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Abstract. Let R be a commutative ring, S a multiplicative subset of R and M an R-module. We say that
M satisfies weakly S-stationary on ascending chains of submodules (w-ACCS on submodules or weakly
S-Noetherian) if for every ascending chain M1 ⊆ M2 ⊆ M3 ⊆ · · · of submodules of M, there exists k ∈ N
such that for each n ≥ k, snMn ⊆ Mk for some sn ∈ S. In this paper, we investigate modules (respectively,
rings) with w-ACCS on submodules (respectively, ideals). We prove that if R satisfies w-ACCS on ideals,
then R is a Goldie ring. Also, we prove that a semilocal commutative ring with w-ACCS on ideals have a
finite number of minimal prime ideals. This extended a classical well known result of Noetherian rings.

1. Introduction

In 1988, Hamann, Houston and Johnson ([4]) in their works on polynomial rings over integral domains,
introduced the notion of almost principal ideals. They called an ideal I of D[X] (where D is an integral
domain) almost principal if there exist a s ∈ D\{0} and a f ∈ I of positive degree with sI ⊆ f D[X] and they
called the polynomial ring D[X] an almost PID if each ideal of D[X] that extends to a proper ideal of K[X]
is almost principal (K the quotient field of D). Then Anderson, Kwak and Zafrullah defined agreeable
domains. An integral domain D is called agreeable if for each fractional ideal F of D[X] with F ⊆ K[X] where
K is the quotient field of D, there exists a s ∈ D\{0} with sF ⊆ D[X]. They also called an ideal I of K[X]
is almost finitely generated if there is a finite set of polynomials { f1, f2, . . . , fn} contained in I and an element
s ∈ D \ {0} such that sI ⊆ ( f1, f2, . . . , fn), [2].

Later, Anderson and Dumitrescu generalized the concept of almost principal and almost finitely gener-
ated ideals to modules over commutative rings. Let R be a commutative ring and S ⊆ R be a multiplicative
set and M be an R-module. Following [1], we say that M is S-finite (resp., S-principal) if sM ⊆ F for some
s ∈ S and some finitely generated (resp., principal) submodule F of M. Also, M is called S-Noetherian (resp.,
S-PIR) if each submodule of M is a S-finite (resp., S-principal) module.

In 2016, Ahmed and Sana ([5]) tried to characterize the concept of S-Noetherian modules via a suitable
chain condition and a special kind of maximality. An increasing sequence (Nn)n∈N of submodules of M
is called S-stationary if there exists a positive integer k and s ∈ S such that for each n ≥ k, sNn ⊆ Nk and
a submodule Ni is called S-maximal if for every j ∈ N, sN j ⊆ Ni, for some i ∈ N. They showed that, if
every nonempty set of ideals of R has a S-maximal element, then R is S-Noetherian and the later that,
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every increasing sequence of ideals of R is S-stationary. In 2017, Bilgin, Reyes and Tekir ([3]) characterize
S-Noetherian modules over noncommutative rings. They proved that M is S-Noetherian if and only if every
increasing sequence of submodules of M is S-stationary if and only if every nonempty set of submodules
of M has a S-maximal element if and only if every nonempty S-saturated set of submodules of M has a
maximal element.

In this paper, we study weakly S-Noetherian modules, dualizing the former notion of weakly S-Artinian
modules introduced by Khani-Nasab and Hamed in [6]. We say that M satisfies weakly S-stationary on
ascending chains of submodule (w-ACCS on submodules for short) if for every ascending chain M1 ⊆M2 ⊆

M3 ⊆ · · · of submodules of M, there exists k ∈ N such that for each n ≥ k, snMn ⊆ Mk for some sn ∈ S.
Let F be a set of submodules of M. We say that N ∈ F is weakly S-maximal if for every L ∈ F and N ⊆ L,
there exists s ∈ S such that sL ⊆ N. We compare Noetherian modules with modules which have w-ACCS
on submodules. For example, we show that there exists a module with w-ACCS on finitely generated
submodules which does not satisfies w-ACCS on submodules. In section 3, we consider the case where
S ⊆ R is a regular multiplicative set. We show that a module M which satisfies weakly S-stationary on
submodules (ACCS for short) where S is regular multiplicative set is a hopfian module. Moreover, if R
satisfies w-ACCS on ideals where S is regular, then R is a Goldie ring. Also, we show that the converse is
not true in general. Finally, we prove that a semilocal commutative ring with w-ACCS on ideals where S is
regular, have a finite number of minimal prime ideals and the regularity of S is necessary.

