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Abstract. In this paper, we study the well-posedness and the asymptotic behavior of a one-dimensional
von Karman beam is coupled to a thermal effect and frictional damping with distributed delay and past

history. We first give the well-posedness of the system by using the semigroup theory. Then, we establish
a decay result by introducing a suitable Lyapunov functionals.

1. Introduction

In this article, we study the full von Kdrmdan beam is coupled to a thermal effect and frictional damping
with distributed delay and past history, the system is written as

Wyt — dl [(ux + % (wx)z) wx]x + d2wxxxx + 6wt =0,

= dy [t + 3 @]+ 7O+ s+ [ o (O (x,t = 0 dT =0, 1)
O — 604 + L0 + yuy + j;)m g(8) Oxx (x,t—5)ds =0,

in (0,1) x (0, +o0), with initial data and boundary conditions

u(x,0) = ug (x), ur (x,0) = u3 (x), x€(0,1),

w (xr O) = wo (X), Wy (x/ 0) = w1 (x) ’ X € (Or 1)/

O(x,—1)=6p(x), 6:(x,0)=061(x), (x,1) € (0,1) X (0, +00), @)
Uy (x/ _t) = fO (x/ t) s (X, t) € (O/ 1) X (0/ TZ)/

u(0,t) =w(0,t) = 6, (0,t) = wy (0,
1 t):wx 7

=0, te(0, +),
u(l,t)=w(,t) =06,(1, )=0,

t € (0, +00),

where w the transversal displacement, u is the longitudinal displacement, 0 is the temperature difference,
and the coefficients di, dp, 6, v, £ and u; are positive constant coefficients. Moreover, 7; and 7, are
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two real numbers with 0 < 71 < 73, and p» : [11,72] — R is a bounded function. The initial data
(1o, U1, wo, w1, By, 61, fo) are assumed to belong to a suitable functional space.

Here, we prove the well-posedness and stability results for problem on the following parameter, under
the assumption

> f |w @] dC, ©)

and the relaxation function g satisfies the following assumptions:
(GD: g:R* — R" isa C! function satisfying

g(0)>0, 6—f g(s)ds=06-g0>0.
0
(G2): There exists a positive nonincreasing differentiable function & : R* — R satisfying

g <=&EMBgt), t=0.

System (1) arises in the theory of the transverse of the beam. As we know, many structures in several fields
of engineering are formed by a single or a large number of beams. There are different models for these
beams depending on their nature and kinds of vibrations they are subject to. A widely accepted dynamical
model describing large deflections of thin plates is the von Karman system of equations. In [19], Lagnese
and Lions studied the controllability and stabilization of the following von Karman system:

52 0
PAN (x, 1) + 32 (EInxs (x, 1) = = (P (x,t) nx (x, 1)) =0,
pAp (6, 1) = 5-P (x, 1) = 0,

where 0 < x < L, t > 0, with appropriate boundary conditions and initial data and

P(x,t) = EA (yx (b + %ni (x, t)).

Here 1 (x,t), u (x,t) and P (x, t) are the transverse displacement of a generic point, the longitudinal displace-
ment of a generic point and the axial tension, respectively. pA the weight per unit length, EI the beam
stiffness or flexural rigidity, E Young’s modulus, A the cross-sectional area of the beam, and L is the beam
length. There is a large literature on this model, when several authors considered problems of existence,
uniqueness and asymptotic behaviour in time (when some damping effect is considered) as well as some
other important properties (see [2—4, 9, 10, 20-23, 25] and the references therein). Djebabla and Tatar [9] con-
sidered the following one-dimensional full von Karman beam by coupling the system with thermal effect
according to the theory of Green and Naghdi’s [12-14] and frictional damping for the other component:

uy — D [ux + % (wx)z]x + Vetx =0,
wy + Kywy — Dy [(ux + % (wx)Z) wx]x + DaWyxrx =0, (4)
6” - fexx + KZGt + YUy = 0,

in Q X (0, +o0), where Q = [0,L] and Kj, Ky, D1, D,, £ and y are positive constants, with the boundary
conditions and the initial data

u=0 w=0 6,=0, w,=0,
M(O, ) = Up, Ut (Or ) = ulrw(or ) = Wop, W (0/ ) = w1,
9(01-)290/ Qt(()/-)zel'

x=0,L, t>0,
®)

For the above full von Kdrmén system, they used the energy method to prove an exponential decay result.
Moreover, Liu, W. et al. [23] considered the asymptotic behavior for a one-dimensional non-autonomous
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full von Karman beam with a thermo-viscoelastic damping in the internal feedback. By introducing a
suitable energy and some Lyapunov functionals, under some restrictions on the non-autonomous functions
and the relaxation function, they obtained the asymptotic behavior of the solution and established a general
decay result for the energy.

