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Abstract. In this work, we consider cumulative residual Fisher information and Bayes-cumulative residual
Fisher information for a general k-th order autoregressive and their corresponding stationary equilibrium
distributions and develop some associated results. We establish several interesting connections between
these measures and some known informational measures such as chi-square divergence, Gini’s mean differ-
ence, cumulative residual Kullback-Leibler, Jeffreys and Jensen-cumulative residual entropy divergences.

1. Introduction

Several criteria have been discussed in the literature for measuring the uncertainty of a probabilistic
model. Moreover, various divergences measures have also been developed in the literature for measuring
similarity (closeness) between two probability distributions. Shannon entropy, Fisher information and
Gini’s mean difference are three most important information measures that have been used extensively
in many different fields. For more details, one may see Shannon (1948), Fisher (1929) and Gini (1912).
Recently, these information measures have been generalized based on Jensen inequality, which have come
to be known as Jensen-Shannon, Jensen-Fisher and Jensen-Gini information measures, respectively. For
pertinent details, one may refer to Lin (1991), Sánchez-Moreno et al. (2012) and Mehrali et al. (2018). Let X
be an absolutely continuous random variable with cumulative distribution function (CDF) Fθ and density
function fθ, where θ ∈ Θ ⊆ R. Then, the Fisher information of a random variable X, about parameter θ, is
defined as

I(θ) = E
(
∂ log fθ(X)
∂θ

)2

=

∫
X

(
∂ log fθ(x)
∂θ

)2

fθ(x)dx, (1)

where “log” corresponds to the natural logarithm.
Recently, Kharazmi and Blakrishnan (2021) defined the cumulative residual Fisher (CRF) information,

by replacing the probability density function (PDF) in (1) by the survival function, as
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CI(θ) =

∫ (
∂ log F̄θ(x)
∂θ

)2

F̄θ(x)dx, (2)

where F̄θ(x) = 1 − F(x) is the survival function of X. It can be seen readily that this information measure
gives decreasing weights for larger values of X due to the term F̄θ in the integrand, which suggests that this
information measure will naturally be robust to the presence of outliers. In order to simplify the notation,
we have suppressed X for the integration with respect to x in (2), as well as in the rest of this paper, unless
a distinction becomes necessary.

Recently, many authors have developed various autoregressive models with minification process. Au-
toregressive models have been the backbone of time series analysis for time-dependent data sets. Specifi-
cally, these have been developed for modeling the current value of the series, Xt, as a function of past values
Xt−1, ...,Xt−m, where m is the time lag of dependence. A generalized k-th order autoregressive structure,
with mixing parameter vector p = (p0, ..., pk−1), is given by

Xn =



ϵn, w.p. p0

k

min(Xn−1, ϵn), w.p. p1

k

min(Xn−2, ϵn), w.p. p2

k

. .

. .

. .
min(Xn−k, ϵn), w.p. pk

k ,

(3)

where 0 ≤ pi ≤ 1, i = 0, 1, ..., k,
∑k−1

i=1 pi ≤ 1 and {ϵn} is an innovation process of independent and identically
distributed random variables chosen so chosen that {Xn} is a stationary Markov process with a specified
marginal distribution function FX(x). The survival function of the autoregressive model Xn in (3) is then

F̄Xn (x) =
p0

k
F̄ϵn (x) +

1
k

k−1∑
j=1

p jF̄Xn− j (x)F̄ϵn (x) +
(
1 −

∑k−1
j=0 p j

k

)
F̄Xn−k (x)F̄ϵn (x). (4)

The stationary equilibrium distribution of the autoregressive model Xn in (3) is known to be a Marshall-
Olkin distribution with survival function as

F̄X(x) =
p0F̄ϵn (x)

1 − (1 − p0)F̄ϵn (x)
; (5)

see Marshall and Olkin (1997) for more details on the model in (5). Here, our main interest here is to discuss
cumulative residual Fisher information and Bayes-cumulative residual Fisher information measures for
the survival functions in (4) and (5). The purpose of this work is two-fold. In the first part, we study the
cumulative residual Fisher information of a general k-th order autoregressive process and its corresponding
stationary equilibrium distribution (Marshall-Olkin family). In the second part, the Bayes-cumulative
residual Fisher information of these models is studied under different prior distributions for the parameter
p. The results display several interesting connections between cumulative residual Fisher information and
Bayes-cumulative residual Fisher information of mixing parameter vector and some known informational
divergences.

