Filomat 37:14 (2023), 4649-4657
https://doi.org/10.2298/FIL2314649K

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

%, Yy A
2
&) 5

2 &

gy as’

5
TIprpor®

Weakly S-Noetherian modules
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Abstract. Let R be a commutative ring, S a multiplicative subset of R and M an R-module. We say that
M satisfies weakly S-stationary on ascending chains of submodules (w-ACCs on submodules or weakly
S-Noetherian) if for every ascending chain M; € M, € Mj C --- of submodules of M, there exists k € IN
such that for each n > k, s,M, C M for some s, € S. In this paper, we investigate modules (respectively,
rings) with w-ACC;g on submodules (respectively, ideals). We prove that if R satisfies w-ACCs on ideals,
then R is a Goldie ring. Also, we prove that a semilocal commutative ring with w-ACCs on ideals have a
finite number of minimal prime ideals. This extended a classical well known result of Noetherian rings.

1. Introduction

In 1988, Hamann, Houston and Johnson ([4]) in their works on polynomial rings over integral domains,
introduced the notion of almost principal ideals. They called an ideal I of D[X] (where D is an integral
domain) almost principal if there exist a s € D\{0} and a f € I of positive degree with s C fD[X] and they
called the polynomial ring D[X] an almost PID if each ideal of D[X] that extends to a proper ideal of K[X]
is almost principal (K the quotient field of D). Then Anderson, Kwak and Zafrullah defined agreeable
domains. An integral domain D is called agreeable if for each fractional ideal F of D[X] with F C K[X] where
K is the quotient field of D, there exists a s € D\{0} with sF € D[X]. They also called an ideal I of K[X]
is almost finitely generated if there is a finite set of polynomials {fi, f>,..., fu} contained in I and an element
s € D\ {0} such thatsI € (f1, f2,.-., fa), [2].

Later, Anderson and Dumitrescu generalized the concept of almost principal and almost finitely gener-
ated ideals to modules over commutative rings. Let R be a commutative ring and S C R be a multiplicative
set and M be an R-module. Following [1], we say that M is S-finite (resp., S-principal) if sM C F for some
s € S and some finitely generated (resp., principal) submodule F of M. Also, M is called S-Noetherian (resp.,
S-PIR) if each submodule of M is a S-finite (resp., S-principal) module.

In 2016, Ahmed and Sana ([5]) tried to characterize the concept of S-Noetherian modules via a suitable
chain condition and a special kind of maximality. An increasing sequence (Ny)en of submodules of M
is called S-stationary if there exists a positive integer k and s € S such that for each n > k, sN,, € Ny and
a submodule N; is called S-maximal if for every j € IN, sN; C Nj, for some i € IN. They showed that, if
every nonempty set of ideals of R has a S-maximal element, then R is S-Noetherian and the later that,
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every increasing sequence of ideals of R is S-stationary. In 2017, Bilgin, Reyes and Tekir ([3]) characterize
5-Noetherian modules over noncommutative rings. They proved that M is S-Noetherian if and only if every
increasing sequence of submodules of M is S-stationary if and only if every nonempty set of submodules
of M has a S-maximal element if and only if every nonempty S-saturated set of submodules of M has a
maximal element.

In this paper, we study weakly S-Noetherian modules, dualizing the former notion of weakly S-Artinian
modules introduced by Khani-Nasab and Hamed in [6]. We say that M satisfies weakly S-stationary on
ascending chains of submodule (w-ACCg on submodules for short) if for every ascending chain M; € M, C
Mj C --- of submodules of M, there exists k € IN such that for each n > k, s,M,, C My for some s, € S.
Let ¥ be a set of submodules of M. We say that N € ¥ is weakly S-maximal if for every L € ¥ and N C L,
there exists s € S such that sL € N. We compare Noetherian modules with modules which have w-ACCs
on submodules. For example, we show that there exists a module with w-ACCg on finitely generated
submodules which does not satisfies w-ACCs on submodules. In section 3, we consider the case where
S € R is a regular multiplicative set. We show that a module M which satisfies weakly S-stationary on
submodules (ACCs for short) where S is regular multiplicative set is a hopfian module. Moreover, if R
satisfies w-ACCg on ideals where S is regular, then R is a Goldie ring. Also, we show that the converse is
not true in general. Finally, we prove that a semilocal commutative ring with w-ACCg on ideals where S is
regular, have a finite number of minimal prime ideals and the regularity of S is necessary.

