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Abstract. In this paper, we present new inequalities for log-convex functions, with some applications to

operator means. The significance of the obtained results is two folded; the results themselves and the way
they extend many known results in the literature.

1. Introduction and Preliminaries

Let B(H) denote the C*—algebra of all bounded linear operators on a complex Hilbert space H. An
operator A € B(H) is called positive, denoted by A > 0 if (Ax,x) > 0 for all x € H. The set of all positive
operators is denoted by B(H)™. The set of all invertible operators in B(H)* is denoted by B(H)™*. When H
is finite dimensional, we identify B(H) with the algebra M, of all n X n complex matrices.

A binary operation o : (A, B) € B(H)** x B(H)™ + AoB € B(H)** is called a connection if the following
conditions hold:

1. Monotonicity: A < C and B < D imply AoB < CoD, forall A,B,C,D € B(H)**.

2. Upper continuity: Ay | A and By | B imply AyoB; | AoB in the strong operator topology, for all
Ak, Bk,A,B € B(?’{)H'.

3. Transformer inequality: T*(AoB)T < (T*AT)o(T*BT) for every invertible operator T € B(H).

An operator mean is a normalized connection in the sense that
(4) Normalization: Iyoly = I3, where 14 is the identity operator on H.

Among the most important operator means there are the arithmetic, geometric, harmonic and power
means defined respectively for A, B € B(H)** and u € [0, 1], as follows:

AV,B:= (1 - WA + uB, Af,B := A1/2(A*1/ZBA’1/2)HA1/2, AlLB = ((1- WA +uB™) ! and

AfypuB = AV2((1 = I + p(AT2BATI2Y) AV p e R\(0),
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and
= 1 _ A12( p-172p =172\ 4172
Afo,uB = lim, At B = A P(AT12BATI2) A2,

Thus, the value p — 0 gives the geometric mean, while the values p = 1, —1 give the arithmetic and harmonic
means, respectively.
Fora,b >0, u €[0,1] and p € R the power maen is defined by

alty b = (ua? + (1 - w)b?))7 if p # 0,

and
afb := afo b = plii)noaﬁp,yb = atplH,

Further, the values p = 1, —1 give the arithmetic and harmonic means.
The harmonic-geometric-arithmetic mean inequalities state

alyb < af,b < av,b, 1)

for u € [0,1], with equality if and only if a = b, where a!,b = (ua™ + (1 — p)b™")"! and aV,b = pa + (1 — p)b.
Here the second inequality in (1) is the classical Young’s inequality.

Though simple, (1) has numerous applications in mathematical and operator inequalities. In particular, a
considerable amount of research has been done trying to refine (1). In particular F. Kittaneh and Y. Manasrah
[13] obtained the following interesting refinement of Young’s inequality

@b+ ro(Va = V) < pua + (1 - b, @

where 1y = min{y, 1 — u}. We refer the reader to [13] to see how this inequality was used to obtain some
operator inequalities that are refinements of some known inequalities back then.

In [4], H. Alzer et al. proved an important refinement of Young's inequality that happened to be better
than (2):

Theorem 1.1 (Alzer-Fonseca-Kovacec). Leta, b > 0and let A, u, v be real numbers withA > 1and0 <y <v < 1.
Then

(E>/\ B @V, b)* — (af,b)* B (1 - [J)/\
v/ T (@V,b) = (@bt TN —-v/

The significance of Theorem 1.1 is: when A = 1 and u = § or v = 1, then Theorem 1.1 retrieves (2). In fact,
Theorem 1.1 implies better estimates than the main result in [3], as one can see in [17, Subsection 2.4].
J. Liao and J. Wu [21] replicated Theorem 1.1 as follows.