The rest of this paper is organized as follows. In Section 2, we briefly describe some key information
and entropy measures. Next, in Section 3, we consider an autoregressive AR(k) process and its correspond-
ing stationary equilibrium distribution and establish some results for the cumulative measure of mixing
parameter vector. We show specifically that the cumulative residual Fisher information of the mixing
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parameter vector of AR(k) is connected to chi-square divergence. In addition, an analogous result is estab-
lished for the CRF information measure of the Marshall-Olkin distribution. Next, in Section 4, we discuss
the Bayes-CRF information for the mixing parameter vector of the survival function of AR(k) under some
prior distributions for the mixing parameter. We show that this measure is connected to Jensen-cumulative
residual Shannon entropy, cumulative residual Kullback-Leibler and Jeffreys divergences. We also show
that the Bayes-CRF information Marshall-Oklin distribution under beta prior distribution is connected to
Gini’s mean difference. Finally, in Section 5, we state some concluding remarks.

2. Preliminaries

We briefly introduce some informational measures that will be used in the sequel. Let X and Y be two
continuous random variables with survival functions F̄ and Ḡ, respectively. Then, the cumulative residual
Kullback-Leibler (CRKL) divergence between X and Y (or F̄ and Ḡ) is defined as

CRKL(X||Y) = CRKL(F̄, Ḡ) =
∫

F̄(x) log
F̄(x)
Ḡ(x)

dx −
(
E(X) − E(Y)

)
.

The CRKL discrimination between Y and X can be defined in an analogous manner. For more details,
one may refer to Park et al. (2012).

Another important diversity measure between two survival functions F̄ and Ḡ is the chi-square diver-
gence, defined as

χ2(F̄, Ḡ) =
∫

(F̄(x) − Ḡ(x))2

Ḡ(x)
dx.

In a similar manner, we can define χ2(Ḡ, F̄). For more details, see Kharazmi and Balakrishnan (2021).
The Fisher information of a random variable X, or its PDF f (x;θ), about the parameter θ is defined as

I(θ) =
∫ [
∂ log f (x;θ)
∂θ

]2

f (x;θ)dx.

In Bayesian statistics, one assumes that the parameterθ is endowed with a priorπ(θ). Then, the expected
cumulative residual Fisher information,

C̃I(θ) = Eπ[CI(Θ)] =
∫
CI(θ)π(θ)dθ,

is called the Bayes-cumulative residual Fisher information. For more details, see Kharazmi and Balakrishnan
(2021) and the references therein.

Rao et al. (2004) defined the cumulative residual entropy (CRE) as

ξ(X) = ξ(F̄) = −
∫

F̄(x) log F̄(x)dx, (6)

where F̄(x) = 1− F(x) is the survival function of X. Subsequently, Asadi and Zohrevand (2007) provided an
interesting representation for (6), based on the mean residual lifetime function, as

ξ(X) = E[mF(X)], (7)

where mF(t) is the mean residual lifetime of X defined by mF(t) =
∫
∞

t F̄(u)du
F̄(t) . Recently, Kharazmi and Bal-

akrishan (2021) introduced an extension of (6), called Jensen-cumulative residual entropy. Let X1, ..,Xn be
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variables with survival functions F̄1, ..., F̄n, respectively, and α1, ..., αn be non-negative real numbers such
that

∑n
i=1 αi = 1. Then, the Jensen-cumulative residual entropy (JCRE) information measure is defined as

JCE(F̄1, ..., F̄n,α) = ξ
( n∑

i=1

αiF̄i

)
−

n∑
i=1

αiξ(F̄i)

=

n∑
i=1

αiCRKL(F̄i, F̄T),

where F̄T =
∑n

i=1 αiF̄i is the weighted survival function.

3. CRF information measure for AR(k) process and its stationary equilibrium distribution

In this section, we first study the cumulative residual Fisher information for parameter p = (p0, ..., pk−1) of
the AR(k) process in (3). We then examine this type of information measure for Marshall-Olkin distribution
as stationary equilibrium distribution of the AR(k) process. The following theorem gives a representation
for the CRF information measure in (2), denoted by CI(pi), i = 0, ..., k−1, for the k-component finite mixture
survival function in (4).