2. Weakly S-stationary and weakly S-maximal

Let R be a commutative ring, S € R a multiplicative set and M an R-module. According to [5], an
increasing sequence (N, )zen of submodules of M is called S-stationary if there exist a positive integer k € IN
and s € S such that for all n > k, sN,, € Ni. We say that M satisfies ACCs on submodules if for every
ascending chain of submodules of M is S-stationary. In this section we relaxes this property by introducing
the notion of weakly S-stationary sequence of submodules. We study various properties of modules in
which every ascending chain of submodules is weakly S-stationary.

Definition 2.1. Let R be a commutative ring, S C R a multiplicative set and M an R-module. We say that M satisfies
weakly S-stationary on ascending chains of submodules (w-ACCs on submodules for short) if for every ascending
chain My € My € M3 C --- of submodules of M, there exists k € IN such that for each n > k, s,M,, € My for some
s, €8S.

Examples 2.2. 1. Modules with ACCg on submodules satisfies w-ACCs on submodules. In Example
2.8, we prove that the reverse of this implication is not true in general.

2. Every S-Noetherian modules satisfies w-ACCg on submodules (follows from [5, Remark 2.3] and the
fact that every module with ACCs on submodules satisfies w-ACCg on submodules).

3. Let p be a prime number, S = {1} U (pZ\{0}) and M = Z,~ (as a Z-module). Then M satisfies w-ACCg
on submodules. Note that M does not satisfy ACCg on submodules, since for every s € S and every
finitely generated submodule F of M s(Z~) = Zy~ € F.

4. Every semisimple module satisfies w-ACCs.

Definition 2.3. Let R be a commutative ring, S C R a multiplicative set and M an R-module.

1. Let ¥ be a set of submodules of M. We say that N € ¥ is weakly S-maximal if for every L € ¥ and N C L,
there exists s € S such that sL C N.

2. Asubmodule N of M is said to be weakly S-maximal if it is weakly S-maximal in the set of all proper submodules
of M.

Proposition 2.4. Let R be a commutative ring, S C R a multiplicative set and M an R-module. Then the following
assertions are equivalent.

1. M satisfies w-ACCs on submodules.
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2. Every nonempty set of submodules of M has a weakly S-maximal element.

Proof. (1) = (2) Let ¥ be a nonempty set of submodules of M such that for every submodule N € ¥, N is
not weakly S-maximal. Let N; € . Then N; is not weakly S-maximal and so there exists N, € ¥ such
that Ny C N and for every s € S, sN, € Ni. N> € ¥ is not weakly S-maximal, hence there exists N3 € F
such that N, € N3 and for every s € S, sN3 € N,. By continuing this way, we obtain a chain of submodules
Ni; € N; € N3 C --- which is not weakly S-stationary. This shows that M does not satisfy w-ACCs on
submodules.

(2) > (1) Let Ny € N, € N3 C -+ be a chain of submodules in M. Set

F=(N;, i=12,...)

By (2), ¥ has a weakly S-maximal element like Ny where k € IN. Clearly for every n > k, there exists s, € S
such thats,N,, C N,. O

Our next result gives equivalent conditions for an R-module M to be S-Noetherian, where S is a finite
multiplicative subset of R. First let us recall the following notion. Let & be a family of submodules of M. An
element N € { is said to be S-maximal if there exists a s € S such that foreachL € &, if N C L, thensL C N

(5D

Proposition 2.5. Let R be a commutative ring, S C R a finite multiplicative set and M an R-module. Then the
following assertions are equivalent.

1. M is a S-Noetherian module.

M satisfies ACCg on submodules.

M satisfies w-ACCs on submodules.

Every nonempty set of submodules of M has a weakly S-maximal element
Every nonempty set of submodules of M has a S-maximal. element.

SR

Proof. (1) = (2) Follows from Example 2.2(1).

(2) = (3) Obvious.

(3) = (4) Follows from Proposition 2.4.

(4) = (5) Follows from the fact that the weakly S-maximal and the S-maximal properties are the same
when S is finite.

