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Abstract. Imperfect information causes indistinguishability of objects and inability of making an accurate
decision. To deal with this type of vague problem, Pawlak proposed the concept of rough set. Then, this
concept has been studied from different points of view like topology and ideals. In this manuscript, we
use the system of containment neighborhoods to present new rough set models generated by topology and
ideals. We discuss their fundamental characterizations and reveal the relationships among them. Also, we
prove that the current approximation spaces produce higher accuracy measures than those given by some
previous approximation spaces. Ultimately, we provide a medical example to demonstrate that the current
approach is one of the preferable and useful techniques to eliminate the ambiguity of the data in practical
problems.

1. Introduction

In 1982, Pawlak [26] put forward an important mathematical approach to deal with vagueness of
information systems called “rough set”. Its methodology is based on handling subsets of data by a pair of
exact sets called lower and upper approximations. These approximations approximate subsets to minimal
exact set contained in the subset and maximal exact set containing the subset in terms of equivalence classes.
Rough set theory has strong representation ability for incomplete information, so it has been widely applied
in many fields, such as computer science, data mining and pattern recognition [24, 32].

An equivalent relation is sometimes difficult to obtain in real-world problems because of the vagueness
and incompleteness of human knowledge. As a result, Yao et al [37, 38] defined new approximation
operators using a non-equivalent relation. These operators induced from left and right neighborhoods. It
can be seen from the published articles that canceling an equivalent condition leads to advent different
types of neighborhood systems which automatically produce several sorts of approximation spaces. In
this regard, Allam et al [5, 6] studied two types of approximation spaces induced from minimal left and
minimal right neighborhoods. Afterward, Abd El-Monsef et al [1] familiarized four types of neighborhood
systems, namely, intersection neighborhoods, union neighborhoods, intersection minimal neighborhoods,
and union minimal neighborhoods. These systems of neighborhoods have been applied to initiate some
kind of rough set models.
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Mareay [23] displayed novel kinds of neighborhood systems inspired by the equality relation between
Yao’s neighborhoods and applied to set forth some approximation operators. Further types of these sorts
of neighborhood systems were established in [13]. Quite recently, Al-shami et al [11] have established the
system of E j-neighborhoods and demonstrated its relationships with previous systems of neighborhoods.
Then, two types of neighborhood systems called containment neighborhoods and subset neighborhoods
have been discussed by [7] and [10], respectively. They have been employed to rank individuals working in
a specific facility in terms of infection of COVID-19. The concept of maximal neighborhoods was introduced
and their main features were explored by [9]. It is worthily noting that many authors have generalized
equivalence relation and have used many types of relations such as tolerance relation [29], similarity relation
[2, 3, 30], dominance relation [40] and arbitrary binary relation [36, 42].

Another interesting approach studying approximation spaces is topology. In fact, there exists a close
relationship between rough set theory and topology because it was proven that the pair of lower and upper
approximations induced by reflexive and transitive relations is the same as the pair of interior and closure
operators [25, 27, 37]. By using a topology, we can get approximations for qualitative concepts (subsets).
Recently, researchers and scholars interested in topology and uncertain issues have exploited this similarity
to build different types of approximation operators induced by a topology; see, [4, 8, 22, 41]. Kandi et al.,
in 2013, [21] provided a novel method to construct approximation spaces depending on the structure of
ideal. They aimed to improve approximation operators and increase the accuracy measures. Then, Hosny
[15, 16] introduced new rough set models induced from topological and ideal structures. Also, Al-shami
and Hosny [12] applied the system of maximal neighborhoods with ideal structures to get rid of uncertainty
via information systems.

The goal of the current work is to give a new rough paradigm by using the concepts of “containment
neighborhoods and ideals”. The main motivation for us to introduce and study this paradigm is to provide
a new environment to describe incomplete data that cannot be treated by Pawlak’s model, and to increase
the accuracy measures of subsets by increasing their lower approximations and decreasing their upper
approximations.

This article is structured in the following manner. In Section 2, we recall the some types of neighborhood
systems via rough set theory and we mention the followed techniques to establish approximation spaces
from the structures of topologies and ideals. In Section 3, we scrutinize the main properties and relationships
of approximation spaces induced by containment neighborhood. We point out that the accuracy measures
obtained from these approximation paces are better than the approaches introduced in [1, 4, 11]. In Section
4, we construct new rough paradigms generated directly by using containment neighborhoods and ideals.
We explore their master characterizations and demonstrate that they enlarge the knowledge obtained from
the subsets of data compared to the previous methods displayed in [7, 14]. To confirm the ability and
importance of the followed technique, we apply this technique in Section 5 to describe an information
system of COVID-19 and make a more accurate decision. Finally, in Section 6, we outline the paper’s
contributions and propose a plan for a future work.

2. Preliminaries

In this part, we recall the concepts and properties that we need to make the manuscript self-contained.

Definition 2.1. ([8]) A subset R ⊆ U×U is called a binary relation, it is said to be reflexive if (v, v) ∈ R ∀ v ∈
U, symmetric if (u, v) ∈ R whenever (v,u) ∈ R, transitive if (v,w) ∈ R whenever (v,u) ∈ R and (u,w) ∈ R and
equivalence if R is reflexive, symmetric and transitive.

At the first, Pawlak [26] associated a subset with two crisp sets called lower and upper approximations.
These approximations defined with respect to the equivalent classes as follows.

Definition 2.2. ([26]) If R is an equivalence relation on a universe U and [x]R is the equivalence class
containing x ∈ U. The lower approximation F(A) and upper approximation F(A) of a set M of U are given
by
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i. F(M) = {x ∈ U : [x]R ⊆M}.

ii. F(M) = {x ∈ U : [x]R ∩M , ϕ}.

Then, the equivalence relation has been replaced by specific (or arbitrary) relation to expand the scope of
applications of rough set theory. This leads to deal with the so-called neighborhoods of an element instead
of its equivalence classes. As a result, various sorts of rough-set paradigms have been introduced in the
published literature. In what follows, we recall a set of these neighborhoods and paradigms that we need
to show the importance and robustness of this work.

Definition 2.3. [ j-neighborhoods] ([5, 6, 38]) Let R be an arbitrary binary relation on a universe set U, then
the j-neighborhoods of an element x ∈ U are defined as follows
j ∈ {r, l, i,u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}:

i. Nr(x) = {y ∈ U : xRy}

ii. Nl(x) = {y ∈ U : yRx}

iii. Ni(x) = Nr(x) ∩Nl(x)

iv. Nu(x) = Nr(x) ∪Nl(x)

v. N⟨r⟩(x) =
⋂

x∈Nr(y)
Nr(y)

vi. N⟨l⟩(x) =
⋂

x∈Nl(x)
Nl(y)

vii. N⟨i⟩(x) = N⟨r⟩(x) ∩N⟨l⟩(x)

viii. N⟨u⟩(x) = N⟨r⟩(x) ∪N⟨l⟩(x)

Definition 2.4. [ j-neighborhood space] ([1]) Let R be an arbitrary binary relation on U andψ j : U −→ P(U) be
a mapping which assigns for each z in U its j-neighborhood in P(U). then (U,R, ψ j) is called a j-neighborhood
space (N jS).