Theorem 1.2 ([21]). Let a,b > 0 and let A, 1, v be real numbers with A > 1and 0 < u <v < 1. Then

(E)/\ B (@Vyb)! — (a!b)* - (l - y)/\
v/ T (aV,b)r = (al,b)r T N1 -v/

M. Khosravi [12] presented the inequalities between the arithmetic and power means as follows.

Theorem 1.3 ([12]). Leta,b > 0,p € (-1,1) and let p, v be real numbers with 0 < p < v < 1. Then

B (aVb) — (all,pb) - 1-
v (avvb)—(aﬁwb) ~1-

u
”

Interestingly, Theorems 1.1, 1.2 and 1.3 happened to be special cases of a more general result obtained by
M. Sababheh via convexity:
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Theorem 1.4 ([15]). Let f : [0,1] — [0, +00) be convex and let A, u, v be real numbers with A > 1and 0 < pu <
v < 1. Then
(B < WO+ A= G 1y
v/ T wf)+ A =v)fO)r - fA) TN =v)

The interested reader is referred to [1, 2, 5, 7-10, 13, 17, 18, 18-20] as a sample of recent progress related to
the above discussion.

The above inequalities have been used to obtain new bounds for operator means, trace, determinant,
singular values and norm inequalities of matrices. This summarizes part of their significance.

Our main goal in this paper is to find a new extended inequality for log-convex functions, that refine
the aforementioned results with applications to operator means and matrix inequalities.

2. Log-convex functions

In this section, we present our main new result for log-convex functions. First, we recall the arithmetic-
geometric mean inequality.

Lemma 2.1. Let n be a positive integer. Fork =1,2,...,n, let x, > 0 and let py > 0 satisfy Y.j_; px = 1. Then

n

H x;:k < i kX 3)
k=1

k=1
We need also the following two lemmas.

Lemma 2.2 ([9]). Let m be a positive integer and let u be a positive number, such that 0 < u < 1. Then

Y, (T)kuk(l — W) =my, (4)
k=1

and
m—1 m
Y, ( k)(m ~ R (1 = )" = m(1 - p), 5)
k=0

where (') is the binomial coefficient.

Lemma 2.3 ([11]). Let u and v be two positive numbers such that 0 < u <v < 1 and m be a positive integer.

1. For 0 < k < m, we have

yk(l - y)m_k - (%)mvk(l — )"k > 0.

2. If0 < pu < 3, then

(- —(1- v)m(g)m - (%)m > 0.

3. If 3 Su<v,then
Lym Hm
1-w"-1-v)"(=) =(1-=) =0.
A-w"--v(5) -(1-7) 2
Now we are ready to prove our main result about log-convex functions. Due to the delicate calculations,
we will present the results in multiple theorems. Also, we will present the significance of these results in
Remark 2.7 below.
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Theorem 2.4. Let f : [0,1] — [0, +00) be log-convex, 0 < u < v < 1 and m be a positive integer. If 0 < u < 3,
then

(ﬁ)m( FOVLFO)" - £"0) + (£) ' (£20) - FE )

(50 - FEOFE0) < (FOVLFO) = f ), (6)
where 1, = mm{ ( ) , (=" = (%)m<(1 V)" + 1)} >0.
Proof. Suppose that 0 < u < 7. We show that

(Favufo) - (&) (.o - 1) - (B)' (FF o - rf )

(O - FFOF D) = ().
We have the following identities

(FOvif©)" - (&) ((Faw.fon - 1)

-EY (0 - £ 0) (O - O e)
=Y ) (1= ") f0)

k= (
) (Z ( )vk(l —V R H0) - 1))
EY (@ + ) - 272 O )
(") + FEOFE0) - 2725 O )
(k)(‘uk(l _ [u)m—k _ (%)mvk(l _ v)m_k)fk(l)fm_k(())

-
-

=

=== () = () =)o
2AE) = r) PO )+ 2n fH O F T )

+

+
—_—~ =

3
N

1+

= UkXk,
k=0
where
fm(o), k= 0
) fOfR0), 1<k<m
YT PO, k=m+l
FEROf W), k=m+2
and

A== a=v(4) = (4) =rm k=0
(m)( (1 —pym* (—)mvk(l - v)’”’k), 1<k<m .
2(%)m ey k=m+1

27, k=m+2

Ui
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Lemma 2.3 implies that ux > 0 for all k € {0,1,...,m + 1,m + 2}. Further, direct calculations show that
m+2

Yo e =1.

