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Available at: http://www.pmf.ni.ac.rs/filomat

Approximation of functions belonging to Hölder’s class and solution of
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Abstract. In this paper, a very new technique based on the Gegenbauer wavelet series is introduced
to solve the Lane-Emden differential equation. The Gegenbauer wavelets are derived by dilation and
translation of an orthogonal Gegenbauer polynomial. The orthonormality of Gegenbauer wavelets is
verified by the orthogonality of classical Gegenbauer polynomials. The convergence analysis of Gegenbauer
wavelet series is studied in Hölder’s class. Hölder’s class Hα[0, 1) and Hϕ[0, 1) of functions are considered,
Hϕ[0,1) class consides with classical Hölder’s class Hα[0, 1) if ϕ(t) = tα, 0 < α ≤ 1. The Gegenbauer
wavelet approximations of solution functions of the Lane-Emden differential equation in these classes
are determined by partial sums of their wavelet series. In briefly, four approximations E(1)

2k−1 ,0
, E(1)

2k−1 ,M
,

E(2)
2k−1 ,0

, E(2)
2k−1 ,M

of solution functions of classes Hα[0, 1), Hϕ[0, 1) by (2k−1, 0)th and (2k−1,M)th partial sums of
their Gegenbauer wavelet expansions have been estimated. The solution of the Lane-Emden differential
equation obtained by the Gegenbauer wavelets is compared to its solution derived by using Legendre
wavelets and Chebyshev wavelets. It is observed that the solutions obtained by Gegenbauer wavelets are
better than those obtained by using Legendre wavelets and Chebyshev wavelets, and they coincide almost
exactly with their exact solutions. This is an accomplishment of this research paper in wavelet analysis.

1. Introduction

The idea of a wavelet is used in engineering, biotechnology, viscoelastic materials, biosciences, statistical
mechanics, the detection of submarines and aircraft, and other models of the real-life problem. Wavelet
theory is based on a new and emerging area of numerical research. The wavelet analysis is the disin-
tegration of a function into repositioned and scaled designs of a basic wavelet. The approximations of
function belonging to the Hölder’s class of order α, α ∈ (0, 1], by the trigonometric polynomial are at the
commonplace of Fourier analysis (Zygmund [19]). To the best of our knowledge, there is no work related
to the approximation of function belonging to Hölder’s class Hα[0, 1) and Hϕ[0, 1) by Gegenbauer wavelet
expansion. Working on the solution of differential equations, Izadi et al. ([7],[8]) have developed numer-
ical techniques to obtain the solution of linear as well as non-linear Lane-Emden differential equations
by generalized Bessel quasilinearization technique and approximation method whereas Singh et al. ([13])
provide a reliable algorithm for this type of differential equation. Srivastava et al. ([17],[14]) have proposed
a novel and efficient collocation method based on Fibonacci wavelets for the numerical solution of the

2020 Mathematics Subject Classification. 42C40, 65T60, 65L05.
Keywords. Gegenbauer wavelet, Hα[0, 1) and Hϕ[0, 1) class, Approximation of function and Lane-Emden differential equation.
Received: 13 June 2022; Revised: 12 October 2022; Accepted: 08 December 2022
Communicated by Miodrag Spalević
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non-linear Hunter-Saxton equation and dual-phase-lag heat transfer model in multi-layer skin tissue dur-
ing hyperthermia treatment. Chouhan et al. ([1]) studied the numerical problem of anomolous infiltration
and diffusion modelling expressed in non-linear fractional differential equations by Bernoulli wavelets.
Srivastava et al. ([16],[15]) introduced and developed a generalized wavelet method together with the
quasilinearization technique to solve the Volterras population growth model of fractional order and the
numerical solution of the fractional Bagley-Torvik equation by the Gegenbauer wavelet operational matrix
of integration. To make an advanced analysis, in the direction of Srivastava et al., Gegenbauer wavelets
have been considered in this paper. In Hölder’s class Hα[0, 1) and Hϕ[0, 1), the convergence analysis of
solution function f by Gegenbauer wavelet series has been investigated. A method has been proposed
to find the solution of the Lane-Emden differential equation by Gegenbauer wavelets. The importance of
the algorithm is discribed in section 7. This Gegenbauer wavelets contains the Chebyshev and Legendre
wavelets as particular cases.
The objective of this research paper are as follows.
(i). To define Hölder’s class and generalized Hölder’s class in the interval [0, 1).
(ii). To define the Gegenbauer polynomial and Gegenbauer wavelet.
(iii). To derive the approximation of function f belonging to classes Hα[0, 1) & Hϕ[0, 1).
(iv). To introduce the process for computing numerical solution of differential equation and to illustrate the
effectiveness of this process by an example.
(v). To compare the solution of Lane-Emden differential equation obtained by Gegenbauer wavelets with
solution derived by Chebyshev as well as Legendre wavelet methods.
The remaining part of this paper is classified as follows: in Section 2, some fundamental definitions and
properties of the Hölder’s class, the Gegenbauer wavelet, and the orthonormality of the Gegenbauer wavelet
are discussed. In Section 3, the convergence analysis of the solution function f by Gegenbauer wavelet
series has been investigated. In Section 4, definition of Gegenbauer wavelet approximation and its prop-
erties are studied which are required for our subsequent investigation. Two estimators for Gegenbauer
wavelet approximations have been developed. In Section 5, the proof of the theorems have been estimated.
In Section 6, the algorithm for the solution of the differential equation has been developed in the interval
[0,1), and it is used to obtain the solution of the Lane-Emden differential equation. In Section 7, the solution
of the Lane-Emden differential equation by Gegenbauer, Chebyshev, and Legendre wavelet methods and
their absolute error have been obtained. Section 8 is designated for the conclusions of this research paper.