2. Weakly S-stationary and weakly S-maximal

Let R be a commutative ring, S ⊆ R a multiplicative set and M an R-module. According to [5], an
increasing sequence (Nn)n∈N of submodules of M is called S-stationary if there exist a positive integer k ∈N
and s ∈ S such that for all n ≥ k, sNn ⊆ Nk. We say that M satisfies ACCS on submodules if for every
ascending chain of submodules of M is S-stationary. In this section we relaxes this property by introducing
the notion of weakly S-stationary sequence of submodules. We study various properties of modules in
which every ascending chain of submodules is weakly S-stationary.

Definition 2.1. Let R be a commutative ring, S ⊆ R a multiplicative set and M an R-module. We say that M satisfies
weakly S-stationary on ascending chains of submodules (w-ACCS on submodules for short) if for every ascending
chain M1 ⊆ M2 ⊆ M3 ⊆ · · · of submodules of M, there exists k ∈ N such that for each n ≥ k, snMn ⊆ Mk for some
sn ∈ S.

Examples 2.2. 1. Modules with ACCS on submodules satisfies w-ACCS on submodules. In Example
2.8, we prove that the reverse of this implication is not true in general.

2. Every S-Noetherian modules satisfies w-ACCS on submodules (follows from [5, Remark 2.3] and the
fact that every module with ACCS on submodules satisfies w-ACCS on submodules).

3. Let p be a prime number, S = {1} ∪ (pZ\{0}) and M = Zp∞ (as a Z-module). Then M satisfies w-ACCS
on submodules. Note that M does not satisfy ACCS on submodules, since for every s ∈ S and every
finitely generated submodule F of M s(Zp∞ ) = Zp∞ ⊈ F.

4. Every semisimple module satisfies w-ACCS.

Definition 2.3. Let R be a commutative ring, S ⊆ R a multiplicative set and M an R-module.

1. Let F be a set of submodules of M. We say that N ∈ F is weakly S-maximal if for every L ∈ F and N ⊆ L,
there exists s ∈ S such that sL ⊆ N.

2. A submodule N of M is said to be weakly S-maximal if it is weakly S-maximal in the set of all proper submodules
of M.

Proposition 2.4. Let R be a commutative ring, S ⊆ R a multiplicative set and M an R-module. Then the following
assertions are equivalent.

1. M satisfies w-ACCS on submodules.
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2. Every nonempty set of submodules of M has a weakly S-maximal element.

Proof. (1)⇒ (2) Let F be a nonempty set of submodules of M such that for every submodule N ∈ F , N is
not weakly S-maximal. Let N1 ∈ F . Then N1 is not weakly S-maximal and so there exists N2 ∈ F such
that N1 ⊆ N2 and for every s ∈ S, sN2 ⊈ N1. N2 ∈ F is not weakly S-maximal, hence there exists N3 ∈ F

such that N2 ⊆ N3 and for every s ∈ S, sN3 ⊈ N2. By continuing this way, we obtain a chain of submodules
N1 ⊆ N2 ⊆ N3 ⊆ · · · which is not weakly S-stationary. This shows that M does not satisfy w-ACCS on
submodules.

(2)⇒ (1) Let N1 ⊆ N2 ⊆ N3 ⊆ · · · be a chain of submodules in M. Set

F = {Ni, i = 1, 2, . . .}

By (2), F has a weakly S-maximal element like Nk where k ∈ N. Clearly for every n ≥ k, there exists sn ∈ S
such that snNn ⊆ Nk.

Our next result gives equivalent conditions for an R-module M to be S-Noetherian, where S is a finite
multiplicative subset of R. First let us recall the following notion. Let F be a family of submodules of M.An
element N ∈ F is said to be S-maximal if there exists a s ∈ S such that for each L ∈ F, if N ⊆ L, then sL ⊆ N
([5]).