Hence by Lemma 2.1, we get

(Fawvufo) - (&) (.o - f1o1) - (B)' (FF o - s o)
—r(f20) - FHOf )

m+2 m+2

= Y = [ = Far e £ po),
=0 k=0

where
a(m) = Z (T)k((uk(l _ u)m—k _ (%)mvk(l _ v)mfk)
k=1
= my-— mv(%)m (by Lemma 2.2),
m—1 m .
Bom) = Y ( k)(m — (k"1 - - (%) V(1 =)
k=1
+m((1 W' =(1- V)m(%)m - (%)m - rm)
R ) (s B
m—1
- L (’,f)(m — (et = = (BY ' -y
= m(l—p)—m(l- V)(%)m (by Lemma 2.2),
and
yom = Z(E) =)+ Zr=m(E)’
Consequently,

(Favafo) - (&) (.o - ro1) - (B) (70 - )
m m m 2 m
—ru(fE0) = FEOFF W) = (FOMMFOP 0 w)),

where a;(m) = p— v(%)m, Bim)=1-pu)—(1- v)(%)m and y1(m) = (%)m Under the condition 0 < u < 5, we
have a;(m), 1(m), y1(m) = 0 and a1 (m) + B1(m) + y1(m) = 1. Applying the log-convexity of f, we get

m
(Faym o ) @) = 1 (arm) +vya(m)) = F(w).
This completes the proof of the theorem. [

Now we present the other version of Theorem 2.4 for the values § < u <v.



M. A. Ighachane et al. / Filomat 37:13 (2023), 4425-4441 4430

Theorem 2.5. Let f : [0,1] — [0, +o0) be log-convex, 0 < u < v < 1 and m be a positive number. If 5 < u <v,
then

E)' (v sor - o)+ (1-£) (0 - o)
Frafiw) - FLOfE )
<(FOVf©) - W), 7)
where r,, = min {2(1 - %)m,(g)m - (1 - %)m} > 0.

Proof. Suppose that 5§ < u < v. We show that

(Fwuf@)" - (E) (Fawuror” - ) - (1= £Y' (50 - £ )
(A0 - O W) =
We have the following identities
(Fwafo) = (&) (Fawasoyr - o) - (1= £)' (720 - 2 09)
—rlF20) - FHOFH0))
Z( )u (1= " *F@FH0)
k=0
-
-

m

EY(Y (1 ra - ottt - o)

k=0
1-EY (7@ + ) - 272 02 )
— 70+ FEOFE0) - 2£ ) 0)

(m)(#"(l " = (B) v - vy i)

I}
+ »MS

+
—_ Y =

1w = a-v"(5) - (1-5))0

(
E)-(-5) -r)rw
2(1—%)n1—rm)f (V) f2(0) + 21, f2 1 (1)f1(0)

+

3
w

+

= UkXk,
=0

=~

where

£™(0), k=0
) fm*0), 1<k<m
X = (), k=m+1

FEOF ), k=m+2
f%+%(v)f%(0), k=m+3

and
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Q- -a-n"(E)" = (1-4)", k=0
(k1 = py* (—)mvk(l k), 1<k<m

fi = G)—(—%y—mﬂ k=m+1 -
2( —%)m—rm, k=m+2
2V, k=m+3

Lemma 2.3 implies that
e > 0forallk €{0,1,...,m+2,m + 3}. Further Y} 1 = 1.
Hence by Lemma 2.1, we get

(Fvufo) - (&) (Faw.ror - f169) - (1= )" (20 - £ 00
~ (2 0) - FE O )

m+3 m+3

= Z kX = H xl’:" = f(1)2 F0)Pm prim(yy,
k=0 k=0

where
a(m) = ) (’Z)k(uka = (B - v
k=1
= my-— mv(%)m (by Lemma 2.2),
m=1
o = Y (o=l - - (5) )
k=0
—m(l - E)m + %(2(1 - %)m - rm) + %rm
m=1
= ) ( k)(m — B -y = (B) -y
= ml-p)-m(l- v)( ) (by Lemma 2.2)
and
v = (5) (1= E)" ) o) ) = ()
So,