Delay effects arise in many applications and practical problems, and it has attracted lots of attentions
from researchers in diverse elds. In recent years, the stability of evolution systems with time delay effects
has become an active area of research (e.g. [1-3, 5, 18, 22, 27, 28]). It may not only destabilize a system
which is asymptotically stable in the absence of delay but may also lead to ill-posedness (see [8, 31] and
the references therein). Therefore, the stability issue of systems with delay is of theoretical and practical
great importance. Nicaise and Pignotti [28] considered wave equation with linear frictional damping and
internal distributed delay

utt—Au+y1ut+a(x)f ta (s)us (t —s)ds =0,

in QO % (0, 00), with initial and mixed Dirichlet-Neumann boundary conditions and a is a function chosen in
an appropriate space. They established exponential stability of the solution under the assumption that

”a”oof Uz (S) ds < 1.

The authors also obtained the same result when the distributed delay acted on the part of the boundary.
Recently, Bouzettouta and Djebabla [6] considered the system is coupled to a heat equation modeling an
expectedly dissipative effect with distributed delay, which has the form

wy —di [(”x + % (wx)Z) wx]x + doWrxr + mwy + f;z Uz (s)we (x,t —s)ds =0,

uy —di [ux + % (wx)z]x +00k =0, (6)
O + gy + 6uy =0,

g +yq+0,=0,

in Q X (0, o0), where Q) = [0, L], the authors studied the well-posedness by using the semigroup theory,
and they showed that this system is exponentially stable by using the appropriated multiplies and energy
method to build an equivalent Lyapunov functional.

The issue of existence and stability of systems with past history has attracted a great deal of attention in
the last decades. Rivera and Ferndndez [26] considered a Timoshenko-type system with a past history of
the form

{ pru = K(px + ), =0,
P2 — bhy + fo g(8) Yux (t—s,.)ds + K(px + ), =0,

and showed that the dissipation given by the history term is strong enough to stabilize the system expo-
nentially if and only if the wave speeds are equal (5—1 = %). Jianghao and Fei [17] considered a Timoshenko

system of thermoelasticity of type IIl with past history and distributive delay of the form

Pl(Ptt - k((Px + 1)D)Jc + ﬁetx = Oo/o (xr t) € (0/ 1) X (0/ OO)/

P2ty — by + k(px + ¢) + fo g(s) Yxx (x,t =s)ds — BO + f () =0, (x, 1) € (0,1) X (0, c0),
P304 = 80x = LOpux + Y i + yhr = [ 1 (0) Opx (x, £ = O dC = 0, (x,) € (0,1) X (0, 00),

@ (x,0) = @o (x), ¢ (x,0) = @1 (x), 0 (x,0) = 6o (x), x €(0,1),

0t (x,0) = 61 (x), ¢t (x,0) = 91 (x), x € (0, 1),

Y (x,—t) = o (x, 1), (x,1) € (0,1) x (0, 0),
p0,H=p1,H)=0(0,)=91,8)=0(0,t)=0(1,1t =0, t € (0,0),

O (x, —1) = fo (x, ), (x,1) € (0,1) X (0, 72),
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they established the well-posedness and the stability of the system for the cases of equal and nonequal
speeds of wave propagation respectively. And, they obtained that the damping effect is strong enough to
uniformly stabilize the system even in the presence of time delay under suitable conditions and improve
the related results. Gang et al. [11] considered a transmission problem in the presence of history and delay
terms. They proved well posedness by using the semigroup theory, under appropriate hypothesis on the
relaxation function and the relationship between the weight of the damping and the weight of the delay.
Also they established a decay result by introducing a suitable Lyaponov functional. (For other past history
problems, see [15, 16, 24, 30, 32] and the references therein).

Motivated by the above results, in the present work, we study the well-posedness and asymptotic
behaviour of solutions for (1)-(2). By using semigroup theory, we prove the existence and uniqueness of
the solution. By using the perturbed energy method and construct some Lyapunov functionals, we then
obtain the decay result.

The paper is organized as follows, In Section 2, we prove the well-posedness of the problem (1)-(2). In
Section 3, we prove that the system is decay result.