Definition 2.5. ([5, 6, 38]) Let (U,R, ψ j) be a N jS, then the N j-lower approximation FN j (X), N j-upper
approximation FN j (X) and N j-accuracy measure µN j (X) of a set X ⊆ U are defined as follows:

i. FN j (X) = {x ∈ U : N j(x) ⊆ X}

ii. FN j (X) = {x ∈ U : N j(x) ∩ X , ϕ}

iii. µN j (X) =
|FNj (X)∩X|

|FNj (X)∪X|

Where |FN j (X) ∪ X| , 0.

Definition 2.6. [ j-adhesion neighborhoods] [13, 23] Let R be an arbitrary binary relation on a universe set
U, then the j-adhesion neighborhoods of element x ∈ U are defined as follows j ∈ {r, l, i,u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}:

i. Pr(x) = {y ∈ U : Nr(x) = Nr(y)}

ii. Pl(x) = {y ∈ U : Nl(x) = Nl(y)}

iii. Pi(x) = Pr(x) ∩ Pl(x)

iv. Pu(x) = Pr(x) ∪ Pl(x)

v. P⟨r⟩(x) = {y ∈ U :
⋂

x∈Nr(y)
Nr(y) =

⋂
y∈Nr(x)

Nr(x)}
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vi. P⟨l⟩(x) = {y ∈ U :
⋂

x∈Nl(y)
Nl(y) =

⋂
y∈Nl(x)

Nl(x)}

vii. P⟨i⟩(x) = P⟨r⟩(x) ∩ P⟨l⟩(x)

viii. P⟨u⟩(x) = P⟨r⟩(x) ∪ P⟨l⟩(x)

Definition 2.7. [E j-neighborhoods] ([11]) Let R be an arbitrary binary relation on a universe set U, then the
E j-neighborhoods are defined as follows j ∈ {r, l, i,u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}:

i. Er(x) = {y ∈ U : Nr(y) ∩Nr(x) , ϕ}

ii. El(x) = {y ∈ U : Nl(y) ∩Nl(x) , ϕ}

iii. Ei(x) = Er(x) ∩ El(x)

iv. Eu(x) = Er(x) ∪ El(x)

v. E⟨r⟩(x) = {y ∈ U : N⟨r⟩(y) ∩N⟨r⟩(x) , ϕ}

vi. E⟨l⟩(x) = {y ∈ U : N⟨l⟩(y) ∩N⟨l⟩(x) , ϕ}

vii. E⟨i⟩(x) = E⟨r⟩(x) ∩ E⟨l⟩(x)

viii. E⟨u⟩(x) = E⟨r⟩(x) ∪ E⟨l⟩(x)

Definition 2.8. ([11]) Let (U,R, ψ j) be a N jS, then the E j-lower approximation FE j (X), E j-upper approximation
FE j (X) and µEj-accuracy measure ME j (X) of a set X ⊆ U are defined as follows:

i. FE j (X) = {x ∈ U : E j(x) ⊆ X}

ii. FE j (X) = {x ∈ U : E j(x) ∩ X , ϕ}

iii. µE j (X) =
|FEj (X)∩X|

|FEj (X)∪X|
,

where |FEj(X) ∪ X| , 0.

Definition 2.9. [C j-neighborhoods] ([7]) Let R be an arbitrary binary relation on a universe set U, then the
C j-neighborhoods are defined as follows j ∈ {r, l, i,u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}:

i. Cr(x) = {y ∈ U : Nr(y) ⊆ Nr(x)}

ii. Cl(x) = {y ∈ U : Nl(y) ⊆ Nl(x)}

iii. Ci(x) = Cr(x) ∩ Cl(x)

iv. Cu(x) = Cr(x) ∪ Cl(x)

v. C⟨r⟩(x) = {y ∈ U : N⟨r⟩(y) ⊆ N⟨r⟩(x)}

vi. C⟨l⟩(x) = {y ∈ U : N⟨l⟩(y) ⊆ N⟨l⟩(x)}

vii. C⟨i⟩(x) = C⟨r⟩(x) ∩ C⟨l⟩(x)

viii. C⟨u⟩(x) = C⟨r⟩(x) ∪ C⟨l⟩(x)

Definition 2.10. ([7]) Let (U,R, ψ j) be a N jS, then the C j-lower approximation FC j (X), C j-upper approxima-
tion FC j (X) and C j-accuracy measure µC j (X) of a set X ⊆ U are defined as follows:

i. FC j (X) = {x ∈ U : C j(x) ⊆ X}
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ii. FC j (X) = {x ∈ U : C j(x) ∩ X , ϕ}

iii. µC j (X) =
|FCj (X)|

|FCj (X)|
,

where |FCj(X)| , 0. ==

Definition 2.11. ([8]) A subset T ⊆ P(U) is called a topology on U if ϕ,U ∈ T and T is closed under arbitrary
union and finite intersection. We call the order pair (T,U) a topological space. A set M is called an open set
if it is a member of T, and it is called a closed set if its complement a member of T. For any subset M of
U, the interior points of M, denoted by int(M) is the union of all open sets that are contained in M, and the
closure points of M, denoted by cl(M) is the intersection of all closed sets containing M.

The rough set paradigms have been studied topologically in several published literature. The followed
methods to link neighborhoods systems and topological structures are proved in the following results.

Theorem 2.1. ([1, 11, 14, 23]) Let (U,R, ψ j) be a N jS. Then each one of the following collections is a topology on U
for each j.

i. TN j = {M ∈ U : ∀ y ∈M,N j(y) ⊆M} [1].

ii. TPj = {M ∈ U : ∀ y ∈M,P j(y) ⊆M} [4, 23].

iii. TEj = {M ∈ U : ∀ y ∈M,E j(y) ⊆M} [11].

iv. TCj = {M ∈ U : ∀ y ∈M,C j(y) ⊆M} [14]

Definition 2.12. ([1, 11, 14, 23]) Let (U,R, ψ j) be a N jS. Then, the following are some types of lower and
upper approximations and accuracy measures of a subset M ⊆ U induced from topological spaces TN j, TPj,
TEj and TCj, are respectively defined as follows.