2. Definitions and Preliminaries

2.1. Function of Hölder’s class Hα[0,1)
A function f ∈ Hα[0, 1), α ∈ (0,1] if f is continuous and satisfies the condition

f (x) − f (y) = O(|x − y|α),∀ x, y ∈ [0, 1) (Titchmarsh[18]).

Proposition 2.1 Hα[0, 1) ⊊ Hβ[0, 1), for 0 < β < α, for all α, β ∈ (0,1].
Proof: Let f ∈ Hα[0, 1) ,

Then lim
t→0+

| f (x + t) − f (x)|
|t|α

= C f > 0.

Now, lim
t→0+

| f (x + t) − f (x)|
|t|β

= lim
t→0+

| f (x + t) − f (x)|
|t|α|t|β−α

≤ lim
t→0+

| f (x + t) − f (x)|
|t|α

max(|t|α−β)

≤ lim
t→0

| f (x + t) − f (x)|
|t|α

= C f , max(|t|α−β) ≤ 1

lim
t→0+

| f (x + t) − f (x)|
|t|β

≤ C f , Thus f ∈ Hβ[0, 1).
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Let f (x) = |x|β, | f (x + t) − f (x)| = O(|t|β)

lim
t→0+

| f (x + t) − f (x)|
|t|α

= lim
t→0+

|t|β

|t|α
= lim

t→0+

1
|t|α−β

= +∞.

Therefore, f < Hα[0, 1) but f ∈ Hβ[0, 1).

Hence, Hα[0, 1) ⊊ Hβ[0, 1).

Example: Let f (x) = |x|
1
3 , | f (x + t) − f (x)| = O(|t|

1
3 )

lim
t→0+

| f (x + t) − f (x)|

|t|
1
2

= lim
t→0+

|t|
1
3

|t|
1
2

= lim
t→0+

1

|t|
1
6

= +∞.

Therefore, f < H
1
2 [0, 1) but f ∈ H

1
3 [0, 1).

Hence, H
1
2 [0, 1) ⊊ H

1
3 [0, 1).

2.2. Function of Hölder’s class Hϕ[0,1)

Let ϕ(t) be positive monotonic increasing function of t such that ϕ(|t|) → 0 as t → 0. A function
f ∈ Hϕ[0, 1), if f is continuous and satisfies the condition

f (x + t) − f (x) = O(ϕ(|t|)),∀ x, t, x + t ∈ [0, 1),

If ϕ(t) = tα then Hϕ[0,1) consides with classical Hölder’s class Hα[0, 1) of functions.

2.3. Gegenbauer Polynomial and Gegenbauer Wavelet

The Gegenbauer polynomials denoted by C(λ)
m (t), forλ > − 1

2 , it is also known as ultraspherical harmonics
polynomials of order m and satisfy the following singular Sturm-Liouville equation in the interval [-1,1] as:

d
dt

[(1 − t2)ω(t)
d
dt

C(λ)
m (t)] +m(2λ +m)ω(t)C(λ)

m (t) = 0, λ > −
1
2
, m ∈ {1, 2, 3, ...}.

where ω(t) = (1 − t2)λ−
1
2 is the weight function of the Gegenbauer wavelet.

The recurrence formula of the Gegenbauer polynomials is given by:

C(λ)
0 (t) = 1, C(λ)

1 (t) = 2λt;

C(λ)
m+1(t) =

1
m + 1

(
2t(m + λ)C(λ)

m (t) − (m + 2λ − 1)C(λ)
m−1(t)

)
,m ∈ {1, 2, 3, ...}.