2. Well-posedness of the problem

In this section, we give a brief idea about the existence and uniqueness of solutions for (1)-(2) using the
semigroup theory [29]. We introduce as in [28] the new variable

z(x,p,C, ) =us (x,t = Cp), x€(0,1), p€(0,1), Ce(11,712), t> 0.
Then, we have

Czi(x, p,C, 1) + 2p(x, p,C,t) =0, x€(0,1), p€(0,1), C€(11,72), t > 0. (7)
Following the ideal in [7], we set

n'(x,s) = O(x, t) — O(x,t —s), (x,t,5) € (0,1) x R* x R". (8)
Hence, we obtain the following equation

ni(x,s) + nk(x,8) = O4(x, 1), (x,t,5) € (0,1) x Rt x R*.
Therefore, problem (1) takes the form

wy — dy [(”x + % (wx)z) wx:lx + doWyyxr + 6wy =0,
s = [t + 3 0], + 7O + g+ [17 02 Q201,80 =0, ©)
Gtt - 69xx + f@t + Vutx + goexx (x/ t) - j(; 9 (S) nix(x/ S)dS = 0,

with the initial data and boundary conditions

u(x,0) =ug(x), u(x,0) =u (x), x€(0,1),

w(x,0) = wp (x), wy (x,0) = wy (x), x€(0,1),

0 (x/ _t) = 90 (X) s Gt (X, 0) = 91 (X) s (x, t) € (0/ 1) X (0/ OO) ’

Uy (X, _t) = fO (x/ t) ’ (xr t) € (O/ 1) X (0/ TZ)/

u(,t)=w(0,t) = 6,(0,t) =w, (0,£) =0, te€(0,00),

u(l,t)y=w(,t)=06,1,t) =w,(1,£) =0, te(0,00), (10)
z(x,0,t,0) = u; (x,1), (x,t,0) € (0,1) X (0, 0) X (11, T2),

z(x,p,0,0) = fo(x,pC), (x,p,0) €(0,1) x(0,1) X (71, 72),

n'0,s) = 1'(1,8) = 0, (t,5) e R* x R,

n'(x,0) =0, (x,t) € (0,1) x RT,

n°(x,s) = 10(s), (x,5) € (0,1) x R*.
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T
If we set U = (w, wy, u,us, 6, 64,2, rf)T , then o,U = (wt, Wy, Us, U, O, O, 24, ni) .
Therefore, problem (9)-(10) can be written as

ou=AU+F (U), 1)
u(o) = UO = (w()/ w1, Uo, U1, 60/ 61/ fOr T]O)T/

with the linear problem

U (0) = Uy = (wo, wn, uo, 1, 09, 61, fo, )7,

where the operator A is defined by

w Wy
Wy _d2wxxxx - 6wt
u Ut
T2
al |- dittyx = YO — e = [ 12 (0 2(x, 1, €, HdC , 13
O
6; 8Osy — €0y — Yty — goOsx + [ 9 (5) ' (x, 9)ds
Z _C—lz
t P
N O — 1
and
0
w
wt dl [(”x + % (wx)z) wx]x
u djl [(wx)z]x
U _ 0
7l o |= X : (14)
0; 0
z 0
n 0
Next, we define the energy space as
H = H?(0,1)xL*(0,1) x Hy (0,1) x L*(0,1) x H! (0,1) x L*(0,1) X L* ((0, 1) x (0, 1) X (11, 72))
XL (]R*, H!(0,1)),
where
HI(0,1) = {peH (0,1):¢x(0) = (1) =0},
H2(0,1) = {$peH*(0,1):¢(0) = (1) = s (0) = ¢, (1) =0},

and L; (]RJ',H;,l (0, 1)) denotes the Hilbert space of H!—valued functions on R*, endowed with the inner
product

1 0o
P sgeeston = [ [ 966 a9 dsi.

For any U = (w,wy, u, u, 0,04, z, nt)T eH, U= (Z~U, %,i%,é@, z, ﬁt)T € H and for u; > f: |y2 (C)'dC, we
equip H with the inner product defined by

1
(wuy,, = f [l; + W,T0; + 6:0; + 66,05 + dittyTi — 06,65 + Ao Wi Jdx

0
1 Al ;o 1 oo
+f ff C|y2(C)|z(x,p,C,t)E(x,p,C,t)dCdpdx+ff g ()’ () 1. () dsdx.
0o Jo Ju 0o Jo
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The domain of A is

U e (H*(0,1) N H2(0,1)) x H2 (0,1) x (H?(0,1) N H} (0,1)) x H} (0,1) x (H2 (0,1) N H! (0, 1))
D (A) = xH! (0,1) x L2((0,1) x (0,1) X (11, 72)) X L3 (]R+,H2 (0,1) N H (0, 1)),
zp € L2((0,1) X (0,1) X (71, 72)) , us (x) = 2(x,0,C, ), 1'(x,0) = 0in (0,1)

Clearly, D (A) is dense in ‘H.
We have the following existence and uniqueness result.

Theorem 2.1. Suppose that f;z Iyz (C)| dC < p1, (G1) and (G2) hold. For all Uy € H, problem (11) possesses then
a unique solution U € C (R*; H). Moreover, if Uy € D (A), the solution satisfies

Ue C(RY;D(A)NCHRY;H).