(Fvufo) - (&) (Faw.ror” - f169) - (1= )" (720 - £ 00
m+3

m m m 2 1
_ Vm(ff(V) _ fI(O)fI(V)) > Hx!k _ (f(l)‘“(m £(0) ﬁl(m)fyl(m v))
k=0
where ai(m) = p— v(%)m, prm)y=1-pw-Q1- v)( ) and y1(m) = ( ) . Under the condition § < u <v, we
have aq(m), p1(m), y1(m) = 0 and a;(m) + p1(m) + y1(m) = 1. Applying the log-convexity of the function f,
we get

(f(l)al(m)f(o)ﬁl(m)f)’l(m)(v)) > fm(()(1 (m) + V)/l(m)) = "(u).
This completes the proof of the theorem. [
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As a consequence of Theorems 2.4 and 2.5 we present the following result.

Theorem 2.6. Let f : [0,1] — [0, +00) be log-convex, 0 < p < v < 1 and m be a positive number.

1+u
1. Ifu<v<—-, then

(=) (m o - )+ (- 1) (- s )
(P2 - FHOf @)
<(fV,£©)" - f), N

where r,, = min {2( - 1;V)m,(ﬂ)m - (1 — 1;1/)"1} > 0.

1-p 1-p
2. If 5t <v <1, then

(1= ;)m(u(lwﬂﬂo»m - () + (= ;)”‘( £ - FEw)
(£ - FHOF )

<(FV.£©)" - f"), 9)

where r,, = min{Z(%_;Z)m,v’” - (ﬁ)m(ym + 1)} >0.

1+u
Proof. 1.1f0 < u <v <1, then wehave 0 <1-v <1-yu < 1. Suppose that u < v < —-, then

PTH <1-v <1~ pu. So by changing f(x), p and v by f(1 —x), 1 —v and 1 — y, respectively in the
inequality (7), the desired inequality (8) is obtained.

2. Suppose that HT“ <v<l,then0<1-v< % So by changing f(x), p and v by f(1 —x), 1 —v and
1 -y, respectively in the inequality (6), the desired inequality (9) is obtained.
0

Remark 2.7. Before proceeding to further results, we explain a little about the relation between Theorems 2.4, 2.5,
2.6 and Theorem 1.4.

Notice that the first inequality in Theorem 1.4 can be written as

(E) o) - 76)] < (FOVf0) - @0 < p<vsim =12, (10)
while the second inequality in the same theorem can be stated as
" m 1- [ " m m

(FOVLf0) - f"(w) < (1 _V) [FOVLfO)" - fr 00 sp<v<Lm=1,2--. (11)

Consequently, Theorems 2.4 and 2.5 present two refining terms of (10), while Theorem 2.6 presents two refining
terms of (11).
Consequently the three Theorems 2.4, 2.5 and 2.6 give a considerable refinement of Theorem 1.4.

Howewver, it should be noted that these refinements have been shown for integer powers m, and for log-convex
functions.
We also notice that the assumption f being log-convex was essential in the proof.

Since Theorem 1.4 was a generalization of the results in [3, 4, 12, 21], it follows that our results in this section
provide better new estimates than the results in these references. This is the main significance of our results. In the
next sections, we present explicit examples of refined inequalities for both scalars and operators.
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3. Scalar inequalities

When a,b > 0 and p € (—o0,0) the function f(x) = af, b = (xa” + (1 - x)bp)rl’ is log-convex. Applying
Theorems 2.4, 2.5 and 2.6, we obtain the following new bounds for the difference between the arithmetic
and power means.

Corollary 3.1. Leta,b> 0,0 < u <v <1, m be a positive integer and p € (—o0,0).