(5) = (1) Let S = {s1,82,53,...,54} and N be a submodule of M. Sets := s15,---5,. We show that N is
S-finite. Suppose that ¥ is the set of all finitely generated submodules of M included in N. Clearly, ¥ is a
nonempty set. By (5) there exists F € ¥ such that F is S-maximal. Letx € N. Set L = F + Rx. Then L € ¥
and F C L. Since F is S-maximal, there exists s;, € S such that s;, L. C F. Thus

(s152++-sy)L Cs;,L C F.
This implies that sN C F, and hence M is a S-Noetherian module. [

Corollary 2.6. Let R be a commutative ring and S a finite regular multiplicative subset of R. Then R is Noetherian
if and only if R satisfies w-ACCg on ideals. Indeed, by [5, Example 3.2], S € U(R); so R satisfies w-ACCg on ideals if
and only if R satisfies ACCs on ideals if and only if R satisfies ACC on ideals if and only if R is a Noetherian ring.

We know that M is a Noetherian module if and only if every ascending chain of finitely generated sub-
modules stops. Next we construct an example of a module with w-ACCj on finitely generated submodules
which does not satisfies w-ACCg on submodules. First we need the following Remark.

Remark 2.7. Let R be a commutative ring, S C R a multiplicative set and M an R-module. Assume that for every
ascending chain Ly € L, € Lz C --- of submodules of M and for each n € IN, there exists s, € S such that s,L, =0,
then M satisfies w-ACCg on submodules.
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Example 2.8. Consider M = (B pep Lp 5 a Z-module where P is the set of all prime integers. Let S = Z.\ {0}. First
we show that M satisfy w-ACCs on finitely generated submodules. Let L be a finitely generated submodule of M.
Then there exists p1,pa, ..., pn € P such that L — Z,, & Z,,, ® - - ® Z,,, and hence L is finite. By Remark 2.7, every
finite module satisfies w-ACCg on submodules. This shows that M satisfies w-ACCg on submodules.

Next we introduce a chain of submodules of M which does not satisfy the w-ACCg on submodules. Let p; <
p2 < p3 < -+ beall prime numbers. Suppose that for every p we replace 1,(Z;) by Z,, where 1, : Z, —> M. Set
L=2, ®Zy,®--- and K =2, ®Z,, ®---. Since | = {p1,p3,ps, ...} is infinite, there exist infinite subsets I and
I of I such that I = I U I,. Also, I is infinite. So there exist infinite subsets I3 and Iy of Iy such that I = I3 U 1.
Continuing in this way, we get a sequence Ir,I3,1s, ... such that I,, = I, U I,,43. Define L; = @ Z,, for every

i € Z we have the following chain

pEL'

KeL, S KL, dLsCKOL,®L1®LsC -
Suppose that there exists k € IN such that for every n > k
S K@ Ly ®Ly® - B Lpps2) CKOLy ®Ly®--- B Ly,

for some s, € S. Thus
Sn(L2n+2) CKOL,®dLs®...® Ly,

Hence s,(Lop+2) = 0. Ipnip is an infinite set of prime numbers. Let t,t,, ... be all distinct elements of Io,42. Then
Loyin = peltuin) Z,,. Since s,Loui2 = 0, for every i € IN, tls,,, a contradiction. Thus M does not satisfy w-ACCs

on submodules.
Next proposition investigates w-ACCs on ideals for direct product of rings.

Proposition 2.9. Let S1,S,, -+, S, be multiplicative subsets of rings Ry, Ra, - -+, Ry, respectively. Set R = ] R;
and S = []}-; Si. Then the following conditions are equivalent.

1. R satisfies w-ACCs on ideals
2. Foreachie {1, ..,n}, R; satisfies w-ACCs, on ideals

Proof. (1) = (2) Obvious.

(2) = (1) Suppose that I; € I, € I3 C --- be an ascending chain of ideals in R. Then for every i € N,
Ii = Ly X Lip X --- X Lj; where L;; is an ideal of R, for all j € {1,2,...,n}. Since every R; satisfies w-ACCs,
on ideals, we can find k € N such that for each n > k and j € {1,2,...,n} there exists s,; € S; such that
SnjLnj € Lyj. Therefore, for every n > k, s, = (Sp1,8n2,-.,5m) € [T, Si and we have s,I,, C I;. This shows
that R has w-ACC; on ideals where S = [[L; S;. [

Unlike finite product of rings, an infinite product of rings not necessarily has w-ACC;s on ideals.