Proposition 2.5. Let R be a commutative ring, S ⊆ R a finite multiplicative set and M an R-module. Then the
following assertions are equivalent.

1. M is a S-Noetherian module.
2. M satisfies ACCS on submodules.
3. M satisfies w-ACCS on submodules.
4. Every nonempty set of submodules of M has a weakly S-maximal element
5. Every nonempty set of submodules of M has a S-maximal. element.

Proof. (1)⇒ (2) Follows from Example 2.2(1).
(2)⇒ (3) Obvious.
(3)⇒ (4) Follows from Proposition 2.4.
(4)⇒ (5) Follows from the fact that the weakly S-maximal and the S-maximal properties are the same

when S is finite.
(5) ⇒ (1) Let S = {s1, s2, s3, . . . , sn} and N be a submodule of M. Set s := s1s2 · · · sn. We show that N is

S-finite. Suppose that F is the set of all finitely generated submodules of M included in N. Clearly, F is a
nonempty set. By (5) there exists F ∈ F such that F is S-maximal. Let x ∈ N. Set L = F + Rx. Then L ∈ F
and F ⊆ L. Since F is S-maximal, there exists si0 ∈ S such that si0 L ⊆ F. Thus

(s1s2 · · · sn)L ⊆ si0 L ⊆ F.

This implies that sN ⊆ F, and hence M is a S-Noetherian module.

Corollary 2.6. Let R be a commutative ring and S a finite regular multiplicative subset of R. Then R is Noetherian
if and only if R satisfies w-ACCS on ideals. Indeed, by [5, Example 3.2], S ⊆ U(R); so R satisfies w-ACCS on ideals if
and only if R satisfies ACCS on ideals if and only if R satisfies ACC on ideals if and only if R is a Noetherian ring.

We know that M is a Noetherian module if and only if every ascending chain of finitely generated sub-
modules stops. Next we construct an example of a module with w-ACCS on finitely generated submodules
which does not satisfies w-ACCS on submodules. First we need the following Remark.

Remark 2.7. Let R be a commutative ring, S ⊆ R a multiplicative set and M an R-module. Assume that for every
ascending chain L1 ⊆ L2 ⊆ L3 ⊆ · · · of submodules of M and for each n ∈ N, there exists sn ∈ S such that snLn = 0,
then M satisfies w-ACCS on submodules.
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Example 2.8. Consider M =
⊕

p∈PZp as aZ-module where P is the set of all prime integers. Let S = Z \ {0}. First
we show that M satisfy w-ACCS on finitely generated submodules. Let L be a finitely generated submodule of M.
Then there exists p1, p2, . . . , pn ∈ P such that L ↪→ Zp1 ⊕Zp2 ⊕ · · · ⊕Zpn and hence L is finite. By Remark 2.7, every
finite module satisfies w-ACCS on submodules. This shows that M satisfies w-ACCS on submodules.

Next we introduce a chain of submodules of M which does not satisfy the w-ACCS on submodules. Let p1 ≤

p2 ≤ p3 ≤ · · · be all prime numbers. Suppose that for every p we replace ιp(Zp) by Zp where ιp : Zp 7−→ M. Set
L = Zp1 ⊕Zp2 ⊕ · · · and K = Zp2 ⊕Zp4 ⊕ · · · . Since I = {p1, p3, p5, . . .} is infinite, there exist infinite subsets I1 and
I2 of I such that I = I1 ∪ I2. Also, I1 is infinite. So there exist infinite subsets I3 and I4 of I1 such that I1 = I3 ∪ I4.
Continuing in this way, we get a sequence I1, I3, I5, . . . such that In = In+2 ∪ In+3. Define Li =

⊕
p∈Ii
Zp for every

i ∈ Z we have the following chain

K ⊕ L2 ⫋ K ⊕ L2 ⊕ L4 ⊊ K ⊕ L2 ⊕ L4 ⊕ L6 ⊊ · · ·

Suppose that there exists k ∈N such that for every n ≥ k

sn(K ⊕ L2 ⊕ L4 ⊕ · · · ⊕ L2n+2) ⊆ K ⊕ L2 ⊕ L4 ⊕ · · · ⊕ L2n

for some sn ∈ S. Thus
sn(L2n+2) ⊆ K ⊕ L2 ⊕ L4 ⊕ . . . ⊕ L2n

Hence sn(L2n+2) = 0. I2n+2 is an infinite set of prime numbers. Let t1, t2, . . . be all distinct elements of I2n+2. Then
L2n+2 =

⊕
p∈{t1,t2,...}

Zp. Since snL2n+2 = 0, for every i ∈ N, ti|sn, a contradiction. Thus M does not satisfy w-ACCS

on submodules.