1. If0 < u <5, then

m

(5)" (@ -ty + (5)(0% = @) ) 4 0% = 0¥ a8 )%)
S(anb)m - (aﬁp,yb)m, W)

where 1, = min {2(§)m, 1-wm - (%)m((l -+ 1)}
2. If 5 < u<v,then

(5Y (@ = @ty + (1= £ (0% - @8,

- A2
+ rm((aﬁp,vb)j - bz(”ﬁp,vb)z)
<(av,b)" - (athyub) ", (13)

v

where 1, = min{Z(l - %)m, (ﬂ)m - (1 - %)m}
3. Ifusv< 1+T“,then

1-v

) (@V,b)" ~ @aty,b)") + (1 - =

(= )" (0% - @ty

m

m m m\2
+ rm((“ﬁp,yb) > —at (aﬁp,yb) 4 )

<(av,b)" ~ (aty,0) ", (14)
where 1, = min {2( - %_;;)m,(}_;}‘j)m - (1 - %_;;)m}

4. Ij’%ﬁvsl,then

(22 (@9, - ) (A2 (0 — )
+ rm(ﬁ - a%(aﬁp,pb)%)z
<(aV.b)" ~ (atb) 15)

where 1, = min {2(%%;)711,1/’” - (ﬁ)m(ym + 1)}

If we let p — 0 in Corollary 3.1, we get the following bounds for the difference between the arithmetic and
geometric means obtained in [11].

Corollary 3.2. Leta,b>0,0 < u <v < 1and m be a positive integer.
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1. If0 < u <3, then

(%)m((avvb)m - (llﬁvb)m) + (%)m(b% — (gﬂvb)%)z + rm(b% _ b%(aﬁvb)%)z
<(a,b)" = (at) " (16)
where 1y, = min {2(%)’”1 (1 - )" - (%)m((l V)4 1)}
2. If 5 <u <v,then
(EY (@v.by - @) + (1= £)' (0% - @)
+ rm((aﬁvb)% _ b%(ﬂﬁub)%)Z
S(ﬂv‘ub)m - (aﬁpb)m, W)
where t,, = min{z(l _ g)m’(%)m _( B %)m}
3. Ifu<v< B then

1-v

) (@) - @)+ (1- 1

= e - )

m m m\2
+ (@ b)¥ - a% (afub) )
<(av,b)" — (atib)", (18)

where 1, = min {2(1 - %_;;j)mr (}_;Z)m - (1 - 11)’"}

4. I}‘#Svsl,then

(=) (@5, = ) + (G) o - ahr?)
+ rm(a% - a%(aﬁyb)%)z
<(avib) = (at)", (19)

where 1, = min {Z(L;;)m,v"’ - (}_;;:)m(ym + 1)}

On the other hand, letting p = —1 in Corollary 3.1, we have the following bounds for the difference between
the arithmetic and harmonic means. This provides new refinements and reverses for this difference.

Corollary 3.3. Leta,b > 0,0 < u <v < 1and m be a positive integer.
1. fo<u< %,then
(E)" (@b - @by) + ()" (6% - @®) + (0% - ¥ @)%Y
<(av,b)" ~ (aud)", (20)

where 1, = min {2(§)m, 1-wm- (%)m((l —-v)" + 1)}
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2. If 5 < u<v,then

m

(%)m((avvb)’” — (alb)") + (1~ g) (v% - @bt
+ (@) — b%(a!vb)%)2
s(avyb)m - (a!yb)

where 1, = min{Z(l - %)m,(%)m - ( - %)m}
3. Ifu<v< S, then

m
7

q—;;)m((“v“b)m - (@)") + (1 - ;:Dm(ﬂ ~(ah)f)
+ rm((alyb)% — ”%(Fl!yb)%)z
<(av,b)" —(ab)",

where 1, = min {2( - 1;")m,(}_;")m - (1 - 1‘—")m}

1-u #
1+u
4. If 5~ <v <1, then

1-v
(1=
ry(at —at @ bt)

S(aVVb)m - (a!vb)m,

)m((avf‘b)m - (”!ub)m) + (i : :)m(m - (a!hb)%)2

where 1, = min {2(%%;)m,vm - (ﬁ)m(ym + 1)}

4. Inequalities for operators

4435

(21)

(22)

(23)

In this section, we present operator versions of the above scalar inequalities. The following lemma is

essential in this regard.

Lemma 4.1 ([14, p. 3D. Let T € B(H) be self-adjoint. If f and g are both continuous real valued functions with

f(t) = g(t) for t € Sp(T) (where the sign Sp(T) denotes the spectrum of T), then f(T) > g(T).