N j(M) = intN j (M) N j(M) = clN j (M) ρN j (M) =
|N j(M)|

|N j(M)|

P j(M) = intP j (M) P j(M) = clP j (M) ρP j (M) =
|P j(M)|

|P j(M)|

E j(M) = intE j (M) E j(M) = clE j (M) ρE j (M) =
|E j(M)|

|E j(M)|

C j(M) = intC j (M) C j(M) = clC j (M) ρC j (M) =
|C j(M)|

|C j(M)|

Definition 2.13. ([20]) A non-empty collection I of subsets of a set X is called an ideal on X if it satisfies the
following conditions:

i. If A ∈ I and B ∈ I, then A ∪ B ∈ I.

ii. If A ∈ I and B ⊆ A, then B ∈ I.

To improve the approximation operators and increase the accuracy measure of a set, the topological
structures given in Theorem 2.1 were enlarged by inserting ideals as illustrated in the next theorem.

Theorem 2.2. ([14]) Let (U,R, ψ j) be N jS and I be an ideal on U. Then each one of the following collections is a
topology on U for each j.

i. TI
N j = {M ⊆ U : ∀ z ∈M, (N j(z) −M) ∈ I} [21].

ii. TI
Pj = {M ⊆ U : ∀ z ∈M, (P j(z) −M) ∈ I} [19].

iii. TI
Ej = {M ⊆ U : ∀ z ∈M, (E j(z) −M) ∈ I} [18].
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iv. TI
Cj = {M ⊆ U : ∀ z ∈M, (C j(z) −M) ∈ I} [14].

Definition 2.14. ([14]) Let (U,R, ψ j) be N jS, I be an ideal on U and M ⊆ U, then for each j, the lower

approximation CI
j, upper approximation C

I
j, boundary region BI

Cj, positive region POSI
j, negative region

NEGI
j and accuracy measure ρI

Cj of M are defined by:

i. CI
j(M) = intI

Cj(M).

ii. C
I
j(M) = clICj(M).

iii. BI
C j

(M) = C
I
j(M) − CI

j(M)

iv. POSI
C j

(M) = CI
j(M).

v. NEGI
C j

(M) = U − C
I
j(M).

vi. ρI
Cj(M) =

|CI
j(M)|

|C
I
j(M)|

,

where |C
I
j(M)| , 0

3. Topologies generated by containment neighborhoods

In this section, we study the relation between the 8 topologies initiated in 4 of Theorem 2.1 as well
as the relation between these topologies and those studied in [1, 11, 23]. Then, we construct new rough
approximations from these topologies and research the properties of these approximations. Also, we
elucidate the relation between these approximations and those introduced in [7].

Definition 3.1. Let (U,R, ψ j) be N jS, then for each j, a subset X of U is called C j-open set if X ∈ TC j and the
complement of a C j-open set is said to be C j-closed set. The collection FCj of all C j-closed sets is given by:

FCj = {F ⊆ U : Fc
∈ TC j }

The following theorem states the relations between the new topologies generated by 4 of Theorem 2.1
as well as the relations between these new topologies and those generated in[1, 11, 23].

Theorem 3.1. The following properties hold for the topologies generated by C j-neighborhoods:

i. TCu ⊆ TCr ⊆ TCi .

ii. TCu ⊆ TCl ⊆ TCi .

iii. TC⟨u⟩ ⊆ TC⟨r⟩ ⊆ TC⟨i⟩.

iv. TC⟨u⟩ ⊆ TC⟨l⟩ ⊆ TC⟨i⟩.

v. If R is symmetric, then
TCr = TCl = TCi = TCu and
TC⟨r⟩ = TC⟨l⟩ = TC⟨i⟩ = TC⟨u⟩

vi. TC j ⊆ TP j for each j.

vii. If R is equivalence relation, then TP j = TC j for each j.
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viii. If R is equivalence relation, then
TCr = Tcl = TCi = TCu = TC⟨r⟩ = TC⟨l⟩ = TC⟨i⟩ = TC⟨u⟩

ix. If R is reflexive relation, then TE j ⊆ TN j ⊆ TC j for each j

Proof. :

i. Since Ci(x) ⊆ Cr(x) ⊆ Cu(x) ∀ x ∈ U, we obtain TCu ⊆ TCr ⊆ TCi .

ii. Since Ci(x) ⊆ Cl(x) ⊆ Cu(x) ∀ x ∈ U, we obtain TCu ⊆ TCl ⊆ TCi .

iii. Since C⟨i⟩(x) ⊆ C⟨r⟩(x) ⊆ C⟨u⟩(x), we obtain TC⟨u⟩ ⊆ TC⟨r⟩ ⊆ TC⟨i⟩.

iv. Since C⟨i⟩(x) ⊆ C⟨l⟩(x) ⊆ C⟨u⟩(x), we obtain TC⟨u⟩ ⊆ TC⟨l⟩ ⊆ TC⟨i⟩.

v. Since R is symmetric, then Cr(x) = Cl(x) = Ci(x) = Cu(x) and C⟨r⟩(x) = C⟨l⟩(x) = C⟨i⟩(x) = C⟨u⟩(x)∀ x ∈ U.

vi. P j(x) ⊆ C j(x) ∀ x ∈ U for each j.

vii. Since R is equivalence relation, then C j(x) = P j(x) ∀ x ∈ U for each j.

viii. Since R is equivalence relation, then
Cr(x) = Cl(x) = Ci(x) = Cu(x) = C⟨r⟩(x) = C⟨l⟩(x) = C⟨i⟩(x) = C⟨u⟩(x) ∀ x ∈ U.

ix. Since R is reflexive, then C j(x) ⊆ N j(x) ⊆ E j(x) ∀ x ∈ U for each j.

Definition 3.2. Let (U,R, ψ j) be N jS and M ⊆ U, then for each j the C j-interior and the C j-closure of M are
defined by:

intC j (M) = ∪{G ∈ TC j : G ⊆M}

clC j (M) = ∩{H ∈ FC j : M ⊆ H}

Definition 3.3. Let (U,R, ψ j) be N jS and M ⊆ U, then for each j, the lower approximation C j, upper

approximation C j, boundary region BC j , positive region POSC j , negative region NEGC j and accuracy measure
ρC j of M are defined by:

i. C j(M) = intCj(M).

ii. C j(M) = clCj(M).

iii. BC j (M) = C j(M) − C j(M)

iv. POSC j (M) = C j(M).

v. NEGC j (M) = U − C j(M).

vi. ρC j (M) =
|C j(M)|

|C j(M)|
.

Where |C j(M)| , 0

The following theorem states the properties of the lower approximation C j and upper approximation

C j.

Theorem 3.2. Let (U,R, ψ j) be N jS and M and N be subsets of U, then for each j:

L1 C j(M) ⊆M.
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L2 C j(ϕ) = ϕ.

L3 C j(U) = U.

L4 C j(M ∩N) = C j(M) ∩ C j(N).

L5 If M ⊆ N, then C j(M) ⊆ C j(N).

L6 C j(M) ∪ C j(N) ⊆ C j(M ∪N).

L7 C j(M
c) = [C j(M)]c.

L8 C j[C j(M)] = C j(M).