Next proposition investigates w-ACCS on ideals for direct product of rings.

Proposition 2.9. Let S1,S2, · · · ,Sn be multiplicative subsets of rings R1,R2, · · · ,Rn, respectively. Set R =
∏n

i=1 Ri
and S =

∏n
i=1 Si. Then the following conditions are equivalent.

1. R satisfies w-ACCS on ideals
2. For each i ∈ {1, ...,n}, Ri satisfies w-ACCSi on ideals

Proof. (1)⇒ (2) Obvious.
(2) ⇒ (1) Suppose that I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in R. Then for every i ∈ N,

Ii = Li1 × Li2 × · · · × Lin where Li j is an ideal of R j, for all j ∈ {1, 2, . . . ,n}. Since every R j satisfies w-ACCSi

on ideals, we can find k ∈ N such that for each n ≥ k and j ∈ {1, 2, . . . ,n} there exists snj ∈ S j such that
snjLnj ⊆ Lkj. Therefore, for every n ≥ k, sn = (sn1, sn2, . . . , snn) ∈

∏n
i=1 Si and we have snIn ⊆ Ik. This shows

that R has w-ACCS on ideals where S =
∏n

i=1 Si.

Unlike finite product of rings, an infinite product of rings not necessarily has w-ACCS on ideals.

Example 2.10. Let R =
∏

i∈I Ri and S = {1R} be a multiplicative subset of R where index set of I is infinite. Since
I is infinite, there exist infinite subsets I1 and I2 of I such that I = I1 ∪ I2 and I1 ∩ I2 = ∅. Set J =

⊕
i∈I1

Ri and
K =
⊕

i∈I2
Ri. So J ⊊ J ⊕ K and continuing in this way, we can form an ascending chain of ideals of R. Thus R does

not satisfy w-ACCS on ideals.

Proposition 2.11. Let M be an R-module, N a proper submodule of M and S a multiplicative subset of R. Then the
following assertions are equivalent.

1. M satisfies w-ACCS on submodules.
2. N and M/N both satisfy w-ACCS on submodules.
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Proof. (1)⇒ (2) Assume that M has w-ACCS on submodules. It is immediate that N satisfies w-ACCS on
submodules. Let L1/N ⊆ L2/N ⊆ L3/N ⊆ · · · be a chain of submodules in M/N. Since L1 ⊆ L2 ⊆ L3 ⊆ · · · is a
chain in M and M satisfies w-ACCS on submodules, there exists k ∈N such that for each n ≥ k, there exists
sn ∈ S with snLn ⊆ Lk. This implies that for every n ≥ k, sn(Ln/N) ⊆ Lk/N. Hence M/N satisfies w-ACCS on
submodules.

(2)⇒ (1) Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be a chain in M. By assumption, there exists a positive integer k such
that for each n ≥ k, there exists sn ∈ S with sn(Ln + N)/N ⊆ (Lk + N)/N and there exists s′n ∈ S such that
s′n(N∩Ln) ⊆ N∩Lk. We prove that for each n ≥ k, s′nsn(Ln) ⊆ Lk. Since Ln ⊆ Ln+N, sn(Ln) ⊆ sn(Ln+N) ⊆ Lk+N.
Let x ∈ Ln. Then snx ∈ Lk + N and there exist l ∈ Lk and y ∈ N such that snx − l = y. Thus snx − l ∈ N ∩ Ln,
and so s′n(snx − l) ∈ N ∩ Lk. Therefore s′snx ∈ Lk, as desire.

Corollary 2.12. Let R be a ring and S be a multiplicative subset of R. Then R satisfies w-ACCS on ideals if and only
if for each n ∈N∗, Rn satisfies w-ACCS on submodules.