Proof. We use the semigroup approach. So, we prove that A is a maximal monotone operator and that
¥ is a Lipschitz continuous operator. First, we prove that the operator A is dissipative. For any U =

(w, wy, u,us, 0,064z, r]t)T € D (A), by using the inner product and integrating by parts

w; w
_d2wxxxx — Owy w;
U u
d xx = Qx_ - Tz ,1, ,i’d
(AU, Uy = < it = YOk — ity e{“ B2 Q261,504 | : >
66xx - fet — YU — goexx + j(;oo g(S) ﬂ;x(x, S)dS 0,
-z, z
Oy — 1t 1

1 1 1 To
(AU Wy = - f u?dx -6 f whdx — f f 12 (Q)z (x,1,C, 1) updCdx
0 0 0 1

1 1 o 1
—{’f Gfdx—f f |y2 (C)|f z, (%, p,C 1)z (x, p, C, t) dpdCdx
0 0 Ju 0
1 00 1 00
v o[ oomwasixs [ [ g©(0- ) m s
0 0 0o Jo

Integrating by parts in p, we have

1
1
f 2p (%, p,C, 1)z (%, p,C t)dp = 5 |21, -2 (x,0,58)],
0

that is
1 Ty 1 1 1 T2

f f 2 )| f 2 (50,0, )2 (5, p, G ) dpdCi = f f |12 O[22 (6, 1,8,0) - 22 (5,0, )] ded.
0 T 0 0 T1

Consequently, using the fact that z (x,0, C, f) = u; (x) and 1(x, 0) = 0 (definition of D (A)), we get

1 1 To 1 T2
(AU Uy = f iy - f f 2 Q2 (1, € ) G — f f 12 (0|22 (1, €, 1) dcdx
0 0 T1 0 T1

1 1 1 T 1 00
1 2 1
_5f wfdx—é’f 6?dx+§ff |y2(C)|ut2(x)dCdx+§ff gl(s)|n§(x,5)|2dsdx.
0 0 0 Jn 0o Jo
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Now, using Young’s inequality, we can estimate

1 Ty To 1 1 T
- f f 1 ©2(@ 1L udidr < f 2 (O dc f wdx s f f 2 (O] 2 (1, €, 1y .
0 T 1 0 0 T

Therefore, from the assumption (3) and (G2) into account, we conclude that

1 1 T 1 1 00
-5 f widx — € f efdx—(y1— f |y2(C)|dC) f ufdx+% f f g 6 |nix,9)| dsdx
0 0 T1 0 0 0

< 0

(AU, U)gy

IN

that is, A is a dissipative operator.
Next, we prove the operator A is maximal. It is sufficient to show that the operator Al — A is

surjective for a fixed A > 0. Indeed, given F = (fi, ..., fg)T € H, we prove that there exists a unique
U = (w,wy,u,u, 0,64z, nt)T € D (A) such that

AI-—A)U =F, (15)
that is,
Aw —wy = f1,
Awy + d2wxxxx + owy = f21
Au—u = fs,
Autg = dyite +yOp + pttg + [ 12 (0 2(x,1, L, AT = fu, a6
A0 -0, = f,
AB; — 00xx + €O; + Vitge + goOrx — fo g (s)nt (x,s)ds = fe,
Az+ 1z = f,
A+l =6 = fs.

From (16)1, (16)3 and (16)s we have

Aw —w; = fi,
A=y = fa, (17)
A0 -0, = fs.

Inserting (17) into (16),, (16)4 and (16)s, we get

(A2 + 6)\)w + )W = (A +0) fr + fo,

(AZ + /\Hl)u — diltey + YAOy + f;z p2 Q) z(x,1,C,0dC = (A + ) f5+ fa+y (fs),,

(A2 +2£)0 = (5= g0) Ox + Ayt = [~ g (6) e, 8)ds =y (), + (A + O fs + fo, (19
Az+Clz, = f,

A+l =0 = fs.

Furthermore, by (16) we can find as

z(x,0,C,t) =u (x) forx € (0,1),C € (11, 72), (19)
and from (16), we have

Az(x,p,Ct) + C‘lzp (x,p,Ct)= fr(x,p,C) forxe(0,1), p€(0,1), Ce(11,72). (20)
Then, by (19) and (20), we obtain

z (.X, P, C, t) = Uy (x) g_/\PC + CE—APC fp f7 (x/ 5, C) eAécdé.
0
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So, from (16) on (0,1) X (0,1) X (11, 72),
) P )
z(x,p,Ct) = Au(x)e 0t — f3e‘ApC + et f f7 (x,6,0) eMoCds, (21)
0
and in particular, z(x, 1, ) = Au(x)e ¢ + z (x,0), with zg € L2((0,1) X (71, 72)), defined by
P )
20 (6,0 = e 4 [ 0,000
0