Example 2.10. Let R = [[;; R; and S = {1r} be a multiplicative subset of R where index set of I is infinite. Since
I is infinite, there exist infinite subsets Iy and I of I such that | = 1 UL and 1 NI, = @. Set | = EBieh R; and

K= @ieb R;. So | € ] ® K and continuing in this way, we can form an ascending chain of ideals of R. Thus R does
not satisfy w-ACCs on ideals.

Proposition 2.11. Let M be an R-module, N a proper submodule of M and S a multiplicative subset of R. Then the
following assertions are equivalent.

1. M satisfies w-ACCs on submodules.
2. N and M/N both satisfy w-ACCs on submodules.
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Proof. (1) = (2) Assume that M has w-ACCg on submodules. It is immediate that N satisfies w-ACCs on
submodules. Let L;/N C L,/N C [3/N C --- be a chain of submodules in M/N. SinceL.; CL, C I3 C---isa
chain in M and M satisfies w-ACCjs on submodules, there exists k € IN such that for each n > k, there exists
s, € Swith s,L, C L. This implies that for every n > k, s5,(L,/N) C Lx/N. Hence M/N satisfies w-ACCs on
submodules.

(2)= (1) LetL; C L, C L3 C--- be a chain in M. By assumption, there exists a positive integer k such
that for each n > k, there exists s, € S with s,(L,, + N)/N € (Lx + N)/N and there exists s, € S such that
s,(NNL,) € NNL;. We prove that for eachn > k, s;,s,(L,,) € L¢. SinceL,, € L, +N, 5,(L) € 54(L,+N) € Ly +N.
Let x € L,. Then s,x € Ly + N and there exist ] € Ly and y € N such thats,x — [ = y. Thuss,x =l € NN L,,
and so s),(sy,x — I) € N N Lg. Therefore s’s,,x € Ly, as desire. [

Corollary 2.12. Let R be a ring and S be a multiplicative subset of R. Then R satisfies w-ACCs on ideals if and only
if for each n € IN*, R" satisfies w-ACCs on submodules.

Proof. Assume that R satisfies w-ACC;s on ideals. We will show this via induction. Let P(n) be the property
that R" satisfies w-ACCg on submodules. For n = 1, R satisfies w-ACCs on ideals if and only if for each R
as an R-module satisfies w-ACC;s on submodules. Suppose that the property holds for 1 < n. Let’s prove
P(n + 1). The module R" is isomorphic to the submodule N = R” X {0}. Hence, by the induction hypothesis
and Proposition 2.11, N satisfies w-ACCs. Clearly R"*'/N ~ R. Thus by Proposition 2.11, R™*! satisfies
w-ACC;s on submodules. The other implication is obvious. [

Theorem 2.13. Let R be a commutative ring, S a multiplicative subset of R and M a finitely generated R-module. If
R satisfies w-ACCs on ideals, then M satisfies w-ACCg on submodules.

Proof. Since M is a finitely generated R-module, there exist n € IN* and a surjective module homomorphism
f : R" — M, such that R"/Ker(f) =~ M. By Corollary 2.12, R" satisfies w-ACCs on submodules; so by
Proposition 2.11, R" /Ker(f) satisfies w-ACCs. Therefore M satisfies w-ACCs on submodules. [

Corollary 2.14. Let R be a commutative ring, S C R a multiplicative set and M a S-finite R-module. If R satisfies
w-ACCs on ideals, then M satisfies w-ACCg on submodules.

Proof. Since M is S-finite, there exist s € S and a finitely generated submodule F of M such that sM C F.
Suppose that Ny € N, € N3 C --- is a chain of submodules in M. By Theorem 2.13, F satisfies w-ACCg on
submodules. Since for each 1, sN,, is a submodule of F, the chain sN; € sN, C sN3 C --- is a chain in F; so
there exists k € IN such that, for each n > k there exists t, € S with t,,(sN,;) C sNy C N. For each n > k, let
s, := st, € S. Thus for each n > k, s,N,, C N;. This shows that M satisfies w-ACCs on submodules. [

3. Weakly S-stationary when S is a regular multiplicative set

In this section we prove a relation between modules satisfying the w-ACCg property and some classical
well known modules (hopfian modules, Goldie rings, ...) where S is a regular multiplicative set. We start
this section by the following definition.