Proof. Assume that R satisfies w-ACCS on ideals. We will show this via induction. Let P(n) be the property
that Rn satisfies w-ACCS on submodules. For n = 1, R satisfies w-ACCS on ideals if and only if for each R
as an R-module satisfies w-ACCS on submodules. Suppose that the property holds for 1 ≤ n. Let’s prove
P(n + 1). The module Rn is isomorphic to the submodule N = Rn

× {0}. Hence, by the induction hypothesis
and Proposition 2.11, N satisfies w-ACCS. Clearly Rn+1/N ≃ R. Thus by Proposition 2.11, Rn+1 satisfies
w-ACCS on submodules. The other implication is obvious.

Theorem 2.13. Let R be a commutative ring, S a multiplicative subset of R and M a finitely generated R-module. If
R satisfies w-ACCS on ideals, then M satisfies w-ACCS on submodules.

Proof. Since M is a finitely generated R-module, there exist n ∈N∗ and a surjective module homomorphism
f : Rn

−→ M, such that Rn/Ker( f ) ≃ M. By Corollary 2.12, Rn satisfies w-ACCS on submodules; so by
Proposition 2.11, Rn/Ker( f ) satisfies w-ACCS. Therefore M satisfies w-ACCS on submodules.

Corollary 2.14. Let R be a commutative ring, S ⊆ R a multiplicative set and M a S-finite R-module. If R satisfies
w-ACCS on ideals, then M satisfies w-ACCS on submodules.

Proof. Since M is S-finite, there exist s ∈ S and a finitely generated submodule F of M such that sM ⊆ F.
Suppose that N1 ⊆ N2 ⊆ N3 ⊆ · · · is a chain of submodules in M. By Theorem 2.13, F satisfies w-ACCS on
submodules. Since for each n, sNn is a submodule of F, the chain sN1 ⊆ sN2 ⊆ sN3 ⊆ · · · is a chain in F; so
there exists k ∈ N such that, for each n ≥ k there exists tn ∈ S with tn(sNn) ⊆ sNk ⊆ Nk. For each n ≥ k, let
sn := stn ∈ S. Thus for each n ≥ k, snNn ⊆ Nk. This shows that M satisfies w-ACCS on submodules.

3. Weakly S-stationary when S is a regular multiplicative set

In this section we prove a relation between modules satisfying the w-ACCS property and some classical
well known modules (hopfian modules, Goldie rings, ...) where S is a regular multiplicative set. We start
this section by the following definition.

Definition 3.1. For an R-module M and s ∈ R, we say that s is a nonzero divisor for M, if for each m ∈ M, sm = 0
implies that m = 0. A regular multiplicative set S over M is a set in which for every s ∈ S, s is nonzero divisor for M.

Example 3.2. Let R be a valuation ring and let S be a multiplicative set of regular elements of R. Set
K =
⋂

s∈S Rs. Then K ⊴ R. Consider the ring R := R/K and S := {s + K | s ∈ S} ⊆ R.

1. S is closed under multiplication.
2. 1R = 1 + K ∈ S.

3. 0R < S if and only K , R.
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If K , R, then S is a multiplicative regular set in R. In this case, R satisfies w-ACCS on ideals.

Proof. (1). Clear.
(2). Clear.
(3). If K = R, then S ⊆ K and hence S = {0 + K}. Conversely, if K , R, then 1 < K. Thus, there exists

s0 ∈ S such that 1 < s0R. Suppose to the contrary, 0 + K ∈ S. There exists s1 ∈ S such that 0 + K = s1 + K.
Hence s1 ∈ K ⊆ s0s1R; so there exists r ∈ R such that s1 = rs0s1, which implies that 1 = rs0 since S is regular.
Therefore s0R = R, a contradiction.

We want to prove that if K , R, then S is regular. Let (s+K)(r+K) = 0R where s ∈ S and r ∈ R. Let s′ ∈ K.
Then sr ∈ ss′R. There exists x ∈ R such that sr = ss′x. Since S is regular, r = s′x ∈ s′R. Thus r ∈ K, as desire.