We note that the last equation in (18) with 7(x, 0) = 0 has a unique solution

i (5,9) ( [t o dy) e
0

(fos eV (fs (x, y) + A0 (¥) — f5 (1)) dy) s

Multiplying the third equations of system (18);, (18), and (18); by w, u and 5respectively, and integrating
over (0,1), we arrive at

( +60) wibdx + [ dywseddx = [} (A +0) fiivdx + [ folvdx,

2 ) utidx — [} dyuidx + [} yAOudidx + [ [ 2 (©)2(x,1, €, byidCdx
f (A + ) folldx + [ fatidx + [y (fs), T, (22)

(A2+M) 00dx — fo (6 — go) OxyOdx + fo Ay, Bdx — fo 17 96 iz, 5)0dsdx
= fo Y (fs), Odx + [, (A +0) fsOdx + [, foOdx.

Consequently, problem (22) is equivalent to the problem
— — =T — — =T
((w u, 0) ,(w u,é) )=L(w,u,5) , (23)

2
where B : [Hf (0,1) x H3 (0,1) x H! (0, 1)] —> R, is the bilinear form given by

B((w,,0",(@7,0) )
1 1 1 1
= f()\2+6)\)w€6dx+f dzwxx%xxdx+f dluxﬁxdx+f yAO udx
0 0 0 0
1
f (/\2+Ay1+ f 1 (0) Ae™ ACdC)uudx+ f (12 + AL) 00dx
0 0

—_— 1 —_—
f(é go+/\f g(s ‘As(f Aydy)ds)exexderf Ayu,0dx,
0
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and L : [Hf (0,1) x Hy (0,1) x H? (0, 1)] —> R, is the linear form defined by

L(@,7,6)
1 1 1 1 1
= L(A+6)fladx+j; fzadx+£ (A+y1)fgﬁdx+£ f4ﬂl:tdd.x+~fO y(f5)xﬁdx
1 . 1 . 1 1 Ty
+[) )/(fg)xedx+‘fO ()\+€)f59dx+‘f0f&alx—jo‘i‘1 2 (€) zo (x, C) udCdx

' fo | fo e ( fo O (fs ()~ fo (51 dy) dsBix.

It is easy to see that B(.,.) is continuous and coercive, and L (.) is continuous. Applying the Lax-Milgram
theorem, we deduce that problem (23) admits a unique solution (w, u, 6) € H (0,1) x H (0,1) X H! (0,1) for

all (%,'LT, 5) € H2(0,1) x H} (0,1) X H; (0,1). Applying the classical elliptic regularity, it follows from (22)

that (w, u, 0) € (H* (0,1) N H2 (0,1)) x (H?(0,1) n H} (0,1)) x (H?(0,1) N H! (0, 1). Thus, the operator Al — A
is surjective for any A > 0. Therefore, A is a maximal monotone operator.
Now, we prove that the operator ¥ defined in (14) is locally Lipschitz continuous in H. Let U =

. o T
(w, ws, u,u4,0,04,z, nt)T and U = (w, Wy, 1,11, 0,04, 2, 17‘) belong to H, then we have

(1 5 @02)aer] ~[(+ 5 @),

Let’s estimate the first term in the right-hand side of (24), adding and subtracting the term (ux + % (wx)z) Wy,
we obtain that

[+ 5 G| [+ 5 @),

S ||wx - ZA‘;x“po(o,l) |”X +3 (wX)2| + H%x”u’o(o,n |”X - ﬁxl +3 ”@”Lw(o,l) ‘wx + E‘;x| ||wx - ZEX“L""(OJ) L)

[rw-7@], - s D -@r]]. e

Using the embedding of H' (0, 1) into L* (0, 1) and deduce from (25) that

o+ 3] [+ 7).

The second term on the right side of (24) is estimated as follows

< C(lUllyy,

il ) Ju -, 29

[’ - @02

[y + @:) (wy = D)1

IN

02 = Dl ([0l 0:1) + I@xlo,1)) + 0 = Dl 1) (el + (@), (27)

again, we use the embedding H 1(0,1) into L* (0, 1), one also sees that

[0 = @] | < ity [T,) lu - Tl 28)

Combining (24), (26) and (28), shows that 7 (UI) is locally Lipschitz continuous in H. The proof complete. [
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3. Decay of the solution

In this section, we state and prove the stability result for the energy of the system (9)-(10). For the regular
solution of the system (9)-(10), we define the energy functional E (t) as

E(t):= % fol [uf +w? + 0% + (5 — g0) 0% + dy (ux +1 (wx)z)2 + dzwix] dx
1 1 (29)
3 fol fol f;z C ‘[JZ (C)| 22 (x, p, C, ) dCdpdx + > fol fom g(s) (q; (x, s)|2 dsdx.

The stability result reads as follows.