U1 M ⊆ C j(M).

U2 C j(ϕ) = ϕ.

U3 C j(U) = U.

U4 C j(M ∪N) = C j(M) ∪ C j(N).

U5 If M ⊆ N, then C j(M) ⊆ C j(N).

U6 C j(M) ∩ C j(N) ⊇ C j(M ∩N).

U7 C j(Mc) = [C j(M)]c.

U8 C j[C j(M)] = C j(M).

Proof. These follow from the properties of the interior and closure operators.

Definition 3.4. Let (U,R, ψ j) be N jS and M ⊆ U, then for each j, M is called:

i. Totally C j-definable or C j-exact if C j(M) =M = C j(M).

ii. Internally C j-definable if C j(M) =M and C j(M) ,M.

iii. Externally C j-definable if C j(M) ,M and C j(M) =M.

iv. C j-Rough if C j(M) ,M , C j(M).

We elaborate, in the next two results, the relationships between the approximation operators and
accuracy measure produced by containment neighborhood as given in [7] and their counterparts that we
construct in this section.

Theorem 3.3. Let M be a subset of U, then C j(M) ⊆ FC j (M) and FC j (M) ⊆ C j(M).

Proof. First, let z ∈ C j(M), then z ∈ intC j (M). Thus there exists an open set G such that z ∈ G ⊆M. Therefore
C j(z) ⊆ G ⊆M. Hence C j(M) ⊆ FC j (M).

Second, let z < C j(M), then z < clC j (M). So there exists a closed set F ⊇M such that z < F. Therefore z ∈ Fc

which is open set and Fc
∩M = ϕ. Since z ∈ Fc which is open, thus C j(z) ⊆ Fc and C j(z) ∩M = ϕ. Therefore

z < FC j (M). Hence FC j (M) ⊆ C j(M).

Corollary 3.1. Let M be a subset of U, then ρC j (M) ≤ µC j (M).
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Example 3.1. Let U = {m1, m2, m3} be a universe set and R = {(m1,m1), (m1,m3), (m2,m3), (m3,m3)} be a
binary relation on U. Then the power set of U is given by: P(U) = {{m1}, {m1,m2}, {m1,m3}, {m2}, {m2,m3},
{m3}, U, ϕ}.
The j-neighborhoods and C j-neighborhoods are given in Tables (1,2) respectively.
The 8 topologies generated from containment neighborhoods are as follows:
TCr = {U, ϕ, {m2,m3}}

TCl = {U, ϕ, {m1,m2}, {m2}}

TCi = {U, ϕ, {m1,m2}, {m2}, {m2,m3}}

TCu = {U, ϕ}
TC⟨r⟩ = {U, ϕ, {m2}, {m2,m3}}

TC⟨l⟩ = {U, ϕ, {m1}}

TC⟨i⟩ = {U, ϕ, {m1}, {m2}, {m1,m2}, {m2,m3}}

TC⟨u⟩ = {U, ϕ}
FC j , FC j , µC j , C j, C j and ρC j are given in Tables (3, 4, 5, 6, 7, 8) respectively.

Table 1: j-Neighborhoods
z Nr(z) Nl(z) Ni(z) Nu(z) N⟨r⟩(z) N⟨l⟩(z) N⟨i⟩(z) N⟨u⟩(z)
m1 {m1,m3} {m1} {m1} {m1,m3} {m1,m3} {m1} {m1} {m1,m3}

m2 {m3} ϕ ϕ {m3} ϕ U ϕ U
m3 {m3} U {m3} U {m3} U {m3} U

Table 2: C j-Neighborhoods

z Cr(z) Cl(z) Ci(z) Cu(z) C⟨r⟩(z) C⟨l⟩(z) C⟨i⟩(z) C⟨u⟩(z)
m1 U {m1,m2} {m1,m2} U U {m1} {m1} U
m2 {m2,m3} {m2} {m2} {m2,m3} {m2} U {m2} U
m3 {m2,m3} U {m2,m3} U {m2,m3} U {m2,m3} U

Table 3: FC j

Set (M) FCr (M) FCl (M) FCi (M) FCu (M) FC⟨r⟩ (M) FC⟨l⟩ (M) FC⟨i⟩ (M) FC⟨u⟩ (M)
{m1} ϕ ϕ ϕ ϕ ϕ {m1} {m1} ϕ
{m2} ϕ {m2} {m2} ϕ {m2} ϕ {m2} ϕ
{m3} ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
{m1,m2} ϕ {m1,m2} {m1,m2} ϕ {m2} {m1} {m1,m2} ϕ
{m1,m3} ϕ ϕ ϕ ϕ ϕ {m1} {m1} ϕ
{m2,m3} {m2,m3} {m2} {m2,m3} {m2} {m2,m3} ϕ {m2,m3} ϕ

Table 4: FC j

Set (M) FCr (M) FCl (M) FCi (M) FCu (M) FC⟨r⟩ (M) FC⟨l⟩ (M) FC⟨i⟩ (M) FC⟨u⟩ (M)
{m1} {m1} {m1,m3} {m1} {m1,m3} {m1} U {m1} U
{m2} U U U U U {m2,m3} {m2,m3} U
{m3} U {m3} {m3} U {m1,m3} {m2,m3} {m3} U
{m1,m2} U U U U U U U U
{m1,m3} U {m1,m3} {m1,m3} U {m1,m3} U {m1,m3} U
{m2,m3} U U U U U {m2,m3} {m2,m3} U
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Table 5: µC j

Set (M) µCr (M) µCl (M) µCi (M) µCu (M) µC⟨r⟩ (M) µC⟨l⟩ (M) µC⟨i⟩ (M) µC⟨u⟩ (M)
{m1} 0 0 0 0 0 1

3 1 0
{m2} 0 1

3
1
3 0 1

3 0 1
2 0

{m3} 0 0 0 0 0 0 0 0
{m1,m2} 0 2

3
2
3 0 1

3
1
3

2
3 0

{m1,m3} 0 0 0 0 0 1
3

1
2 0

{m2,m3}
2
3

1
3

2
3

1
3

2
3 0 1 0

Table 6: C j

Set (M) Cr(M) Cl(M) Ci(M) Cu(M) C
⟨r⟩(M) C

⟨l⟩(M) C
⟨i⟩(M) C

⟨u⟩(M)
{m1} ϕ ϕ ϕ ϕ ϕ {m1} {m1} ϕ
{m2} ϕ {m2} {m2} ϕ {m2} ϕ {m2} ϕ
{m3} ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
{m1,m2} ϕ {m1,m2} {m1,m2} ϕ {m2} {m1} {m1,m2} ϕ
{m1,m3} ϕ ϕ ϕ ϕ ϕ {m1} {m1} ϕ
{m2,m3} {m2,m3} {m2} {m2,m3} ϕ {m2,m3} ϕ {m2,m3} ϕ