Definition 3.1. For an R-module M and s € R, we say that s is a nonzero divisor for M, if for each m € M, sm = 0
implies that m = 0. A regular multiplicative set S over M is a set in which for every s € S, s is nonzero divisor for M.

Example 3.2. Let R be a valuation ring and let S be a multiplicative set of regular elements of R. Set
K = (Nses Rs. Then K < R. Consider the ring R := R/Kand S := {s + K | s € S} C R,

1. Sis closed under multiplication.
2. 1;=1+KeS.
3. 0z ¢ Sif and only K # R.
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IfK #R, then Sisa multiplicative regular set in R. In this case, R satisfies w-ACCs on ideals.

Proof. (1). Clear.

(2). Clear.

(3). If K = R, then S C K and hence S = {0+ K}. Conversely, if K # R, then 1 ¢ K. Thus, there exists
sp € S such that 1 ¢ soR. Suppose to the contrary, 0 + K € S. There exists s; € S such that 0 + K = s; + K.
Hence s; € K C s051R; so there exists r € R such that s; = rsps;, which implies that 1 = sy since S is regular.
Therefore soR = R, a contradiction. _

We want to prove that if K # R, then S is regular. Let (s + K)(r + K) = Oz wheres € Sand r € R. Let s eK.
Then sr € ss'R. There exists x € R such that sr = ss'x. Since S is regular, r = s'x € s R. Thus r € K, as desire.

Now, we show that R satisfies ACC;g on ideals. Let I/K be a nonzero ideal in R. Then K c I <R and
I € K. Hence, there exists sy € S such that I ¢ Rsy. Since R is a valuation ring, soR C I and sol € 50R C I. It
follows that _

(so + K)I/K = (sol + K)/K C (soR + K)/K = (sg + K)R C I/K.

Thus R is a S-Noetherian ring, and hence satisfies w-ACCs onideals. [

An R-module M is said to be hopfian if any surjective endomorphism of M is an isomorphism. We know
that Noetherian modules are hopfian. Our next result relaxes the Noetherian property by the w-ACCs
notion.

Proposition 3.3. Let R be a commutative ring, M an R-module and S C R is a reqular multiplicative set over M. If
M satisfies w-ACCg on submodules, then M is hopfian.

Proof. Let ¢ : M — M be a surjective homomorphism. Consider the following chain
Ker(¢) C Ker(¢?) € Ker(¢’) C -+

Since M satisfies w-ACCs on submodules, there exists k € N such that for each n > k, s,Ker(¢"*!) C Ker(¢")
for some s, € S. Let m € Ker(¢). Since ¢ is surjective, there exists m’ € M such that m = ¢"(m’).
Then ¢(m) = ¢(¢"(m’)) implies that 0 = ¢ (m’) and thus m’ € Ker(¢p"*'). Multiplying s,, we have
sy’ € s,Ker(¢") C Ker(¢"). Thus s,m’ € Ker(¢p"), and so s,¢"(m’) = ¢p™(s,m’) = 0. Since S is regular on
M, m = ¢"(m’) = 0. Hence ¢ is an isomorphism. [J

Lemma 3.4. Let R be a commutative ring, M an R-module and S C R a regular multiplicative set over M. Assume
that R satisfies w-ACCs on ideals. Then R satisfies ACC on annihilators of subsets of M.

Proof. Letl; C I, C I3 C --- be an ascending sequence in R such that for every j € N, I; = anngr(A;) for some
A; € M. Since R satisfies w-ACCjs on ideals, there exists k € IN such that for each n > k, s,I, C I; for some
s, €S.Letn>kanda €I, spa € Ix. So s,aAr = 0. By regularity of S on M we have aA; = 0. It follows that
a € Ir. Therefore, I, C Iy C I,,, and hence I, = I;. Thus R satisfies ACC on annihilators of subsets of M. O

Remark 3.5. Let R be a commutative ring, M an R-module and S C R a regular multiplicative set over M. Assume
that R satisfies w-ACCs on ideals. Then by the previous Lemma 3.4, the set X = {anng(A) | A € M\ {0}} has a
maximal element.