3.1. CRF information measure for AR(k) process
Theorem 3.1. The CRF information measure of the SF in (4) about parameter pi, i = 0, ..., k − 1, is given by

CI(pi) =
1(

pi − (k − 1)
)2


χ2(F̄−i

Xn
, F̄Xn ), i = 1, ..., k − 1,

χ2(F̄−0
Xn
, F̄Xn ), i = 0,

where

F̄−i
Xn

(x) =
p0

k
F̄ϵn (x) +

k − 1
k

F̄Xn−i (x)F̄ϵn (x) +
1
k

k−1∑
j=1, j,i

p jF̄Xn− j (x)F̄ϵn (x)

+
1
k

(
1 −

k−1∑
j=0

p j

)
F̄Xn−k (x)F̄ϵn (x)

and

F̄−0
Xn

(x) =
k − 1

k
F̄ϵn (x) +

1
k

k−1∑
j=1

p jF̄Xn− j (x)F̄ϵn (x) +
1
k

(
1 −

k−1∑
j=1

p j

)
F̄Xn−k (x)F̄ϵn (x).

Proof: From the definition of the CRF information measure in (2), for i = 1, ..., k − 1, we have

CI(pi) = E
[∂ log F̄Xn (X)

∂pi

]2

=
1
k2

∫
F̄2
ϵn

(
F̄Xn−i (x) − F̄Xn−k (x)

)2

F̄Xn (x)
dx

=
1(

pi − (k − 1)
)2

∫ (
F̄−i

Xn
(x) − F̄Xn (x)

)2

F̄Xn (x)
dx

=
1(

pi − (k − 1)
)2χ

2(F̄−i
Xn

(x), F̄Xn (x)), (8)
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where the third equality follows from the fact that, for i = 1, ..., k − 1,

F̄ϵn (x)
(
F̄Xn−i (x) − F̄Xn−k (x)

)
=

k
pi − (k − 1)

(
F̄Xn (x) − F̄−i

Xn
(x)

)
.

The proof for i = 0 is quite similar.

3.2. CRF information measure for Marshall-Olkin family

In this section, we obtain the CRF information measure for Marshall-Olkin family as the stationary
equilibrium distribution of AR(k) process. Let S(x) be the survival function of a given distribution. Then,
the Marshall-Olkin distribution, obtained by introducing a new parameter p, has its survival function as

Sp(x) =
pS(x)

1 − (1 − p)S(x)
, 0 < p < 1. (9)

Clearly, when p = 1, we get the original survival function S(x).

Theorem 3.2. The cumulative residual Fisher information for the SF in (9), about parameter p, is given by

CI(p) =
1
p2χ

2(S2
p,Sp), (10)

where S2
p is the corresponding proportional hazards survival function of order 2 of Sp.

Proof: From the defintion of CI(p) in (2), we have

CI(p) =

∫
∞

0

{∂ log Sp(x)
∂p

}2

Sp(x)dx

=

∫
∞

0

{∂ log pS(x)
1−(1−p)S(x)

∂p

}2

Sp(x)dx

=

∫
∞

0

{ S(x) − S2(x)(
1 − (1 − p)S(x)

)2

}2

S−1
p (x)dx

=
1
p2

∫
∞

0

(
Sp(x) − S2

p(x)
)2

Sp(x)
dx

=
1
p2χ

2(S2
p,Sp),

as required.

4. Bayes-CRF information for AR(k) process and Marshall-Olkin distribution

In this section, we first study the Bayes-CRF information for the mixing parameter vector p of the
mixture SF in (4) under some prior distributions for the mixing parameter vector and then examine the
Bayes-CRF information of Marshall-Olkin distribution under beta prior distribution. We now introduce
two notations that will be used in the sequel. For the parameter vector p = (p0, ..., pk−1), we define (0i,p) =
(p0, ..., pi−1, 0, pi+1, ..., pk−1) and (1i,p) = (p0, ..., pi−1, 1, pi+1, ..., pk−1).

Theorem 4.1. The Bayes-cumulative residual Fisher information for the mixture SF in (4), for parameter pi, i =
0, ..., k − 1, under the uniform prior on [0, 1], is given by
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C̃I(pi) =


J
(
F̄(0i,p)

Xn
, F̄(1i,p)

Xn

)
, i = 1, ..., k − 1,

J
(
F̄(0,p)

Xn
, F̄(1,p)

Xn

)
, i = 0,

where

F̄(1i,p)
Xn

(x) =
p0

k
F̄ϵn (x) +

1
k

F̄Xn−i (x)F̄ϵn (x) +
1
k

k−1∑
j=1, j,i

p jF̄Xn− j (x)F̄ϵn (x) (11)

