaces. Through several concluding remarks, it is assured that
by setting ¢(C,n) = s and s = 1, the main results reduce to the results in b-metric spaces and usual metric
spaces. In future, the existence of these results can be studied in other types of metric spaces like fuzzy
metric spaces, modular metric spaces, neutrosophic metric-like spaces and controlled metric spaces etc by
using a different type of contraction.
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