The following theorem presents the operator version of Theorems 2.4, 2.5 and 2.6, providing new refinements

and reverses for the difference between operator arithmetic and power means.

Theorem 4.2. Let A,B € B(H)™,0 < u <v < 1and let m be a positive integer.

1. If0 < u < 5, then

‘U m
(5) (At (AV.B) ~ Ab(AL;,B))

By _
+(5) (A + ABn(AH,B) - 2485 (A4,,B))

+ (A + Afz (At B) — 2482 (A, B))
< Aﬁm(Aqu) - Aﬁm(Aﬁp,yB)/

where 1, = min {2(§)m, 1-wm- (%)m((l —-v)" + 1)}

(24)
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2. If 5 < u<v,then
‘Ll m
(5) (Afn(AV.B) — Atiu(Al,,B))
+(1- %) (A + Afu(Al,B) - 24t (A4,B))

+ Fu( A (Al B) + Al (Al B) — 2482 (A, B))
< Aﬁm(AvyB) - Aﬁm(Aﬁp,yB)r (25)
where r,, = min {2(1 - %)m, (ﬁ)m - (1 - E)m}.

v v
1+p
3. Ifu<v<—-,then

(1) (A8 A,) - At A,B)
(1= 1) (B + A (48,B) - 2485 BIA™ Ao (4,5)
+ Fu( Afn(All, . B) + (A2 B)A™  (Afly (Al uB)) — 2(AHl2 B)A™ (At (AH}, . B)))
< A#u(AV,B) — At (At B), 26)

where r,, = min {2( - %_;Z)m,(}_;;j)m - (1 - %—;;Vi)m}
4. IF B <v <1, then

(= 1) (A8 (AV,B) = Atn(48,)

+ (AthuB + Alu(At,uB) — 2(Ay B)A™ Aty (Af},,B))

+ 1 AhuB + (A B)A™ (A2 (Al uB)) — 2(Afla B)A™ (A2 (Al .B)))
< Afu(AV,B) = Al (Al,,B), (27)

where r,, = min {2(%_;;)"1,1/" - (ﬁ)m(y’" + 1)}

Proof. We prove the first inequality. The other inequalities can be shown similarly. Let b = 1 in inequality
(12). Then

(%)m((va FA-W)" -+ (1))

(5),11(1 +a” + (1 —v)r —2(va’ + (1 - V))%)

+

+

ru(1+ (va? + (1 =) = 2(va? + (1 - v))¥)
(ua+ (1= )" = (pa” + (1 - w)» (28)

Since the operator C = A7BA7 hasa positive spectrum, Lemma 4.1 and inequality (28) imply

IA

(E>m((vc + (1 - V)I)m — (VCP + (1 _ V)I)%’)
v
(%)m(l +(WCP+ (1 - V)I)% —2(0C* + (1 —V)I)%)
ru(I+ (O + (L =D ¥ - 200 + (1 - )D¥)
(UC+ (1= D" = (uC + (1= D). 29)

+

+

IN
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Finally, multiplying inequality (29) by Az on the left and right sides, we get

(%)’“(Aﬁm(Ava) — Al (AH},,B))

+(5) (A + Atu(At, B) - 2485 (A%,.B))
+ (A + Ally (AR, B) - 2445 (A4,,B))
< An(AV,B) — Al (Al .B),

O
If we let p — 0 in Theorem 4.2, we get the following result obtained in [11].
Theorem 4.3. Let A,B € B(H)™,0 < u <v < 1and let m be a positive integer.

1. If0<u <3, then
u

(%)m(Aﬁm(AVVB) ~ AthB) + (;)m(A + At B - 2AH:B)

+ rm(A + A B - 2Aﬂ%B)
= Aﬁm(AvHB) - AﬁmyB/

where 1, = min {2(§)m, 1-wm - (%)m((l -+ 1)}
2. If 5 < u<v,then

m

( % )" (Au(AV,B) — Aty,B) + (1 - %) (A + At B — 248 B)

+ Tm(AﬁmvB + Aﬂ%B - Mﬁ%+%3)
< Aﬂm(AvyB) - Aﬁm;LB/

where r,, = min {2( - %)m,(ﬁ)m —( - E)m}.