Theorem 3.1. Let (w, u, 0) be the solution of (9)-(10). Assume that (G1) and (G2) hold, that [ |u> (©)]dC < w,
that for some cp > 0,

1
f 05, (x,8)dx < ¢y, ¥s>0, (30)
0
there exist consmnts , €2 > 0 such that, for all t € R* and for all ¢; € (0, if—;) ,

t : 0o
Et)<c (1 + f (7)™ dt) ek €6 ¢, f g (s)ds. (31)
0 t

In order to prove this result, we need the following lemmas.

Lemma 3.2. Let (w, u, 0) be the solution of (9)-(10) and assume (3) holds. Then the energy functional, defined by
(29) satisfies

1 1 0 1 1 oo
iE 6 —6f wldx — {’f 0%dx — (yl - f ‘yz (C)| dC)f w?dx + 1 f f 7 (s) |17§( " s)|2 dsdx
dt 0 0 u 0 2Jo Jo

< 0, Vt>0. (32)

IA

Proof. Multiplying the first equation in (9) by w;, the second by u; and the third by 6;, integrating over (0, 1)
with respect to x, we obtain

df1 (! 1
E[E[ (uf+wf+9f+(6—go)9§+d2w§x+d1(ux+E(wx dx]+iaff g(s)'nx(x s)| dsdx
0

1 1 1 1 po
= —6f wtzdx—ylf ufdx—ff Q%dx—ff p2 (Q)z (x,1,C,t) udCx
0 0 0 0 Ju
10 t )
+= g (s) |r]x (x,s)| dsdx. (33)
2Jo Jo

On the other hand, multiplying (7) by | U (C)) z(x,p,C,t) and integrating over (0,1) x (0,1) X (11, 7o) with
respect to p, x and C, we obtain

1 1 T2 1 1 T2
f f f |2 ©|z(x, p, 5 1) 2t (x, p, €, ) dTdpdx+ f f f |u2 (O] z (x, p, &, 1) 2o (x, p, C, t) dCdpdx = 0,
0 JOo Jm 0 JOo Jm

which gives

Zdtfff C|P‘2(C)|z(foCt)dCdex__‘—fff |12 (0] 22 (x, p, C ) dCdpd.
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Thus, we have

1 d 1 1 T2 1 1 T
57 f f f Cluz2 (|2 (x,p, ¢, ) dCdpdx = ~5 f f |2 (Q)] 22 (x,1, ¢, 1) dCdx
0 0 1 0 o

1 T 1
+5 f |2 (O)] dC f updx. (34)
1 0
Summing up (33)-(34), we arrive at

1 1 1 1 7o
iE tH = —6f wtzdx - f utzdx - é’f Gfdx - f f t2(Q)z(x,1,C, t) udldx
dt 0 0 0 0 Ju

1 1 T2 . . 1
[ [l [ ot [ v
0 Ju ’ 0
1 2
+§](; ](; g () |T7§C (x,s)( dsdx. -

Using integration by parts and Young’s inequality, we have

1 1 Ty 1 1 T2
[ [ wozerinuda < 3 [Ceold [ e [ ]2 @b
0 1 T1 0 0 T1

(36)
Simple substitution of (36) into (35) and using (3) give (32), which concludes the proof. [

Now, we are going to construct a Lyapunov functional equivalent to the energy. For this, we will prove
several lemmas with the purpose of creating negative counterparts of the terms that appear in the energy.

Lemma 3.3. Let (w, u, 0) be the solution of (9)-(10). Then the functional
1
Fi(t) := fo (ufu + %wtw + %uz + sz)dx (37)

satisfies, for any €1 > 0, the estimate

1 1 2 & [ 1 1
Fi(t) < —dlf (ux+—(wx)2) dx——f wixdx+f utzdx+—f wtzdx
0 2 2 Jo 2
1

0 0
1 ,)/2 1 ‘U. 1 T
+ep f wldx + 5— f OFdx + ~— f f |2 (©)] 22 (x, 1, ¢, ) dCdbx.
0 281 0 281 0 2}

Proof. By differentiating F; (t) with respect to t, using the first and the second equation of (9), and integrating
by parts, we obtain

1 T 1

f [dl [ux + % (wx)z] — Y0 — patty — f 2 (Q)z(x,1,C, t)dC] udx + f ufdx + % f wfdx

0 x 7 0 0

1 1 1 5
+= f [dl [(ux + = (wx)z) wx] — doWirxx — 6wt] wdx + 1 f usudx + = f wywdx

2 0 2 X 0 2 0

1 1 2 & (1 1 1 1
—dq f (ux + = (wx)z) dx — = f wf(xdx + f utzdx + = f wfdx + yf Osudx
0 2 2 Jo 0 2 Jo 0

1 T2
- f f s (O 2(x, 1, C, HudCd.
0 T1

(38)