Now, we show that R satisfies ACCS on ideals. Let I/K be a nonzero ideal in R. Then K ⊂ I ⊴ R and
I ⊈ K. Hence, there exists s0 ∈ S such that I ⊈ Rs0. Since R is a valuation ring, s0R ⊆ I and s0I ⊆ s0R ⊆ I. It
follows that

(s0 + K)I/K = (s0I + K)/K ⊆ (s0R + K)/K = (s0 + K)R ⊆ I/K.

Thus R is a S-Noetherian ring, and hence satisfies w-ACCS on ideals.

An R-module M is said to be hopfian if any surjective endomorphism of M is an isomorphism. We know
that Noetherian modules are hopfian. Our next result relaxes the Noetherian property by the w-ACCS
notion.

Proposition 3.3. Let R be a commutative ring, M an R-module and S ⊆ R is a regular multiplicative set over M. If
M satisfies w-ACCS on submodules, then M is hopfian.

Proof. Let ϕ : M→M be a surjective homomorphism. Consider the following chain

Ker(ϕ) ⊆ Ker(ϕ2) ⊆ Ker(ϕ3) ⊆ · · ·

Since M satisfies w-ACCS on submodules, there exists k ∈N such that for each n ≥ k, snKer(ϕn+1) ⊆ Ker(ϕn)
for some sn ∈ S. Let m ∈ Ker(ϕ). Since ϕ is surjective, there exists m′ ∈ M such that m = ϕn(m′).
Then ϕ(m) = ϕ(ϕn(m′)) implies that 0 = ϕn+1(m′) and thus m′ ∈ Ker(ϕn+1). Multiplying sn, we have
snm′ ∈ snKer(ϕn+1) ⊆ Ker(ϕn). Thus snm′ ∈ Ker(ϕn), and so snϕn(m′) = ϕn(snm′) = 0. Since S is regular on
M, m = ϕn(m′) = 0. Hence ϕ is an isomorphism.

Lemma 3.4. Let R be a commutative ring, M an R-module and S ⊆ R a regular multiplicative set over M. Assume
that R satisfies w-ACCS on ideals. Then R satisfies ACC on annihilators of subsets of M.

Proof. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending sequence in R such that for every j ∈N, I j = annR(Ai) for some
Ai ⊆ M. Since R satisfies w-ACCS on ideals, there exists k ∈ N such that for each n ≥ k, snIn ⊆ Ik for some
sn ∈ S . Let n ≥ k and a ∈ In, sna ∈ Ik. So snaAk = 0. By regularity of S on M we have aAk = 0. It follows that
a ∈ Ik. Therefore, In ⊆ Ik ⊆ In, and hence In = Ik. Thus R satisfies ACC on annihilators of subsets of M.

Remark 3.5. Let R be a commutative ring, M an R-module and S ⊆ R a regular multiplicative set over M. Assume
that R satisfies w-ACCS on ideals. Then by the previous Lemma 3.4, the set X = {annR(A) | A ⊆ M \ {0}} has a
maximal element.

Let R be a commutative ring and M an R-module. We denoted by Z(M) the set Z(M) = {r ∈ R | xr =
0, for some nonzero x ∈M} =

⋃
0,x∈M

annR(x).

Theorem 3.6. Let R be a commutative ring, M an R-module and S ⊆ R a regular multiplicative set over M. Let
X = {annR(x) | x ∈M\{0}}. Assume that R and M both satisfy w-ACCS on submodules. Then

1. X has only a finite number of maximal elements.
2. Z(M) is a union of a finite number of associated primes of M.
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Proof. (1). Assume {annR(xi)}i∈N is a set of (distinct) maximal elements of X. Consider the chain x1R ⊆
x1R + x2R ⊆ · · · in M. Since M satisfies w-ACCS on submodules, there exists k ∈ N such that for each

n ≥ k, sn(
n∑

j=1

x jR) ⊆
k∑

j=1

x jR for some sn ∈ S. This implies that sn(
k+1∑
j=1

x jR) ⊆
k∑

j=1

x jR; so snxk+1 ∈

k∑
j=1

x jR.