Table 7: C j

Set (M) Cr(M) Cl(M) Ci(M) Cu(M) C⟨r⟩(M) C⟨l⟩(M) C⟨i⟩(M) C⟨u⟩(M)
{m1} {m1} {m1,m3} {m1} U {m1} U {m1} U
{m2} U U U U U {m2,m3} {m2,m3} U
{m3} U {m3} {m3} U {m1,m3} {m2,m3} {m3} U
{m1,m2} U U U U U U U U
{m1,m3} U {m1,m3} {m1,m3} U {m1,m3} U {m1,m3} U
{m2,m3} U U U U U {m2,m3} {m2,m3} U

Table 8: ρC j

Set (M) ρCr (M) ρCl (M) ρCi (M) ρCu (M) ρC⟨r⟩ (M) ρC⟨l⟩ (M) ρC⟨i⟩ (M) ρC⟨u⟩ (M)
{m1} 0 0 0 0 0 1

3 1 0
{m2} 0 1

3
1
3 0 1

3 0 1
2 0

{m3} 0 0 0 0 0 0 0 0
{m1,m2} 0 2

3
2
3 0 1

3
1
3

2
3 0

{m1,m3} 0 0 0 0 0 1
3

1
2 0

{m2,m3}
2
3

1
3

2
3 0 2

3 0 1 0

Note that the converse of the following relations doesn’t hold in general.

I. TCu ⊆ TCr ⊆ TCi .

i. TCu = {U, ϕ}.

ii. TCr = {U, ϕ, {m2,m3}}.

iii. TCi = {U, ϕ, {m1,m2}, {m2}, {m2,m3}}.

II. TCu ⊆ TCl ⊆ TCi .
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i. TCu = {U, ϕ}.
ii. TCl = {U, ϕ, {m1,m2}, {m2}}.

iii. TCi = {U, ϕ, {m1,m2}, {m2}, {m2,m3}}.

III. TC⟨u⟩ ⊆ TC⟨r⟩ ⊆ TC⟨i⟩ .

i. TC⟨u⟩ = {U, ϕ}.
ii. TC⟨r⟩ = {U, ϕ, {m2}, {m2,m3}}.

iii. TC⟨i⟩ = {U, ϕ, {m1}, {m2}, {m1,m2}, {m2,m3}}.

IV. TC⟨u⟩ ⊆ TC⟨l⟩ ⊆ TC⟨i⟩ .

i. TC⟨u⟩ = {U, ϕ}.
ii. TC⟨l⟩ = {U, ϕ, {m1}}.

iii. TC⟨i⟩ = {U, ϕ, {m1}, {m2}, {m1,m2}, {m2,m3}}.

V. C j(M) ⊆M.

i. C
⟨r⟩({m1,m2}) = {m2}.

VI. If M ⊆ N, then C j(M) ⊆ C j(N).

i. Cr({m1}) = ϕ.
ii. Cr({m2,m3}) = {m2,m3}.

VII. [C j(M) ∪ C j(N)] ⊆ C j(M ∪N).

i. [Cl({m1}) ∪ Cl({m2})] = {m2}.
ii. Cl({m1} ∪ {m2}) = {m1,m2}

VIII. M ⊆ C j(M).

i. Cl({m1}) = {m1,m3}.

IX. If M ⊆ N, then C j(M) ⊆ C j(N).

i. Cl({m1}) = {m1,m3}.

ii. Cl({m2}) = U.

X. [C j(M) ∩ C j(N)] ⊇ C j(M ∩N).

i. Cl({m1,m3}) ∩ Cl({m2,m3}) = {m1,m3}.

ii. Cl({m1,m3} ∩ {m2,m3}) = {m3}.

XI. C j(M) ⊆ FCj(M)

i. Cu({m2,m3}) = ϕ.
ii. FCu ({m2,m3}) = {m2}.

XII. FC j (M) ⊆ C j(M)

i. FCu ({m1}) = {m1,m3}.
ii. Cu({m1}) = U.

XIII. ρC j (M) ≤ µC j (M)

i. ρCu ({m2,m3}) = 0.
ii. µCu ({m2,m3}) = 1

3 .
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4. New types of approximations in terms of containment neighborhoods and ideals

In this section, we define new rough approximation spaces directly generated from containment neigh-
borhoods and ideals. We explore their basic characterizations and illustrate the relationships between them.
Furthermore, we demonstrate the advantages of them compared to the approximation spaces displayed in
Section 3 and those studied in [7, 14].

Definition 4.1. Let (U,R, ψ j) be N jS, I be an ideal on U and M ⊆ U, then the lower approximation IF−C j
,

upper approximation IF+C j
and accuracy measure IρC j of M are defined by:

i. IF−C j
(M) = {z ∈ U : [C j(z) −M] ∈ I}.

ii. IF+C j
(M) = {z ∈ U : [C j(z) ∩M] < I}.

iii. µI
C j

(M) =
|
IF−Cj
∩M|

|IF+Cj
∪M|

Where |IF+C j
∪M| , 0

First, we compare the proposed approximation spaces in terms of lower approximations IF−C j
, upper

approximations IF+C j
and accuracy measures µI

C j
.

Theorem 4.1. Let (U,R, ψ j) be N jS, I be an ideal on U and M ⊆ U, then the following properties hold:

i. IF−Cu
(M) ⊆ IF−Cr

(M) ⊆ IF−Ci
and IF−Cu

(M) ⊆ IF−Cl
(M) ⊆ IF−Ci

.

ii. IF+Ci
(M) ⊆ IF+Cr

(M) ⊆ IF+Cu
and IF+Ci

(M) ⊆ IF+Cl
(M) ⊆ IF+Cu

.

iii. IρCu (M) ⊆ IρCr (M) ⊆ IρCi and IρCu (M) ⊆ IρCl (M) ⊆ IρCi .

iv. IF−C<u>(M) ⊆ IF−C<r>(M) ⊆ IF−C<i> and IF−C<u>(M) ⊆ IF−C<l>(M) ⊆ IF−C<i>.

v. IF+C<i>(M) ⊆ IF+C<r>(M) ⊆ IF+C<u> and IF+C<i>(M) ⊆ IF+C<l>(M) ⊆ IF+C<u>.

vi. µI
C<u>(M) ⊆ µI

C<r>(M) ⊆ µI
C<i> and µI

C<u>(M) ⊆ µI
C<l>(M) ⊆ µI

C<i>.

Proof. Straightforward.

The basic properties of lower approximations IF−C j
and upper approximations IF+C j

are listed in the next
result.