Let R be a commutative ring and M an R-module. We denoted by Z(M) the set Z(M) = {r e R | xr =
0, for some nonzero x € M} = U anng(x).
0#£xeM

Theorem 3.6. Let R be a commutative ring, M an R-module and S C R a regular multiplicative set over M. Let
X = {anngr(x) | x € M\{0}}. Assume that R and M both satisfy w-ACCs on submodules. Then

1. X has only a finite number of maximal elements.
2. Z(M) is a union of a finite number of associated primes of M.
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Proof. (1). Assume {anng(x;)}ien is a set of (distinct) maximal elements of X. Consider the chain xR C
x1R + xR C --- in M. Since M satisfies w-ACCs on submodules, there exists k € IN such that for each

n k k+1 k k
n >k, S"(Z xjR) € ijR for some s, € S. This implies that S”(Z xjR) € Zx]-R; SO SuXks1 € Zx]-R.
=1 =1 j=1 j=1 j=1

Thus, there exist r1,7,,...,7x € R such that s;x.1 = r1x1 + -+ + rexx. Fori € IN, set P; = anng(x;). Then
PPy Pe(rixq + -+ + 1ixg) = 0; 50 P1Py - -+ Pisyxp1 = 0. Since S is regular, P1P; - - - Pexrs1 = 0, and hence
P1P; ... Py C Piyq = anng(Xg+41). It is easy to see that each maximal element of X is a prime ideal in R and so
Py.1. Thus there exists j < k + 1 such that P; 2 Pyy. Since Py, € X, maximality of P; implies that P; = Py,
a contradiction.

(2). By the first assertion, X has only a finite number of maximal elements, say annr(xy), ..., anng(xy),
n n

where x1,...,x, € M. We show that Z(M) = U anng(x;). Clearly, U anng(xj) € Z(M). Conversely, leta €
j=1 j=1

Z(M). Then there exists x € M\ {0} such thatax = 0. Consider Y = {annr(y) | 0 # y € M, anng(x) C anng(y)}.

Then anng(x) € Y, and so Y # 0. By Lemma 3.4, R satisfies ACC on annihilators of subsets of M; so Y has a

maximal element, say anng(y). But anng(y) is a maximal element of X. So there existsi € {1, ..., n} such that
n n

anng(y) = anng(x;). Hence a € anng(x) € anng(y) = anng(x;) € | ]anngr(xj). Therefore, Z(M) = U anng(x;).

=1 =1

It is not hard to see that P; is an associated prime of M. [

Example 3.7. A commutative ring R with w-ACCg on ideals where S is a multiplicative non regular set of
R may not have ACC on annihilators.

Let F be a field and R = F[x, x2,...]/{xix};i # j). Suppose that S = {xili > 0}. Then S is a multiplicative
set of R. Since the chain (x;) C (x1,X;) C --- is not stationary, R is not Noetherian. It is enough to
show that R is S-Noetherian. First define the following mapping; 0 : R — F[x1], with f — fi(x7), where
f=A010)+x2L02) + -+ X fulXn).

n

Clearly 0 is a surjective homomorphism and ker(6) = {Z Xifi(x;) | n € N}. Let I be an ideal of R. Then
i=2
x1l is an ideal of R too. Thus 6(x1]) is an ideal of F[x1]. Therefore, 6(x1I) is principal. Since x;I N ker(6) =0,
x11 is principal. Hence R is S-Noetherian. Thus R satisfies w-ACCg on ideals. Now, we introduce a chain
of annihilators in R which is not stationary:

anng(x1, Xy, ...) € anng(xg, X3, ...) € anng(xs, Xg,...) S -+ -
So the regularity of S is necessary in Lemma 3.4.

Recall that a module M is called a uniform module if the intersection of any two nonzero submodules
is nonzero. A submodule N of M is said to be an essential submodule of M if for every submodule H of M,
H N N = {0} implies that H = {0}. The uniform dimension of a module M, denoted u.dim(M), is defined to

n
be n if there exists a finite set of uniform submodules U; such that @ U; is an essential submodule of M.
i=1
A ring R is said to be a Goldie ring if it has finite uniform dimension as a module over itself, and satisfies
the ascending chain condition on annihilators of subsets of R. With aid of following lemma, we show that
a ring with w-ACCjg on ideals where S C R is a regular multiplicative set, is a Goldie ring.