Thus, there exist r1, r2, . . . , rk ∈ R such that snxk+1 = r1x1 + · · · + rkxk. For i ∈ N, set Pi = annR(xi). Then
P1P2 · · ·Pk(r1x1 + · · · + rkxk) = 0; so P1P2 · · ·Pksnxk+1 = 0. Since S is regular, P1P2 · · ·Pkxk+1 = 0, and hence
P1P2 . . .Pk ⊆ Pk+1 = annR(xk+1). It is easy to see that each maximal element of X is a prime ideal in R and so
Pk+1. Thus there exists j < k + 1 such that P j ⊇ Pk+1. Since Pk+1 ∈ X, maximality of P j implies that P j = Pk+1,
a contradiction.

(2). By the first assertion, X has only a finite number of maximal elements, say annR(x1), ..., annR(xn),

where x1, . . . , xn ∈ M. We show that Z(M) =
n⋃

j=1

annR(xj). Clearly,
n⋃

j=1

annR(xj) ⊆ Z(M). Conversely, let a ∈

Z(M). Then there exists x ∈M\ {0} such that ax = 0. Consider Y = {annR(y) | 0 , y ∈M, annR(x) ⊆ annR(y)}.
Then annR(x) ∈ Y, and so Y , ∅. By Lemma 3.4, R satisfies ACC on annihilators of subsets of M; so Y has a
maximal element, say annR(y). But annR(y) is a maximal element of X. So there exists i ∈ {1, . . . ,n} such that

annR(y) = annR(xi). Hence a ∈ annR(x) ⊆ annR(y) = annR(xi) ⊆
n⋃

j=1

annR(xj). Therefore, Z(M) =
n⋃

j=1

annR(xj).

It is not hard to see that P j is an associated prime of M.

Example 3.7. A commutative ring R with w-ACCS on ideals where S is a multiplicative non regular set of
R may not have ACC on annihilators.

Let F be a field and R = F[x1, x2, . . .]/⟨xix j; i , j⟩. Suppose that S = {xi
1|i ≥ 0}. Then S is a multiplicative

set of R. Since the chain ⟨x1⟩ ⊆ ⟨x1, x2⟩ ⊆ · · · is not stationary, R is not Noetherian. It is enough to
show that R is S-Noetherian. First define the following mapping; θ : R → F[x1], with f 7→ f1(x1), where
f = f1(x1) + x2 f2(x2) + · · · + xn fn(xn).

Clearly θ is a surjective homomorphism and ker(θ) = {
n∑

i=2

xi fi(xi) | n ∈ N}. Let I be an ideal of R. Then

x1I is an ideal of R too. Thus θ(x1I) is an ideal of F[x1]. Therefore, θ(x1I) is principal. Since x1I ∩ ker(θ) = 0,
x1I is principal. Hence R is S-Noetherian. Thus R satisfies w-ACCS on ideals. Now, we introduce a chain
of annihilators in R which is not stationary:

annR(x1, x2, . . .) ⊊ annR(x2, x3, . . .) ⊊ annR(x3, x4, . . .) ⊊ · · ·

So the regularity of S is necessary in Lemma 3.4.

Recall that a module M is called a uniform module if the intersection of any two nonzero submodules
is nonzero. A submodule N of M is said to be an essential submodule of M if for every submodule H of M,
H ∩ N = {0} implies that H = {0}. The uniform dimension of a module M, denoted u.dim(M), is defined to

be n if there exists a finite set of uniform submodules Ui such that
n⊕

i=1

Ui is an essential submodule of M.

A ring R is said to be a Goldie ring if it has finite uniform dimension as a module over itself, and satisfies
the ascending chain condition on annihilators of subsets of R. With aid of following lemma, we show that
a ring with w-ACCS on ideals where S ⊆ R is a regular multiplicative set, is a Goldie ring.

Lemma 3.8. Let R be a commutative ring and M an R-module which satisfies w-ACCS on submodules, where S ⊆ R
is a regular multiplicative set over M. Then M has finite uniform dimension.