The Gegenbauer polynomials are orthogonal with respect to weight function ω(t) = (1− t2)λ−
1
2 , for λ > − 1

2 ,
on the interval [-1,1] as:∫ 1

−1
C(λ)

m (t)C(λ)
n (t)ω(t)dt = L(λ)

m δmn, λ > −
1
2
.

where L(λ)
m =

π21−2λΓ(m+2λ)

m!(m+λ)(Γλ)2 is the normalizing factor, and δ is the Kronecker delta function.

Particular cases:
(i) For λ = 1

2 , Gegenbauer polynomials reduces to Legendre polynomials.
(ii) For λ = 0 and λ = 1, it reduces to Chebyshev polynomials of first and second kind respectively.
The Gegenbauer polynomials holds the inequality,
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|C(λ)
m (cosθ)| sinλ θ <

Γ(m + 3λ
2 )21−λ

ΓλΓ(1 +m + λ
2 )
, 0 ≤ θ ≤ π. (1)

From the Rodrigues formula ;∫
C(λ)

m (t)ω(t)dt = −
2λ(1 − t2)λ+

1
2

m(m + 2λ)
C(λ+1)

m−1 (t), m ≥ 1. (2)

The Gegenbauer wavelets denoted by ψ(λ)
n,m, are defined on [0,1) by

ψ(λ)
n,m(t) =


2

k
2
√

L(λ)
m

C(λ)
m (2kt − 2n + 1), i f t ∈ [ n−1

2k−1 ,
n

2k−1 ),

0, otherwise.
(3)

where n = 1, 2, 3, ..., 2k−1, m = 0, 1, 2, ...,M − 1(M > 0) is the order of the Gegenbauer polynomials and
k = 1, 2, 3, ..., is the level of resolution (Guo Ben-Yu[6], Elgindy and Smith[5]).

2.4. Orthonormality of Gegenbauer wavelets
Proposition 2.4 : {ψ(λ)

n,m(t)} forms an orthonormal set for n = 1, 2, ..., 2k−1,m = 0, 1, 2, 3..., with respect to
weight function ωn,k(t) = (1 − (2kt − 2n + 1)2)λ−

1
2 . i.e.

< ψ(λ)
n,m, ψ

(λ)
n′,m′ > ωn,k(t) =

1, i f n = n′,m = m′,
0, otherwise.

Proof :(i) For m = 0 & n = n′;

< ψ(λ)
n,0, ψ

(λ)
n,0 > ωn,k(t) =

∫ 1

0
ψ(λ)

n,0(t)ψ(λ)
n,0(t)ωn,k(t)dt

=

∫ 1

0
(ψ(λ)

n,0(t))2ωn,k(t)dt

=

∫ n
2k−1

n−1
2k−1

2k

L(λ)
0

C2(λ)
0 (2kt − 2n + 1)ωn,k(t)dt

=
2k

L(λ)
0

∫ 1

−1
C2(λ)

0 (v)ω(v)
dv
2k
, 2kt − 2n + 1 = v

=
λ(Γλ)2

π21−2λΓ(2λ)

Γ( 2λ+1
2 )Γ( 1

2 )
Γ(λ + 1)

= 1.

(ii). For m , 0, n = n′ & m = m′;

< ψ(λ)
n,m, ψ

(λ)
n,m > ωn,k(t) =

∫ 1

0
ψ(λ)

n,m(t)ψ(λ)
n,m(t)ωn,k(t)dt

=

∫ 1

0
(ψ(λ)

n,m(t))2ωn,k(t)dt

=

∫ n
2k−1

n−1
2k−1

2k

L(λ)
m

C2(λ)
m (2kt − 2n + 1)ωn,k(t)dt

=
2k

L(λ)
m

∫ 1

−1
C2(λ)

m (v)ω(v)
dv
2k
, 2kt − 2n + 1 = v

=
1

L(λ)
m

∫ 1

−1
C2(λ)

m (v)ω(v)dv =
1

L(λ)
m

L(λ)
m = 1.
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(iii). For n , n′,

< ψ(λ)
n,m, ψ

(λ)
n′,m > ωn,k(t) =

∫ 1

0
ψ(λ)

n,m(t)ψ(λ)
n′,m(t)ωn,k(t)dt

ψ(λ)
n,m(t) is defined in [ n−1

2k−1 ,
n

2k−1 ) ⊂ [0, 1) and ψ(λ)
n′,m(t) is defined in [ n′−1

2k−1 ,
n′

2k−1 ) ⊂ [0, 1). If n , n′ , then the intervals
[ n−1

2k−1 ,
n

2k−1 ) and [ n′−1
2k−1 ,

n′
2k−1 ) are disjoint i.e.[n − 1

2k−1
,

n
2k−1

)
∩

[n′ − 1
2k−1

,
n′

2k−1

)
= ϕ.