Theorem 4.2. Let (U,R, ψ j) be N jS, I be an ideal on U and M, M1 and M2 be subsets of U. Then for each j, the
following properties hold:

i. IF−C j
(U) = U;

ii. If M1 ⊆M2, then IF−C j
(M1) ⊆ IF−C j

(M2);

iii. IF−C j
(M1 ∩M2) = IF−C j

(M1) ∩ IF−C j
(M2);

iv. IF−C j
(Mc) = [IF+C j

(M)]c;

v. If Mc
∈ I, then IF−C j

(M) = U;

vi. IF+C j
(ϕ) = ϕ;
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vii. If M1 ⊆M2, then IF+C j
(M1) ⊆ IF+C j

(M2);

viii. IF+C j
(M1 ∪M2) = IF+C j

(M1) ∪ IF+C j
(M2);

ix. IF+C j
(Mc) = [IF−C j

(M)]c;

x. If M ∈ I, then IF+C j
(M) = ϕ;

Proof. i. Since [C j(z) −U] = ϕ ∀ z ∈ U, hence IF−C j
(U) = U.

ii. Let z ∈ IF−C j
(M1), then [C j(z)−M1] ∈ I. Since M1 ⊆M2, then [C j(z)−M2] ∈ I. Thus z ∈ IF−C j

(M2). Hence
IF−C j

(M1) ⊆I F−C j
(M2).

iii. Since (M1 ∩M2) ⊆ M1 and (M1 ∩M2) ⊆ M2, then IF−C j
(M1 ∩M2) ⊆ IF−C j

(M1) and IF−C j
(M1 ∩M2) ⊆

IF−C j
(M2). Hence IF−C j

(M1 ∩M2) ⊆ IF−C j
(M1) ∩ IF−C j

(M2).

Conversely, let z ∈ IF−C j
(M1) ∩ IF−C j

(M2), then z ∈ IF−C j
(M1) and z ∈ IF−C j

(M2). Thus [C j(z) −M1] ∈ I and

[C j(z) −M2] ∈ I. Therefore [C j(z) − (M1 ∩M2)] ∈ I. So z ∈ IF−C j
(M1 ∩M2). Hence IF−C j

(M1) ∩ IF−C j
(M2) ⊆

IF−C j
(M1 ∩M2).

iv. z ∈ IF−C j
(Mc) ⇐⇒ [C j(z) −Mc] ∈ I ⇐⇒ [C j(z) ∩M] ∈ I ⇐⇒ z < IF+C j

(M) ⇐⇒ z ∈ [IF+C j
(M)]c. Hence

IF−C j
(Mc) = [IF+C j

(M)]c.

v. Let Mc
∈ I, then [C j(z) ∩Mc] ∈ I ∀ z ∈ U. Thus [C j(z) −M] ∈ I ∀ z ∈ U. Hence IF−(M) = U.

vi. Let M1 ⊆ M2 and z ∈ IF+C j
(M1), then [C j(z) ∩M1] < I. Since M1 ⊆ M2, then [C j(z) ∩M2] < I. Thus

z ∈ IF+C j
(M2). Hence IF+C j

(M1) ⊆ IF+C j
(M2).

vii. Since M1 ⊆ (M1 ∪ M2) and M2 ⊆ (M1 ∪ M2), then IF+C j
(M1) ⊆ IF+C j

(M1 ∪ M2) and IF+C j
(M2) ⊆

IF+C j
(M1 ∪ M2). Hence IF+C j

(M1) ∪ IF+C j
(M2) ⊆ IF+C j

(M1 ∪ M2). Conversely, Let z ∈ IF+C j
(M1 ∪ M2), then

[C j(z)∩ (M1 ∪M2)] < I. Thus [C j(z)∩M1] < I or [C j(z)∩M2] < I. Therefore z ∈ IF+C j
(M1) or z ∈ IF+C j

(M2). So

z ∈ [ IF+C j
(M1) ∪ IF+C j

(M2) ]. Hence IF+C j
(M1 ∪M2) ⊆ IF+C j

(M1) ∪ IF+C j
(M2).

viii. z ∈ IF+C j
(Mc)⇐⇒ [C j(z) ∩Mc] < I⇐⇒ [C j(z) −M] < I⇐⇒ z < IF−C j

(M)⇐⇒ z ∈ [IF−C j
(M)]c.

ix. Let M ∈ I, then [C j(z) ∩M] ∈ I ∀ z ∈ U. Thus z < IF+C j
(M) ∀z ∈ U. Hence IF+C j

(M) = ϕ.

We demonstrate, in the next four results, the relationships between the approximation spaces that
we construct herein and their counterparts induced from containment neighborhoods [7] and topologies
generated by containment neighborhoods and ideals [14].

Theorem 4.3. Let M be a subset of U and I be an Ideal on U, then FC j (M) ⊆ IF−C j
(M) and

IF+C j
(M) ⊆ FC j (M)

Proof. First, let z ∈ FC j (M), then C j(z) ⊆ M. Thus [C j(z) −M] = ϕ ∈ I. So z ∈ IF−C j
(M). Hence FC j (M) ⊆

IF−C j
(M). Second, let z ∈ IF+C j

(M), then [C j(M) ∩M] < I. So [C j(M) ∩M] , ϕ. Therefore z ∈ FCj(M). Hence
IF+C j

(M) ⊆ FC j (M).

Corollary 4.1. Let M be a subset of U and I be an ideal on U. Then µC j (M) ≤ µI
C j

(M).

Theorem 4.4. Let M be a subset of U and I be an ideal on U, then CI
j(M) ⊆ IF−C j

(M) and

C
I
j(M) ⊆ IF+C j

(M)
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Proof. First, let z ∈ CI
C j

(M), then z ∈ intI
C j

(M). Therefore there exists an open set G ⊆ M such that z ∈ G.

Thus [CI
j(z) − G] ∈ I. Since G ⊆ M, then [C j(z) −M] ⊆ [C j(z) − G]. So by hereditary property of the ideal

[C j(z) − M] ∈ I. Therefore z ∈ IF−C j
(M). So CI

j(M) ⊆ IF−C j
(M). Second, let z < C

I
j(M), then z < clIj(M).

Therefore there exists a closed set F ⊇ M such that z < F. Thus z ∈ FC which is open set. So [C j(z) − Fc] ∈ I.
Thus [C j(z) ∩ F] ∈ I. Since M ⊆ F, so [C j(z) ∩M] ⊆ [C j(z) ∩ F]. Then by hereditary property of the ideal

[C j(z) ∩M] ∈ I. Therefore z < IF+C j
(M) and so IF+C j

⊆ C
I
j.

Corollary 4.2. Let M be a subset of U and I be an ideal on U. Then, ρI
C j

(M) ≤ µI
C j

(M).

In the next example, we elaborate that the converse of the results given in this section fails.