+
(
1 −

1 +
∑k−1

j=0, j,i p j

k

)
F̄Xn−k (x)F̄ϵn (x),

F̄(0i,p)
Xn

(x) =
p0

k
F̄ϵn (x) +

1
k

k−1∑
j=1, j,i

p jF̄Xn− j (x)F̄ϵn (x) (12)

+
(
1 −

∑k−1
j=0, j,i p j

k

)
F̄Xn−k (x)F̄ϵn (x),

F̄(1,p)
Xn

(x) =
1
k

F̄ϵn (x) +
1
k

k−1∑
j=1

p jF̄Xn− j (x)F̄ϵn (x) +
(
1 −

1 +
∑k−1

j=1 p j

k

)
F̄Xn−k (x)F̄ϵn (x),

F̄(0,p)
Xn

(x) =
1
k

k−1∑
j=1

p jF̄Xn− j (x)F̄ϵn (x) +
(
1 −

∑k−1
j=1 p j

k

)
F̄Xn−k (x)F̄ϵn (x),

with J denoting Jeffreys’ divergence.
Proof: By definition and from (2), for i = 1, ..., k − 1, we have

C̃I(pi) = E[CI(Pi)]

=
1
k2

∫ 1

0

{∫
F̄2
ϵn

(
F̄Xn−i (x) − F̄Xn−k (x)

)2

F̄Xn (x)
dx

}
dpi

=
1
k

∫
F̄ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

){ ∫ 1

0

1
k

F̄ϵn (x)
(
F̄Xn−i (x) − F̄Xn−k (x)

)
F̄Xn (x)

dpi

}
dx

=
1
k

∫
F̄ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

){
log

(
F̄Xn (x)

)∣∣∣1
0

}
dx

=
1
k

∫
F̄ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

)
log

{ F̄(1i,p)
Xn

(x)

F̄(0i,p)
Xn

(x)

}
dx. (13)

On the other hand, we have

F̄(1i,p)
Xn

(x) − F̄(1i,p)
Xn

(x) =
1
k

F̄ϵn (x)
(
F̄Xn−i (x) − F̄Xn−k (x)

)
. (14)
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Hence, by substituting (14) into (13), we obtain

C̃I(pi) =
1
k

∫
F̄ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

)
log

{ f(1i,θ)(x)
f(0i,θ)(x)

}
dx

=

∫ (
F̄(1i,p)

Xn
(x) − F̄(1i,p)

Xn
(x)

)
log

{ f(1i,θ)(x)
f(0i,θ)(x)

}
dx

= CRKL
(
F̄(1i,p)

Xn
, F̄(0i,p)

Xn

)
+ CRKL

(
F̄(0i,p)

Xn
, F̄(1i,p)

Xn

)
= J

(
F̄(0i,p)

Xn
, F̄(1i,p)

Xn

)
,

as required. The proof for i = 0 is similar.

Let us now consider the following general triangular prior for the parameter pi, i = 1, ..., k − 1:

πα(pi) =
{ 2pi

α , 0 < pi ≤ α,
2(1−pi)

1−α , α ≤ pi < 1,
(15)

for some α ∈ (0, 1).

Theorem 4.2. The Bayes-cumulative residual Fisher information for parameter pi, i = 1, ..., k − 1, with the general
triangular prior with density πα(pi) in (15), we have

C̃I(pi) =
2

α(1 − α)

[
αCRKL(F̄(1i,p)

Xn
, F̄αXn

) + (1 − α)CRKL(F̄(0i,p)
Xn
, F̄αXn

)
]

=
2

α(1 − α)

[
JCRE

(
F̄(0i,p)

Xn
, F̄(1i,p)

Xn
;α

)
+ αE(X1) + (1 − α)E(X0) − E(Xα)

]
,

where the variables X0 and X1 have the survival functions F̄(0i,p)
Xn

and F̄(1i,p)
Xn

, given in (12) and (11), respectively and
F̄αXn

(x) is the mixture survival function of the variable Xα, given by

F̄αXn
(x) = αF̄(1i,p)

Xn
(x) + (1 − α)F̄(0i,p)

Xn
(x)

=
p0

k
F̄ϵn (x) +

α
k

F̄Xn−i (x)F̄ϵn (x) +
1
k

k−1∑
j=1, j,i

p jF̄Xn− j (x)F̄ϵn (x)

+
[
1 −

1
k

(
α +

k−1∑
j=0, j,i

p j

)]
F̄Xn−k (x)F̄ϵn (x).
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Proof: For i = 1, ..., k − 1, we have

C̃I(pi) = E [CI(Pi)]