Therefore < ψ(λ)
n,m, ψ

(λ)
n′,m > ωn,k(t) = 0 if n , n′ ∀ m,m′ .

(iv). For m , m′,

< ψ(λ)
n,m, ψ

(λ)
n,m′ > ωn,k(t) =

∫ 1

0
ψ(λ)

n,m(t)ψ(λ)
n,m′ (t)ωn,k(t)dt

If m+m′ is an even number, then the integrandψ(λ)
n,m(v)ψ(λ)

n,m′ (v)ω(v) is an odd function on [-1,1], 2kt−2n+1 = v.

Therefore < ψ(λ)
n,m(t), ψ(λ)

n,m′ (t) > ωn,k(t) = 0, ∀ n,n′ .
If m +m′ is an odd number, then the integral under weight function ω(v) on [-1,1] is zero.
Therefore < ψ(λ)

n,m(t), ψ(λ)
n,m′ (t) > ωn,k(t) = 0 if m , m′ ∀ n,n′ .

3. Convergence of Gegenbauer Wavelet Series

In this section, the convergence analysis of the solution function f ∈ L2[0, 1) of Lane-Emden differential
equation by Gegenbauer wavelet expansion has been discussed.
Theorem 3.1. If f (t) is the exact solution of the Lane-Emden differential equation then its Gegenbauer
wavelet series

∑2k−1

n=1
∑
∞

m=0 cn,mψ
(λ)
n,m(t) converges uniformly to f (t).

Proof : Let f (t) =

2k−1∑
n=1

∞∑
m=0

cn,mψ
(λ)
n,m(t).

Then < f , f > =

〈2k−1∑
n=1

∞∑
m=0

cn,mψ
(λ)
n,m(t),

2k−1∑
n′=1

∞∑
m′=0

cn′,m′ψ
(λ)
n′,m′ (t)

〉

=

2k−1∑
n=1

∞∑
m=0

2k−1∑
n′=1

∞∑
m′=0

cn,mcn′,m′ < ψ
(λ)
n,m, ψ

(λ)
n′,m′ >

=

2k−1∑
n=1

∞∑
m=0

|cn,m|
2
||ψ(λ)

n,m||
2
2

=

2k−1∑
n=1

∞∑
m=0

|cn,m|
2,

{ψ(λ)
n,m} is an orthonormal basis of L2[0, 1) & ||ψ(λ)

n,m||2 = 1.

Thus,
2k−1∑
n=1

∞∑
m=0

|cn,m|
2 = < f , f > =

∫ 1

0
| f (t)|2dt < ∞, f ∈ L2[0, 1).

Therefore the wavelet series
∑2k−1

n=1
∑
∞

m=0 cn,mψ
(λ)
n,m(t) is convergent and by Bessel’s inequality,

∑2k−1

n=1
∑M−1

m=0 |cn,m|
2
≤

|| f ||22 < ∞, ∀M ≥ 0.
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Let (S2k−1,M f )(t) =

2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t).

For N > M, ||(S2k−1,N f ) − (S2k−1,M f )||22

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2k−1∑
n=1

N−1∑
m=0

cn,mψ
(λ)
n,m(t) −

2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2k−1∑
n=1

N−1∑
m=M

cn,mψ
(λ)
n,m(t)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

=

2k−1∑
n=1

N−1∑
m=M

|cn,m|
2
→ 0 as M→∞, N→∞.

Therefore, ||(S2k−1,N f ) − (S2k−1,M f )||22 → 0 as M→∞, N→∞.

Hence (S2k−1,N f )∞N=0 is a Cauchy sequence in L2[0, 1). Since L2[0, 1) is a Banach space, therefore the Cauchy
sequence (S2k−1,N f )∞N=0 converges to a function 1(t), say.

Here, 1(t) = lim
N→∞

(S2k−1,N f ) = lim
N→∞

∑2k−1

n=1
∑N−1

m=0 cn,mψ
(λ)
n,m(t).

Now we need to show that 1(t) = f (t), for this

< 1(t) − f (t), ψ(λ)
n,m(t) > = < 1(t), ψ(λ)

n,m(t) > − < f (t), ψ(λ)
n,m(t) >

= lim
N→∞

< (S2k−1,N f ), ψ(λ)
n,m(t) > −cn,m

= cn,m − cn,m = 0.

Therefore 1 − f = 0 i.e. 1 = f .

Hence the wavelet series
∑2k−1

n=1
∑N−1

m=0 cn,mψ
(λ)
n,m(t) converges uniformly to f (t) as N→∞.