Example 4.1. Continued from Example 3.1. Let I = {ϕ, {m2}} be an ideal on U. The 8 topologies generated
by using containment neighborhoods and ideals are:
TI

Cr
= {U, ϕ, {m1,m3}, {m2,m3}, {m3}}

TI
Cl
= {U, ϕ, {m1}, {m1,m2}, {m1,m3}, {m2}}

TI
Ci
= {U, ϕ, {m1}, {m2}, {m1,m3}, {m2,m3}, {m3}, {m1,m2}}

TI
Cu
= {U, ϕ, {m1,m3}}

TI
C⟨r⟩
= {U, ϕ, {m1,m3}, {m2}, {m2,m3}, {m3}}

TI
C⟨l⟩
= {U, ϕ, {m1}, {m1,m3}}

TI
C⟨i⟩
= {U, ϕ, {m1}, {m2}, {m3}, {m1,m2}, {m1,m3}, {m2,m3}}

TI
C⟨u⟩
= {U, ϕ, {m1,m3}}

CI
j, C

I
j, ρI

C j
, IF−C j

, IF+C j
and IρC j are given in Tables (9, 10, 11, 12, 13, 14) respectively.

Table 9: CI
j

Set (M) CI
r(M) CI

l (M) CI
i (M) CI

u(M) CI
⟨r⟩(M) CI

⟨l⟩(M) CI
⟨i⟩(M) CI

⟨u⟩(M)
{m1} ϕ {m1} {m1} ϕ ϕ {m1} {m1} ϕ
{m2} ϕ {m2} {m2} ϕ {m2} ϕ {m2} ϕ
{m3} {m3} ϕ {m3} ϕ {m3} ϕ {m3} ϕ
{m1,m2} ϕ {m1,m2} {m1,m2} ϕ {m2} {m1} {m1,m2} ϕ
{m1,m3} {m1,m3} {m1,m3} {m1,m3} {m1,m3} {m1,m3} {m1,m3} {m1,m3} {m1,m3}

{m2,m3} {m2,m3} {m2} {m2,m3} ϕ {m2,m3} ϕ {m2,m3} ϕ

Table 10: C
I
j

Set (M) C
I
r(M) C

I
l (M) C

I
i (M) C

I
u(M) C

I
⟨r⟩(M) C

I
⟨l⟩(M) C

I
⟨i⟩(M) C

I
⟨u⟩(M)

{m1} {m1} {m1,m3} {m1} U {m1} U {m1} U
{m2} {m2} {m2} {m2} {m2} {m2} {m2} {m2} {m2}

{m3} U {m3} {m3} U {m1,m3} {m2,m3} {m3} U
{m1,m2} {m1,m2} U {m1,m2} U {m1,m2} U {m1,m2} U
{m1,m3} U {m1,m3} {m1,m3} U {m1,m3} U {m1,m3} U
{m2,m3} U {m2,m3} {m2,m3} U U {m2,m3} {m2,m3} U
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Table 11: ρI
C j

Set (M) ρI
Cr

(M) ρI
Cl

(M) ρI
Ci

(M) ρI
Cu

(M) ρI
C⟨r⟩

(M) ρI
C⟨l⟩

(M) ρI
C⟨i⟩

(M) ρI
C⟨u⟩

(M)
{m1} 0 1

2 1 0 0 1
3 1 0

{m2} 0 1 1 0 1 0 1 0
{m3}

1
3 0 1 0 1

2 0 1 0
{m1,m2} 0 2

3 1 0 1
2

1
3 1 0

{m1,m3}
2
3 1 1 2

3 1 2
3 1 2

3
{m2,m3}

2
3

1
2 1 0 2

3 0 1 0

Table 12: IF−C j

Set (M) IF−Cr
(M) IF−Cl

(M) IF−Ci
(M) IF−Cu

(M) IF−C⟨r⟩ (M) IF−C⟨l⟩ (M) IF−C⟨i⟩ (M) IF−C⟨u⟩ (M)
{m1} ϕ {m1,m2} {m1,m2} ϕ ϕ {m1} {m1,m2} ϕ
{m2} ϕ {m2} {m2} ϕ {m2} ϕ {m2} ϕ
{m3} {m2,m3} {m2} {m2,m3} {m2} {m2,m3} ϕ {m3} ϕ
{m1,m2} ϕ {m1,m2} {m1,m2} ϕ {m2} {m1} {m1,m2} ϕ
{m1,m3} U U U U U U U U
{m2,m3} {m2,m3} {m2} {m2,m3} {m2} {m2,m3} ϕ {m2,m3} ϕ

Table 13: IF+C j

Set (M) IF+Cr
(M) IF+Cl

(M) IF+Ci
(M) IF+Cu

(M) IF+C⟨r⟩ (M) IF+C⟨l⟩ (M) IF+C⟨i⟩ (M) IF+C⟨u⟩ (M)
{m1} {m1} {m1,m3} {m1} {m1,m3} {m1} U {m1} U
{m2} ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
{m3} U {m3} {m3} U {m1,m3} {m2,m3} {m3} U
{m1,m2} {m1} {m1,m3} {m1} {m1,m3} {m1} U {m1} U
{m1,m3} U {m1,m3} {m1,m3} U {m1,m3} U {m1,m3} U
{m2,m3} U {m3} {m3} U {m1,m3} {m2,m3} {m3} U

Table 14: µI
C j

Set(M) µI
Cr

(M) µI
Cl

(M) µI
Ci

(M) µI
Cu

(M) µI
C⟨r⟩

(M) µI
C⟨l⟩

(M) µI
C⟨i⟩

(M) µI
C⟨u⟩

(M)
{m1} 0 1

2 1 0 0 1
3 1 0

{m2} 0 1 1 0 1 0 1 0
{m3}

1
3 0 1 0 1

2 0 1 0
{m1,m2} 0 2

3 1 0 1
2

1
3 1 0

{m1,m3}
2
3 1 1 2

3 1 2
3 1 2

3
{m2,m3}

2
3

1
2 1 1

3
2
3 0 1 0

Note that the converse of the following relations doesn’t hold in general

I. If M1 ⊆M2, then IF−C j
(M1) ⊆ IF−C j

(M2)

i. IF−Cl
({m1}) = ϕ.

ii. IF−Cl
({m3}) = {m2,m3}.
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II. If M1 ⊆M2, then IF+C j
(M1) ⊆ IF+C j

(M2).

i. IF+Ci
({m2}) = ϕ.

ii. IF+Ci
({m3}) = {m3}.

III. FC j (M) ⊆ IF−C j
(M)

i. FCr ({m3}) = ϕ

ii. IF−C j
({m3}) = {m2,m3}

IV. IF+C j
(M) ⊆ FC j (M)

i. IF+Cr
({m2}) = ϕ

ii. FCr ({m2}) = U

V. µC j (M) ≤ µI
C j

(M)

i. µCr ({m3}) = 0

ii. µI
Cr

({m3}) = 1
3

VI. CI
j(M) ⊆ IF−C j

(M)

i. CI
l ({m1}) = {m1}

ii. IF−Cl
({m1}) = {m1,m2}

VII. IF+C j
(M) ⊆ C

I
j(M)

i. IF+Cl
({m2}) = ϕ

ii. C
I
l ({m2}) = {m2}

VIII. ρI
C j

(M) ≤ µI
C j

(M)

i. ρI
Cu

({m2,m3}) = 0

ii. µI
Cu

({m2,m3}) = 1
3

5. Medical example

One of the global diseases that disturb humanity is COVID-19. It affects the systems of health, economy,
politics, and society. According to the data from World Health Organization, the major way of its spread is
through physical contact or nearness between individuals, which means the different types of neighborhood
systems and their rough set models are useful instruments to represent the information system of individuals
under suspicion with respect to infection of COVID-19.