1
Fy (1)
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By using Young’s and Poincaré inequalities, and (3), we obtain for any €; > 0

1 € 1 ,)/2 1
€1 2 2
yfo Oru dx 2]; dx+2 1f 0;dx,
1 T 1 T2
[ [ @zt cnudcy < 3 [ i 2 f [ hel2 g ndcan
0 Jny 2 Jo 2e1 Jo Jn,

Then, (38) is established. [

IN

IN

Lemma 3.4. Let (w, u, 0) be the solution of (9)-(10). Then the functional

1
F, () ;=f (6t6+yux6+§62)dx (39)
0

satisfies, for any €, > 0, the estimate

5 — 2 1 1
Fy(t) < ( go) de + (1 + —)f 0%dx + ezf uldx
0 0

4er

g0 2
+2(6—_go) fo fo 7 () |nt(x, s)| dsdx. @0)

Proof. By differentiating F; (t) with respect to f, then exploiting the third equation in (9), and integrating by

parts, we obtain
1 o 1 1
f [66xx — 0 — Yuy — §oOuy (x, 1) + f g(s) nf(x(x, s)ds] Odx + f Gtzdx + )/f U Odx
0 0 0 0

1 1
+7/f uxetdx+ff 0:6dx
—-(6- go)f 9dx+f dex+yf uXQtdx—ff g(8) n'(x, 5)Oxdsdx.

Young’s inequality, Holder’s inequality and (G2) imply that

1 0o 1 1 00
(6 - gO) 2 g0 2
- (5)nL(x,s)0cdsdx < ———= f Odx + ———— f f (s) |t (x, s)| dsdx.
fofo RS 2 0 2(0-90) Jo Jo 7 |TT( )|

By using Young’s inequality, we obtain for any ¢, > 0,

1 1 »? 1
yf U, Oidx < ezf u,%dx + -— f Gtzdx.
0 0 4er Jo

Then, (40) is established. [

F, ()

Lemma 3.5. Let (w, u, 0) be the solution of (9)-(10) and (7). Then the functional

1 1 T
Fs(t) == f f f Ce™ |u2 (0| 2 (x, p, €, ) dTdpdx (41)
0 0 T1

satisfies, for some positive constant ny, the following estimate

1 1 To 1 T2
B < -m f f f L2 Q|2 (v, p, €, ) dCdpdx — my f f 112 (0|22 (1, §, f ddx
0 0 T1 0 T1

1
+{ f utzdx. (42)
0
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Proof. By differentiating F3 (t) with respect to t, and using the equation (7), we obtain

1 1 T
-2 f f f e |u2 (0|2 (x, p, T, £) 2, (%, p, C, ) dTdpdix
0 0 T1

F(#)

1 T
—fo f w2 @ [e72% (6,1, 8) = 22 (x,0,, )| dTalx

1 1 T2
[ [ [ e e ]2 oy dedpe
0 0 T

Using the fact that z (x,0,(,t) = u;and e < e™% < 1, for all 0 < p < 1, we obtain

1 To T2 1
ro < - [ [ eleolFaonds [eold [ e
0 T1 T1 0
1 1 T
- f f f Ce™|u2 ()] 2% (x, p, €, ) dCdpdx.
0 0 T1

Because —e™* is an increasing function, we have —e¢ < —e™% , for all C € [11, T2].
Finally, setting n; = e~™ and recalling (3), we obtain (46). [

Now, we are ready to state and prove the main result of this section.

Proof. (Of Theorem 3.1) To finalize the proof, we define the Lyapunov functional L (t) as follows

L (t) :=NE (t) +F (i’) +F, (t) + N3F3 (t),

where N and Nj are positive constants to be chosen properly later.
By differentiating (43) and recalling (32), (38), (40), (42) and the relations

1
f uldx
0

1l
o%
2
—
—_
=
=
+
NI -
S
N —
|
N
S
e
U
=

IN A
N N
S—. 55—
—_ —_
= =
= =
+ +
NI = N =
S S
=N ® N
~— ~———

N N
= =
= =
+ +

»—-o =
S

s
[
S R

we arrive at

_ 1 To 1
L'(t)y £ —|6N- %]f wtzdx - [(#1 - f |y2 (C)|dC)N -1- €N3]f utzdx
- 0 T1 0
- 1 1 2
_ %2 _ % — %]f(; w Ax — [dy —2¢e1 - 282]f ( + % (wx)z) dx
’ Y y 2
- _KN b (1 + 4&2)]f O%dx + —f f )(ni (x,s)| dsdx
_ 1
- © 90) f Gidx —mN;3 f f f C |y (C)| 72 (x,p,C, 1) dldpdx

TllN _Z f f z 2(x,1,¢,t)dCdx + 700 go)f f g(s) |nx(x s)| dsdx.