4. Gegenbauer wavelet approximation and theorems

In this section, approximation and theorems based on Gegenbauer wavelet have been establish.

4.1. Gegenbauer wavelet approximation

Since {ψ(λ)
n,m(t)} forms an orthonormal basis for L2[0, 1) , therefore a function f ∈ L2[0, 1) can be expressed

into Gegenbauer wavelet series as:

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψ
(λ)
n,m(t) (4)

where cn,m =< f , ψ(λ)
n,m > ωn,k(t), ωn,k(t) = (1 − (2kt − 2n + 1)2)λ−

1
2 (5)

The (2k−1,M)th partial sum (S2k−1,M f )(t) of Gegenbauer wavelet series equation (4) is given by

(S2k−1,M f )(t) =
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t) = CTψ(λ)(t). (6)

where C and ψ(λ)(t) are given by; C = [c1,0, c1,1, ..., c1,M−1, c2,0, ..., c2,M−1, ..., c2k−1,0, ..., c2k−1,M−1]T and
ψ(λ)(t) = [ψ(λ)

1,0(t), ψ(λ)
1,1(t), ..., ψ(λ)

1,M−1(t), ψ(λ)
2,0(t), ..., ψ(λ)

2,M−1(t), ..., ψ(λ)
2k−1,0

(t), ..., ψ(λ)
2k−1,M−1

(t)]T.
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The Gegenbauer wavelet approximation E2k−1,M( f ) of f by (2k−1,M)th partial sum (S2k−1,M f ) of Gegenbauer
wavelet series equation (4) is defined by

E2k−1,M( f ) = min
(S2k−1 ,M f )

|| f − (S2k−1,M f )||2. (7)

E2k−1,M( f ) is said to be best approximation of the function f by (S2k−1,M f ) if E2k−1,M( f )→ 0 as k→ ∞, M→ ∞
(Zygmund [19]).

4.2. Theorems
In this paper, the following theorems have been developed:

Theorem 4.2.1. If the solution function f of Lane-Emden differential equation belongs to Hα[0, 1) class and
its Gegenbauer wavelet expansion be
f (t) =

∑
∞

n=1
∑
∞

m=0 cn,mψ
(λ)
n,m(t) having (2k−1,M)th partial sums

(S2k−1,M f )(t) =
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t)

then the Gegenbauer wavelet approximation of f by (S2k−1,M f ) under || · ||2 is given by;

(i) For m = 0, E(1)
2k−1,0

( f ) = min|| f −
2k−1∑
n=1

cn,0ψ
(λ)
n,0(t)||2 = O

( 1
2kα

)
, k ≥ 1.

(ii) For m≥ 1, E(1)
2k−1,M

( f ) = min|| f −
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t)||2 = O

(
1

2(k−1)α
√

M

)
, M ≥ 1.

Theorem 4.2.2. If a function f ∈ Hϕ[0, 1) class such that ϕ(|t|) → 0 as t → 0 then the Gegenbauer wavelet
approximation of f by (S2k−1,M f ) satisfies;

(i) For m = 0, E(2)
2k−1,0

( f ) = min|| f −
2k−1∑
n=1

c′n,0ψ
(λ)
n,0(t)||2 = O

(
ϕ

( 1
2k

))
, k ≥ 1.

(ii) For m ≥ 1, E(2)
2k−1,M

( f ) = min|| f −
2k−1∑
n=1

M−1∑
m=0

c′n,mψ
(λ)
n,m(t)||2 = O

ϕ
(

1
2k−1

)
√

M

 , M ≥ 1.

5. Proof of theorems:

In this section, the proofs of theorems have been developed.

5.1. Proof of theorem 4.2.1
For m = 0, error between Gegenbauer wavelet expansion and f (t) in the interval

[
n−1
2k−1 ,

n
2k−1

)
is given by:

e(λ)
n ( f )(t) = cn,0ψ

(λ)
n,0(t) − f (t)χ[

n−1
2k−1 ,

n
2k−1

).
cn,0 = < f , ψ(λ)

n,0 > ωn,k(t)

=

∫ n
2k−1

n−1
2k−1

f (t)ψ(λ)
n,0(t)ωn,k(t)dt

≤ f (t1)
∫ n

2k−1

n−1
2k−1

ψ(λ)
n,0(t)ωn,k(t)dt, by mean value theorem, t1 ∈

[n − 1
2k−1

,
n

2k−1

)
= f (t1)