v v
Lop

3. Ifu<v<—-, then

1—vy\m 1-
(1= ;) (At (AV,B) = AB) + (1 - 1 d

+ P AfuB + Afly 2 B — 248, . B)
< Aﬂm(AVVB) - AﬁmvB/

where 1, = min {2(1 - }_;;)m, (%%;)m - (1 - %_;;:)m}
4. If% <v <1, then
1-
(=
+ (A + Ay B — 2AH . B)
< Aﬁm(Ava) - AﬁmvB;

where r,, = min {Z(ﬁ)m,vm - (%_;;)m(ym + 1)}

)m(AjimB + AfyuB — ZAﬁ%%B)

m )m(Aﬂm(AVyB) — AfwyB) + (;_;;)M(AﬂmB + AflyB — 248y, m B)

4437

(30)

(31)

(32)

(33)
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If we take p = —1 in Theorem 4.2, we get the following theorem
Theorem 4.4. Let A,B € B(H)™,0 < u <v < 1and let m be a positive integer.

1. If0 < pu < 5, then

(EY' (Atw(AV.B) - A (ALB)

+ (%)W(A + At (ALB) - 2445 (AL,B))
+ (A + Atz (Al,B) - 2A82 (AL,B))
< Aﬁm(AvyB) - Aﬁm(A!pB)/
where r,, = min {2(§)m, (1-pym - (%)m((l —V)" + 1)}
2. If 3 S u<v,then
‘Ll m
(;) (Aﬂm(Ava) - Aﬁm(A!vB))

+(1- %)M(A + Afu(ALB) - 244 (AL,B))

+ T Aflu(ALB) + Ay (AL,B) - 2Aﬂ%n(A!vB))
< Aﬁm(AvyB) - Aﬁm(A!yB)r

where ¥, = min {2(1 - %)m, (ﬁ)m - (1 - E)nl}.

v v

1+u
3. Ifu<v< -, then

(i : :)nl(Aﬁnl(AvyB) - Aﬁm(A!yB))

1-v
T-u

+(1- )m(Aj:th + Afn(A1,B) - 2(Ay B)A™ Atz (A1,B))

+ 1 Altu(AluB) + (A3 BYA™ (Al (A!,B)) — 2(As BYA™ (Al (A1,B)))

< Atn(AV,B) — Al (Al B),

where 1, = min {2( - %_;;)ml(%_;z)m - (1 - 1__V)m}
4. IF B8 < v <1, then

(i - ;)M(Aﬁm(AVpB) — An(A1,B))

+ (AthuB + Atn(Al,B) - 2(Ay B)A™ Aty (A1,B))

+ 1u(AfuB + (A BIA™ (A5 (A1,B) — 2(Af DA™ (Afl2 (AL,B))

< A#,(AV,B) — A, (A!,B),
where 1, = min {Z(L;;)m,vm - (}_;;:)m(y"’ + 1)}

5. Some matrix inequalities

4438

(34)

(35)

(36)

(37)

In this part of the paper, by selecting some appropriate log-convex functions, we obtain multiple term

refinements of some results in the literature, related to matrices.
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Let M,, be the algebra of all complex matrices of order n X n and let M;;* be the class of positive definite
matrices in M,,. On My, a unitarily invariant norm |||.||| is a matrix norm that satisfies the invariance property
IIUAV|I| = [lIAlll for every A € M,, and for all unitary matrices U, V € M,,.

The classical Young inequality aff,b < aV,b has been extended to matrices as follows

IA*XB' Il < ulllAXIl| + (1 = wIIXBII,0 < u <1, (38)

for A,B € M;; and X € M,,, where |||.]|| is a unitarily invariant norm.
It is known that when A, B € M;* and X € M, the function f(v) = [[J[A"XB'™||| is log-convex on [0, 1],
(see [16]) for any unitarily invariant norm [||.||| on M,,. Then by using Theorems 2.4, 2.5 and 2.6, we obtain

the following new result refining and reversing (38). This extends the corresponding results in [15].
Theorem 5.1. Let A,Be M;*, X € M,,and 0 < u <v < 1. Then for all positive integer m,