Lemma 3.8. Let R be a commutative ring and M an R-module which satisfies w-ACCs on submodules, where S C R
is a regular multiplicative set over M. Then M has finite uniform dimension.

Proof. Suppose to the contrary that M has not finite uniform dimension. Then there exists a family of
independent nonzero submodules such as {Nj, Ny, N3, ...}. Consider the following chain of submodules of
M:

NiCNi®dN, CNi®N, &Nz C - -+
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n k
Since M satisfies w-ACCs on submodules, there exists k € IN such that for each n > k, sn(@ Nj) C @ N;
i=1 i=1
for somes, € S. In particular, s,Nk41 = 0. Since S is regular over M, we must have N1 = 0, a contradiction.
So M has finite uniform dimension. [

Theorem 3.9. Let R be a commutative ring and S C R a regular multiplicative set. If R satisfies w-ACCs on ideals,
then R is Goldie.

Proof. Follows directly from Lemma 3.4 and Lemma 3.8. [J
Following example shows that the converse of Theorem 3.9 is not true in general.

Example 3.10. Let R = Z[x1,xp,...]and S = {xi | i > 0}. Clearly S is a reqular multiplicative set of R. Also, Ris a
Goldie ring. The following chain shows that R does not satisfies w-ACCg on ideals:

(x2) © (x2,x3) & (X2, X3, X4) & -
So the converse of Theorem 3.9 does not hold.

In the next result, we show that a commutative semilocal ring with w-ACCs on ideals have a finite
number of minimal prime ideals. First, we need the following Lemma.

Lemma 3.11. Let R be a commutative ring and S, T C R be two multiplicative sets of R. If R satisfies w-ACCs on
ideals, then T1R satisfies w-ACCg on ideals.

Proof. Suppose that A; € Ay C --- be an ascending sequence of ideals of T"'R. Then for each n € IN*,
n
A, = T7'B,, for some ideal B, of R. For each n € IN*, set I,, := Z B;. Then (I,), is an ascending sequence

i=1
of ideals of R. Since R satisfies w-ACCs on ideals, there exists k € IN* such that for each n > k, s,I,, C I for
some s, € S. This implies that for each n > k, s,(T~1,,) € T7'I;.
Now, for each n € IN*,

T, = T'Bi+---+B,)
= T'By+---+T7'B,
= A1+ + A,
= A,

Thus for each n > k, 5,A, C Ay, which implies that the sequence (A,), is weakly S-stationary. Hence TR
satisfies w-ACCs on ideals. [

Theorem 3.12. Let R be a commutative semilocal ring and S a regular multiplicative subset of R. If R satisfies
w-ACCs on ideals, then R contains only a finite number of minimal primes.

Proof. A commutative semilocal ring has only a finite number of maximal ideals. Since every minimal
prime ideal of R is contained in a maximal ideal, it is enough to show that every maximal ideal of R contains
only a finite number of minimal primes. But for every maximal ideal M of R, the minimal prime ideals of
R which are contained in M correspond to the minimal prime ideals of the ring T™'R for T = R\M. Thus it
suffices to consider the case when R is a local ring. It is clear that for every ideal I in R, R/I has w-ACCg on

ideals, where S = {s + I | s € S}. So considering the quotient of R modulo its prime radical, we may assume
that R is semiprime. Now, by [8, Theorem 11.43], R has only a finite number of minimal primes if and only
if R has finite uniform dimension. From Proposition 3.8, we obtain that R has finite uniform dimension.
Hence R contains only a finite number of minimal prime ideals. O
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Following example shows that a ring with w-ACC;s on ideals where S is a non-regular multiplicative
set of R may have infinitely many minimal prime ideals.

Example 3.13. Consider R as in Example 3.7. R has w-ACC;s on ideals and S is a non regular multiplicative
subset of R. Then M := (x1,x2,x3,...)/{x;j | i # j € N) is a maximal ideal of R. It is easy to show that for
every k € IN, (x; | j € N\ {k})/{(xix; | i # j € IN) is a minimal prime ideal. Thus the localization Ry has
infinitely many minimal prime ideals. This shows that the regularity of S is necessary in Theorem 3.12.
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