∫ n
2k−1

n−1
2k−1

2
k
2√

L(λ)
0

C(λ)
0 (2kt − 2n + 1)(1 − (2kt − 2n + 1)2)λ−

1
2 dt
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= f (t1)
∫ π

0

2
k
2√

L(λ)
0

sin2λ θ
dθ
2k
, 2kt − 2n + 1 = cosθ

=
2 f (t1)

2
k
2

∫ π
2

0

1√
L(λ)

0

sin2λ θdθ

=
2 f (t1)

2
k
2

√
L(λ)

0

√
πΓ(λ + 1

2 )
2Γ(λ + 1)

.

|e(λ)
n ( f )| ≤

∣∣∣∣∣∣∣∣∣
2 f (t1)

2
k
2

√
L(λ)

0

√
πΓ(λ + 1

2 )
2Γ(λ + 1)

2
k
2√

L(λ)
0

− f (t)

∣∣∣∣∣∣∣∣∣
= | f (t1) − f (t)|
≤ N|t1 − t|α, f ∈ Hα[0, 1), N is suitable positive real number,

≤
N
2αk

.

Then ||e(λ)
n ( f )||22 =

∫ n
2k−1

n−1
2k−1

|e(λ)
n ( f )|2ωn,k(x)dx

≤

∫ n
2k−1

n−1
2k−1

( N
2αk

)2

ωn,k(x)dx

=
( N

2αk

)2 ∫ n
2k−1

n−1
2k−1

ωn,k(x)dx

=
N2

22αk

√
πΓ(λ + 1

2 )

2kΓ(λ + 1)
. (8)

(E(1)
2k−1,0

( f ))2 =

∫ 1

0

2k−1∑
n=1

e(λ)
n ( f )


2

ωn,k(t)dt

=

∫ 1

0

2k−1∑
n=1

(e(λ)
n ( f ))2ωn,k(t)dt +

∑∑
1≤n,n′≤2k−1

∫ 1

0
en( f )en′ ( f )ωn,k(t)dt

=

2k−1∑
n=1

∫ 1

0
(e(λ)

n ( f ))2ωn,k(t)dt + 0,

since support of e(λ)
n ( f ) and e(λ)

n′ ( f ) are disjoint.

=

2k−1∑
n=1

||e(λ)
n ( f )||22

≤

2k−1∑
n=1

N2

22αk

√
πΓ(λ + 1

2 )

2kΓ(λ + 1)

=
N2

22αk

√
πΓ(λ + 1

2 )
2Γ(λ + 1)

.

Therefore, E(1)
2k−1,0

( f ) = O
( 1

2kα

)
, k ≥ 1.
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(ii) For m ≥ 1, f (t) =

∞∑
n=1

∞∑
m=0

cn,mψ
(λ)
n,m(t).

cn,m = < f , ψ(λ)
n,m > ωn,k(t)

=

∫ n
2k−1

n−1
2k−1

f (t)ψ(λ)
n,m(t)ωn,k(t)dt

=

∫ n
2k−1

n−1
2k−1

(
f (t) − f

(n − 1
2k−1

))
ψ(λ)

n,m(t)ωn,k(t)dt

+ f
(n − 1

2k−1

) ∫ n
2k−1

n−1
2k−1

ψ(λ)
n,m(t)ωn,k(t)dt

=

∫ n
2k−1

n−1
2k−1

(
f (t) − f

(n − 1
2k−1

)) 2
k
2√

L(λ)
0

C(λ)
m (2kt − 2n + 1)ωn,k(t)dt + 0

|cn,m| ≤
N2

k
2√

L(λ)
0

( 1
2k−1

)α ∫ n
2k−1

n−1
2k−1

∣∣∣C(λ)
m (2kt − 2n + 1)ωn,k(t)

∣∣∣ dt, f ∈ Hα[0, 1)

=
N2

k
2√

L(λ)
0 2(k−1)α

∫ 1

−1

∣∣∣C(λ)
m (v)ω(v)

∣∣∣ dv
2k
, 2µkt − 2n + 1 = v

=
N√

L(λ)
0 2(k−1)α2

k
2

∫ 1

−1

∣∣∣∣C(λ)
m (v)(1 − v2)λ−

1
2

∣∣∣∣ dv

≤
N√

L(λ)
0 2(k−1)α2

k
2

∣∣∣∣∣∣−2λ(1 − v2)λ+
1
2

m(m + 2λ)
C(λ+1)

m−1 (v)

∣∣∣∣∣∣
1

−1

, by integral (2),

≤
N√

L(λ)
0 2(k−1)α2

k
2

2λ
m(m + 2λ)

max
0≤θ≤π

[
C(λ+1)

m−1 (cosθ) sin2λ+1 θ
]
, v = cosθ

≤
2Nλ√

L(λ)
0 2(k−1)α2

k
2 m(m + 2λ)

2−λΓ(m + 3λ+1
2 )

Γ(λ + 1)Γ(m + λ+1
2 )
, by inequality (1),

=
2N

√
2π2(k−1)α2

k
2 m(m + 2λ)

√
m!(m + λ)
Γ(m + 2λ)

Γ(m + 3λ+1
2 )

Γ(m + λ+1
2 )

≤

√
2
π

N

2(k−1)α2
k
2 m
. (9)

Now, f (t) − (S2k−1,M f )(t) =

2k−1∑
n=1

∞∑
m=M

cn,mψ
(λ)
n,m(t).