1. If0 < u <3, then

ﬁm m _ v 1-vym
() (WAXIIVLIIXBIY™ = (IA"XB'1I)")
m m
+(§) (IXBIIE = A XBI% )
n n v 1-vi 2 2
+rn(IIXBIIE = I1XBIIF 1A”XB~|||¥ )
<(ulAXI+ @ = wIIXBI) - - (IA*XB#])) ", (39)

where 1, = mm{ ( ) S (=) - (%)m((l —V)" + 1)}
2. If 5 < u<v,then

(%)m(<|||AX|||vv|||XB|||>’" — (IIA"XB*"[I)™)
+(1- Y (e - pparxst )
(1A XBIV 1% — JIXBINE 1A XBF)
<(uMAXIN + (1 - wIIXBI) "~ (IA*XB™# )", (40)

where 7, = min {2( - %)m,(%)m - (1 - %)m}

3. Ify<v< £, then

(1= Z)m(<|||AX|||v},|||XB|||)"’ ~ (IlA*XB'||)")

1-v m
— IIAE X B+
H1- 1= #) (Axi® - aexB-#)’
m m m 2
+rn(IIAFXBIH|1% = I AXII% | A* XB ¥ )

<(VIIAXII + (1 = WIIXBI) "~ (IA*XB™11)", (41)

where 1, = min{Z(l — 1;V)m’(%_;;j)m 3 (1 _ 1;1/)711}‘
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4. I]‘%Svsl,then

(;_;Z)'"((|||AX|||V},|||XB|||)m — (IA*XB#ly")
+<; : ;)m(IIIAXHﬁ - |||A“)<Bl—#|||%)2

m m _ m 2

+rn(IIAXINE = AXI¥(llA#XB!#|F)
m v 1—v m
<(vIlAXII+ @ = IXBII) - (A" XBI) 42)

where 1, = min{Z(%_;;)m,vm - (1_;")’"([,1’” + 1)}

It is known that when A, B € M the function f(v) = tr(A"B'™") is log-convex on [0, 1], (see [16]). Then
by using Theorems 2.4, 2.5 and 2.6, we obtain the following new trace inequalities, refining and reversing
the corresponding results in the literature.

Theorem 5.2. Let A,B € M;" and 0 < u <v < 1. Then for all positive integer m,
1. If0 < u <3, then

<%)m((tr(‘4)vvtr(3>)’” ~ (tr(A"B)™)
+<%)m(tr(3)% - tT’(AVBl—V)%)Z

m m m 2
+rm(tr(B)7 - tr(B)?tr(AVBl‘V)f)
m

<(tr(uA + (1~ wB))" ~ (1r(A*BH)) (43)

where 7 = min {2(§)m’ 1 —w" - (%)m((l -v)" + 1)}
2. If53 <u<v,then
<%)m((tr(AWW<B>>’" — (tr(A"B'™))")

H1= 5 (6®) - rarp )
(A B — () r(A"B)E)

<(tr(uA + (1~ wB))" ~ (1r(A*B')) (44)

where 1,, = min {2(1 - %)m, (%)m - (1 - E)m}.

v
1+u
3. Ifu<v<—-, then

(; : ;:)m((tr(A)Vytr(B))m — (tT(A“Bl_#))m)

+(1 - i:;)m(tr(A)’é‘ - tr(AyBl_H)%)z

2
+rm(tr(A“Bl‘“)% - tr(A)%tr(Af‘Bl‘#)%)
<(rva + 1 -1)B)" - (ra"B)", us)

where 1, = min {2(1 - ﬁ)m' (}_;Z)m - (1 - 1;1’)”1}.
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4. I]‘%Svsl,then

q—;:)m((tr(‘q)vytr@))m - (tr(APBl—#))m)
+<; - :l)m(”(A)% - tr(A*‘Bl—#)%)z

m m m 2
+ru(tr(A)E = tr(A) T tr(AFBIH))
m

<(trvA+ (1 -vB)) ~ (1r(A'B")) (46)

where r,, = min {2(%_;;)"1,1/" - (ﬁ)m(lf" + 1)}
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