4207

d 1 1 T2 , 1 1 To ]
_%f f f e |u2 (0)] 22 (errC,t)dCdpdx—f f f Lo |2 (O] 22 (x, p, €, £) dCdpix
0 YO vJu 0o Jo Jn

(43)

(44)
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At this point, we need to choose our constants very carefully. First, we take €1 = €, and choose ¢, so small
that &, < min{%‘,dz}.
Then, we choose Nj large enough, so that 17,N; — 2“711 > 0.

Finally, we choose N so large, such that 6N—% >0, (yl - f;z |y2 (C)( dC) N-1-¢N5; >0, € —%—( + ﬁ) > 0.

482

By (29) and (G2), we deduce that there exists two positive constants a; and a, such that (44) becomes

1 00
L' (t) < —aE(t) + ozzf f g(s) |17§(x,s))2 dsdx, (45)
0 Jo

and further, for some 1, f2 > 0, we have
BiE(t) < L(t) < B2E (1), Vt > 0. (46)

To finish the proof of the stability estimates, we need to estimate the last term in (45).
Using (G2) and (32), we obtain that for all f € R*,

1 1
é(t)fo fog(s)|ni(x,s)|2dsdx < Lﬁé(t)g(s)|ni(x,s))2dsdx

1
- f f g (s) |r]§(x, s)|2 dsdx
0 Jo

<
1 00
2
< - " (s) [n(x, 5)| dsd
< fofo g () |n(x, 9| dsdx
< —2E'(t). (47)

Moreover, using the definition of E(t) and the fact that E(f) is nonincreasing imply that

1
2 2
6(x, t)dx < E@) < E(0), YteR".
fox( ) 5= 6] 5—90()

Using (8), (29) and (30), we arrive at

1 1
£() fo s dx = £ fo (6:(x, 1) — B(x, t — ) dx

IN

1 1
2E(b) fo 0% (x, t)dx + 2& (t) fo 0%(x, t — s)dx

LE(O)& (1) + 2c0é (1), Yt,s € R*.
6—!]0

IA

Then, we obtain

1 0o , 5 8 00
E(t) fo ft () [nt(x, 9)| dsdxs(é_gOE(O)+2co)£(t) ft g(s)ds.

Then, we deduce that, for all t € R*,

1 00 00
E(t) fo fo 9 |nix, 9)| dsdx < ~2E () + ( 5 _SgOE 0) + 2c0) E(b) ft g(s)ds. (48)
Multiplying (45) by & (t) and using (45), we obtain
EWL () +2a0E" (t) £ —a1E(H) E(F) + ((S 8 E(0) + 2(:0) ozzé(t)f g(s)ds. (49)
— 90 t
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Now, we define

L) =EBLE)+2aE(t), h(t)=£E(1) f g(s)ds.
t
Clearly, L (t) and E (t) are equivalent, that is, exist positive constants y; and y», such that
y1E(t) < L(t) <yE(t), YVt 2 0.
Then using (49) and (50), we have

L)< —%E HLE+ ( E(0) + 260) azh (t).
2

(5—90

This inequality still holds, for any c; € (0 4 ), that is

v

L) <—ag®) L)+ ( E(0) + 260) azh (t).

8
(5—!]0

Therefore, by integrating over [0, T] with T > 0, we obtain

T T t
L(T) <erh €is (.5 (0) + ( 5 89 E(0)+2c0) a f 1 o @S (1 dt).
~ .

Using (50), we have

T T t
E(T) < yle—flfo &(s)ds (L (0) +( E(0) + 200)0(2 f ¢t by EOMs gy () dt).
1 0

(5—!]0

Then, by integration by parts, we obtain

T : T - ’ 00
f e h <Oy dr = 1 (eC1 b g(S)”ls) f g (s)dsdt
0 0 t

1

T 00 0o T ‘
= 1 (eclfo g(s)dsf g(s)ds —f g(s)ds +f erh s g (1) dt).
€1 T 0 0

Consequently, combining with (51), we have

E (T) < &6—61 fOT &(s)ds + l (LE (0) + ZCO) (X_z f g (S) ds
Y1 Y1 \0— 9o a1 Jr

T T ¢
+)/le—61 Jy &6)ds (%E 0) + 2C0) ? f el I\ E(S)dsg () dt.
1 — Yo 1 Jo

On the other hand, for all t € R*, (ec‘ f s (g (t))cl) <0, and then ¢ €6 ()" < (9(0)".

Therefore

T, T
j; et h €% g (1) dt < (9(0))" fo (9 (1) dt.

Finally, by combining (52) and (53) we obtain (31) with

_1 _8 a (8 ) a
= o maX{L(O),(é_gOE(0)+ZCo) cl’(é—goE(0)+2C0) c (9(0) }

which completes the proof. [

4209

(50)

(51)

(52)

(53)
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