In this section, we analyze the pandemic of COVID-19 via the approximation spaces generated by con-
tainment neighborhoods and ideals. Then, we demonstrate the good performance of the current approach
in terms of accuracy values and approximation operators compared to some approaches introduced in the
literature [18, 21].

To do this, we deal with the data of six individuals suspected with infection of COVID-19 U =
{m1,m2,m3,m4,m5,m6} as displayed in Table 15. The data of these individuals are given according to
the most common symptoms of COVID-19: fever F, cough C, tiredness T, and loss of taste or smell L.
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The attributes have two values: ✓ refers to the patient has symptoms and × refers to the patient has no
symptoms. The made decision also has the same two values which refer to possessing COVID-19 disease
or not.

Table 15: Covid 19 information system
P F C T L Covid 19
x1 ✓ ✓ × × ×

x2 ✓ × × ✓ ×

x3 × ✓ ✓ ✓ ✓
x4 ✓ ✓ ✓ × ✓
x5 ✓ ✓ × ✓ ✓
x6 ✓ × × × ×

To begin analysis, we define a map h, of a set of parameters into the power set of U, which associates each
patient with his/her symptoms as follows.

h(m1) h(m2) h(m3) h(m4) h(m5) h(m6)
{F,C} {F,L} {C,T,L} {F,C,T} {F,C,L} {T,L}

Let us consider the experts of the system proposing that the two individuals are related if they have two
similar symptoms at least. This assumption can be described by the following binary relation.

miRm j ⇐⇒| h(mi) ∩ h(m j) |≥ 2. (1)

We draw attention to that this relation is changed according to the viewpoint of system experts. According
to relation in 1, we obtain (m1,m5), (m5,m2) ∈ R whereas (m1,m2) < R. So, R is not transitive. For this reason,
Pawlak’s model fails to deal with this information system. In contrast, a relation R is symmetry, which
means that the Ni(m) = Nr(m) = Nl(m) = Nu(m) for each m ∈ U. Moreover, R is reflexive.

Now, we list the relation in 1 to construct the ideal approximation space: R = {(m1,m1), (m2,m2), (m3,m3),
(m4,m4), (m5,m5), (m6,m6), (m1,m4), (m4,m1), (m1,m5), (m5,m1), (m2,m5), (m5,m2), (m3,m4), (m4,m3), (m3,m5),
(m5,m3), (m3,m6), (m6,m3), (m4,m5), (m5,m4)}.

Then we compute the neighborhood systems N j in cases of j ∈ {r, l, i,u} for each member in U.
N j(m1) = N j(m4) = N j(m5) = {m1,m4,m5}

N j(m2) = {m2,m5}

N j(m3) = {m3,m4,m5,m6}

N j(m6) = {m3,m6}

After that, we compute the E j-neighborhood and C j-neighborhood for each member in U.
E j(m1) = E j(m2) = E j(m4) = E j(m5) = U \ {m6}

E j(m3) = U
E j(m6) = {m3,m6}

C j(m1) = C j(m4) = C j(m5) = {m1,m4,m5}

C j(m2) = {m2}

C j(m3) = {m3,m6}

C j(m6) = {m6}

Without loss of generality, we consider the ideal is I = {ϕ}.
For a set of patients without infection with COVID-19 M = {m1,m2,m6}, we calculate their lower and

upper approximations, boundary regions and the accuracy measures induced from approaches displayed
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in [18, 21] and our approach given in the previous section.

Hosny et al.’s approach [18] and Kandil et al.’s approach [21]: The lower and upper approximations
are IF−E j

(M) =I F−N j
(M) = ϕ and IF+E j

(M) =I F+N j
(M) = U, respectively. Therefore, the boundary region is

IBE j (M) =I BN j (M) = U and the accuracy measure is µI
E j

(M) = µI
N j

(M) = 0.

Our approach given in the previous section: The lower and upper approximations are IF−C j
(M) = {m2,m6}

and IF+C j
(M) = U, respectively. Therefore, the boundary region is IBC j (M) = {m1,m3,m4,m5} and the accuracy

measure is µI
C j

(M) = 1
3 .

From the above computations, it is obtained that the boundary region of a subset of patients without
infection with COVID-19 inspired by the approach given in [18, 21] is the universal set U. In this case,
we are unable to decide whether these individuals are infected with COVID-19 or not, which enlarges the
area of uncertainty/vagueness and affects the precision of made decision. In contrast, the boundary region
inspired by our approach is the subset {m1,m3,m4,m5}, which means we minimize the uncertainty in the
data and raise up enhance the accuracy measure.

6. Conclusion and future work

Rough set was introduced to deal with intelligent systems characterized by insufficient and incomplete
information. This theory has been developed and extended by several ways; one of them is the abstract
concepts “neighbourhoods and ideals”.

In this manuscript, first, we have studied the main properties of topological approximation spaces
defined using the system of containment neighborhoods. The approximation operators of these spaces
have been defined by interior and closure operators of a topology. Then, we have produced new types
of approximation spaces directly inspired by containment neighborhoods and ideals. In general, we have
investigated the main properties of these models and revealed the relationships between them. To point
out the importance of the proposed approaches, we have showed their major advantages to increase the
accuracy measure of a subset by increasing lower approximation and decreasing upper approximation.

On the one hand, we have elucidated that the accuracy measures obtained from the topological ap-
proaches given herein are greater than those in [1, 4, 11]. Moreover, we have proved the effectiveness of the
methods proposed in Section 4 to improve the approximation operators and high accuracy values compared
to the previous ones presented in [7, 14]. On the other hand, the efficiency of topological approximation
operators investigated in Section 3 to remove uncertainty of data are less than those presented in [7] as
explained in Theorem 3.3.

Finally, we have provided a medical example to show the efficiency of the proposed technique compared
to some previous ones [18, 21] in terms of minimizing the boundary region and increasing the accuracy
measures. The obtained computations have illustrated that our approach is one of the preferable techniques
to eliminate the ambiguity of the data and obtain an accurate decision in practical problems.

In future work, we will study the containment neighborhoods in the content of soft rough graph,
soft rough set and fuzzy rough set [33–35]. Also, we will generate new topologies from other types
neighborhoods and ideals.
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