Then, (E(1)
2k−1,M

( f ))2 = || f (t) − (S2k−1,M f )(t)||22

=

2k−1∑
n=1

∞∑
m=M

|cn,m|
2
||ψ(λ)

n,m(t)||22

+

2k−1∑
n=1

∑∑
M≤m,m′≤∞

|cn,m||cn,m′ ||ψ
(λ)
n,m(t)||ψ(λ)

n,m′ (t)|

+
∑∑

1≤n,n′≤2k−1

∞∑
m=M

|cn,m||cn′,m||ψ
(λ)
n,m(t)||ψ(λ)

n′,m(t)|
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=

2k−1∑
n=1

∞∑
m=M

|cn,m|
2 + 0

≤

2k−1∑
n=1

∞∑
m=M


√

2
π

N

2(k−1)α2
k
2 m

2

=
N2

π22(k−1)α

∞∑
m=M

1
m2

≤
N2

π22(k−1)α

[
1

M2 +

∫
∞

M

dm
m2

]
, by Cauchy’s integral test,

≤
N2

π22(k−1)α

[ 1
M2 +

1
M

]
≤

2N2

π22(k−1)αM
.

Therefore, E(1)
2k−1,M

( f ) = O
(

1

2(k−1)α
√

M

)
, M ≥ 1.

This completes the proof of the Theorem 4.2.1.

5.2. Proof of theorem 4.2.2

(i) For m = 0, following the proof of first part of Theorem 4.2.1 and for f ∈ Hϕ[0, 1) class,

|e
′(λ)
n ( f )| ≤ | f (t1) − f (t)|

≤ Nϕ(|t1 − t|), f ∈ Hϕ[0, 1)

≤ Nϕ
( 1

2k

)
.

||e
′(λ)
n ( f )||22 =

∫ n
2k−1

n−1
2k−1

|e
′(λ)
n ( f )|2ωn,k(x)dx

≤

∫ n
2k−1

n−1
2k−1

(
Nϕ

( 1
2k

))2

ωn,k(x)dx

= N2ϕ2
( 1

2k

) ∫ n
2k−1

n−1
2k−1

ωn,k(x)dx

= N2ϕ2
( 1

2k

) √πΓ(λ + 1
2 )

2kΓ(λ + 1)
.

(E(2)
2k−1,0

( f ))2 =

2k−1∑
n=1

||e
′(λ)
n ( f )||22

≤

2k−1∑
n=1

N2ϕ2
( 1

2k

) √πΓ(λ + 1
2 )

2kΓ(λ + 1)

= N2ϕ2
( 1

2k

) √πΓ(λ + 1
2 )

2Γ(λ + 1)
.

Therefore, E(2)
2k−1,0

( f ) = O
(
ϕ

( 1
2k

))
, k ≥ 1.

(ii) For m ≥ 1, following the proof of second part of Theorem 4.2.1 and for f ∈ Hϕ[0, 1) class,
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|c′n,m| ≤
N2

k
2√

L(λ)
0

ϕ
( 1

2k−1

) ∫ n
2k−1

n−1
2k−1

∣∣∣C(λ)
m (2kt − 2n + 1)ωn,k(t)

∣∣∣ dt, f ∈ Hϕ[0, 1)

≤

√
2
π
ϕ

( 1
2k−1

) N

2
k
2 m
. (10)

Then, (E(2)
2k−1,M

( f ))2 =

2k−1∑
n=1

∞∑
m=M

|c′n,m|
2

≤

2k−1∑
n=1

∞∑
m=M


√

2
π
ϕ

( 1
2k−1

) N

2
k
2 m

2

=
N2

π
ϕ2

( 1
2k−1

) ∞∑
m=M

1
m2

≤
N2

π
ϕ2

( 1
2k−1

) [ 1
M2 +

∫
∞

M

dm
m2

]
≤

N2

π
ϕ2

( 1
2k−1

) [ 1
M2 +

1
M

]
≤

2N2

πM
ϕ2

( 1
2k−1

)
.