Proof. Suppose to the contrary that M has not finite uniform dimension. Then there exists a family of
independent nonzero submodules such as {N1,N2,N3, . . .}. Consider the following chain of submodules of
M:

N1 ⊆ N1 ⊕N2 ⊆ N1 ⊕N2 ⊕N3 ⊆ · · ·
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Since M satisfies w-ACCS on submodules, there exists k ∈ N such that for each n ≥ k, sn(
n⊕

i=1

Ni) ⊆
k⊕

i=1

Ni

for some sn ∈ S. In particular, snNk+1 = 0. Since S is regular over M, we must have Nk+1 = 0, a contradiction.
So M has finite uniform dimension.

Theorem 3.9. Let R be a commutative ring and S ⊆ R a regular multiplicative set. If R satisfies w-ACCS on ideals,
then R is Goldie.

Proof. Follows directly from Lemma 3.4 and Lemma 3.8.

Following example shows that the converse of Theorem 3.9 is not true in general.

Example 3.10. Let R = Z[x1, x2, . . .] and S = {xi
1 | i ≥ 0}. Clearly S is a regular multiplicative set of R. Also, R is a

Goldie ring. The following chain shows that R does not satisfies w-ACCS on ideals:

⟨x2⟩ ⊊ ⟨x2, x3⟩ ⊊ ⟨x2, x3, x4⟩ ⊊ · · ·

So the converse of Theorem 3.9 does not hold.

In the next result, we show that a commutative semilocal ring with w-ACCS on ideals have a finite
number of minimal prime ideals. First, we need the following Lemma.

Lemma 3.11. Let R be a commutative ring and S,T ⊆ R be two multiplicative sets of R. If R satisfies w-ACCS on
ideals, then T−1R satisfies w-ACCS on ideals.

Proof. Suppose that A1 ⊆ A2 ⊆ · · · be an ascending sequence of ideals of T−1R. Then for each n ∈ N∗,

An = T−1Bn, for some ideal Bn of R. For each n ∈ N∗, set In :=
n∑

i=1

Bi. Then (In)n is an ascending sequence

of ideals of R. Since R satisfies w-ACCS on ideals, there exists k ∈ N∗ such that for each n ≥ k, snIn ⊆ Ik for
some sn ∈ S. This implies that for each n ≥ k, sn(T−1In) ⊆ T−1Ik.

Now, for each n ∈N∗,

T−1In = T−1(B1 + · · · + Bn)
= T−1B1 + · · · + T−1Bn

= A1 + · · · + An

= An.

Thus for each n ≥ k, snAn ⊆ Ak, which implies that the sequence (An)n is weakly S-stationary. Hence T−1R
satisfies w-ACCS on ideals.

Theorem 3.12. Let R be a commutative semilocal ring and S a regular multiplicative subset of R. If R satisfies
w-ACCS on ideals, then R contains only a finite number of minimal primes.

Proof. A commutative semilocal ring has only a finite number of maximal ideals. Since every minimal
prime ideal of R is contained in a maximal ideal, it is enough to show that every maximal ideal of R contains
only a finite number of minimal primes. But for every maximal ideal M of R, the minimal prime ideals of
R which are contained in M correspond to the minimal prime ideals of the ring T−1R for T = R\M. Thus it
suffices to consider the case when R is a local ring. It is clear that for every ideal I in R, R/I has w-ACCS on
ideals, where S = {s + I | s ∈ S}. So considering the quotient of R modulo its prime radical, we may assume
that R is semiprime. Now, by [8, Theorem 11.43], R has only a finite number of minimal primes if and only
if R has finite uniform dimension. From Proposition 3.8, we obtain that R has finite uniform dimension.
Hence R contains only a finite number of minimal prime ideals.
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Following example shows that a ring with w-ACCS on ideals where S is a non-regular multiplicative
set of R may have infinitely many minimal prime ideals.

Example 3.13. Consider R as in Example 3.7. R has w-ACCS on ideals and S is a non regular multiplicative
subset of R. Then M := ⟨x1, x2, x3, . . .⟩/⟨x j | i , j ∈ N⟩ is a maximal ideal of R. It is easy to show that for
every k ∈ N, ⟨x j | j ∈ N \ {k}⟩/⟨xix j | i , j ∈ N⟩ is a minimal prime ideal. Thus the localization RM has
infinitely many minimal prime ideals. This shows that the regularity of S is necessary in Theorem 3.12.
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