=

∫ α

0
CI(pi)παdpi +

∫ 1

α
CI(pi)παdpi

=
2

kα

∫
F̄2
ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

) 
∫ α

0

pi

k

(
F̄Xn−i (x) − F̄Xn−k (x)

)
F̄Xn (x)

dpi

 dx

+
2

k(1 − α)

∫
F̄2
ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

) 
∫ 1

α

1 − pi

k

(
F̄Xn−i (x) − F̄Xn−k (x)

)
F̄Xn (x)

dpi

 dx

=
2

kα

∫
∞

−∞

F̄ϵn (x)
(
F̄Xn−i (x) − F̄Xn−k (x)

) 
∫ α

0

(
1 −

F̄(0i,p)
Xn

(x)

F̄Xn (x)

)
dpi

 dx

−
2

k(1 − α)

∫
F̄ϵn (x)

(
F̄Xn−i (x) − F̄Xn−k (x)

) 
∫ α

0

(
1 −

F̄(1i,p)
Xn

(x)

F̄Xn (x)

)
dpi

 dx

= −
2
α

∫
F̄(0i,p)

Xn
(x) log

{ F̄αXn
(x)

F̄(0i,p)
Xn

(x)

}
dx +

2
1 − α

∫
F̄(1i,p)

Xn
(x) log

{ F̄(1i,p)
Xn

(x)

F̄αXn
(x)

}
dx

=
2

α(1 − α)

[
αCRKL(F̄(1i,p)

Xn
, F̄αXn

) + (1 − α)CRKL(F̄(0i,p)
Xn
, F̄αXn

)
]

=
2

α(1 − α)

[
JCRE

(
F̄(0i,p)

Xn
, F̄(1i,p)

Xn
(x);α

)
+ αE(X1) + (1 − α)E(X0) − E(Xα)

]
,

as required.
From (15), it is evident that by setting α = 1 and α = 0, we obtain Beta(2,1) and Beta(1,2) prior

distributions, respectively. The following corollary gives limiting cases of Theorem 4.2 with respect to α.

Corollary 4.3. From Theorem 4.2, for pi, i = 1, ..., k − 1, we have

(a) limα→1 C̃I(pi) = 2CRKL(F̄(0i,p)
Xn
, F̄(1i,p)

Xn
);

(b) limα→0 C̃I(pi) = 2CRKL(F̄(1i,p)
Xn
, F̄(0i,p)

Xn
).

Next, we show that the Bayes-CRF information measure of the Marshall-Olkin distribution is connected
to Gini’s mean difference.

Theorem 4.4. Let X have its SF as in (9). Then, the Bayes risk of CI(p) in (3.2), under Beta(3, 1) prior distribution
for the parameter p, is given by

E
[
CI(P)

]
=

3
4

GMD(S),

where GMD is Gini’s mean difference associated with X defined by

GMD(S) = 2
∫

S(x)(1 − S(x))dx.
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Proof: From (9) and (10), we have

E
[
CI(P)

]
=

∫ 1

0
CI(p) 3p2dp

= 3
∫ 1

0

∫
1
p2

S(x)(1 − S(x))2{
1 − (1 − p−1)(1 − S(x))

}3 dxdp

= 3
∫

S(x)
(
1 − S(x)

){ ∫ 1

0

1
p2

1 − S(x){
1 − (1 − p−1)(1 − S(x))

}3 dp
}
dx

= 3
∫

S(x)
(
1 − S(x)

){ ∫
∞

1

1 − S(x){
1 − (1 − u)(1 − S(x))

}3 du
}
dx

=
3
2

∫
S(x)

(
1 − S(x)

)
dx

=
3
4

GMD(S),

as required.

5. Concluding remarks

In this paper, we have considered a general autoregressive model of order k and Marshall-Olkin fam-
ily as its corresponding stationary equilibrium distribution and have derived their cumulative residual
Fisher information and Bayes-cumulative residual Fisher information. We have also examined the Fisher
information measure for the parameter of the Marshall-Olkin family as stationary equilibrium distribution
of the considered autoregressive model. We have shown that the cumulative residual Fisher informa-
tion of both these models is connected to the chi-square divergence. We have also studied the Bayes-
cumulative residual Fisher information for the mixing parameter of the autoregressive model and the
Marshall-Olkin distribution. These results provide connections between these two information measures
and some known informational measures such as chi-square divergence, Gini’s mean difference, cumulative
residual Kullback-Leibler, Jeffreys and Jensen-cumulative residual entropy divergence measures.
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