Therefore, E(2)
2k−1,M

( f ) = O

ϕ
(

1
2k−1

)
√

M

 , M ≥ 1.

This completes the proof of the Theorem 4.2.2.

6. Algorithm of Lane-Emden differential equation

In this section, the algorithm for the solution of Lane-Emden differential equation is to be discussed.
For this, let us derive the eight basis functions of the Gegenbauer wavelet for λ = 2, k = 2, M = 4 as follows;

ψ(λ)
1,0(t) = 4

√
2

3π

ψ(λ)
1,1(t) =

8
√
π

(4t − 1)

ψ(λ)
1,2(t) = 4

√
2

15π
(12(4t − 1)2

− 2)

ψ(λ)
1,3(t) =

2
√

3π
(32(4t − 1)3

− 12(4t − 1))


, t ∈

[
0,

1
2

)
, (11)

ψ(λ)
2,0(t) = 4

√
2

3π

ψ(λ)
2,1(t) =

8
√
π

(4t − 3)

ψ(λ)
2,2(t) = 4

√
2

15π
(12(4t − 3)2

− 2)

ψ(λ)
2,3(t) =

2
√

3π
(32(4t − 3)3

− 12(4t − 3))


, t ∈

[1
2
, 1

)
. (12)

Let y(t) be the solution of Lane -Emden differential equation :

y′′ +
β

t
y′ + f (t, y) = 1(t), t ∈ (0, 1], β ≥ 0, y(0) = a, y′(0) = b, (Narayan and Rajesh[12]). (13)
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Then, y(t) =
∞∑

n=1

∞∑
m=0

cn,mψ
(λ)
n,m(t) (14)

and (2k−1,M)th partial sum of series (14) as:

y(t) = (S2k−1,M f )(t) =
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t) = CTψ(λ)(t) (15)

By initial conditions of Eqn. (13), the Eqn. (15) reduces to

y(0) =
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(0) = a, y′(0) =

d
dt

2k−1∑
n=1

M−1∑
m=0

cn,mψ
(λ)
n,m(t)


t=0

= b.

In Eqn. (15), CT contains 2k−1M unknown coefficients. Hence, excluding initial conditions, 2k−1M − 2 extra
conditions are needed for the solution of the differential equation. For determining the values of 2k−1M
unknown coefficients cn,m, collocation points ti =

i−1
2k−1M , i = 1, 2, ..., 2k−1M, are substituted in Eqn. (15) to

obtain 2k−1M − 2 equations. Hence the values of unknown coefficients cn,m are obtained by these 2k−1M
equations. This algorithm is also applicable to higher-order differential equations.

7. Results and Discussion

In this section, the validity of the proposed method for the numerical solution of the Lane-Emden
differential equation and its error analysis have been discussed. This example has an exact solution;
compare it with the proposed method and the Chebyshev and Legendre wavelet methods.

7.1. Example

Consider the Lane-Emden differential equation

y′′ +
2
t

y′ + y = t2(t + 1) + 6(2t + 1), t ∈ (0, 1], y(0) = 0, y′(0) = 0. (16)

The exact solution of the Eqn. (16) is y(t) = t2 + t3.

y(x + t) − y(x) = ((x + t)2 + (x + t)3) − (x2 + x3)
= 2xt + t2 + 3x(x + t) + t3

≤ 2t + t + 6t + t = 10t
≤ 10tα = O(|t|α), α ∈ [0, 1).

Hence, y(t) ∈ Hα[0, 1), by proposition (2.1).
By using the algorithm of the Gegenbauer wavelet approach described in Section 6, the differential equation
has now been solved. For the approximate solution of the Eqn. (16), take λ = 2, M = 4 and k = 2. Then the
approximate solution y(t) will be

y(t) =

3∑
m=0

c1,mψ1,m(t) = c1,0ψ1,0(t) + c1,1ψ1,1(t) + c1,2ψ1,2(t) + c1,3ψ1,3(t)

= 4

√
2

3π
c1,0 +

8
√
π

(4t − 1)c1,1 + 4

√
2

15π
(12(4t − 1)2

− 2)c1,2

+
2
√

3π
(32(4t − 1)3

− 12(4t − 1))c1,3, t ∈
[
0,

1
2

)
. (17)
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By Eqns. (16) and (17),

4

√
2

3π
c1,0 +

(
8
√
π

(4t − 1) +
64

t
√
π

)
c1,1 +

4

√
2

15π
(12(4t − 1)2

− 2) +
768

t

√
2

15π
(4t − 1) + 1536

√
2

15π

 c1,2

+
2
√

3π

(
32(4t − 1)3

− 12(4t − 1) +
4

t
√

3π
(384(4t − 1)2

− 48) +
6144
√

3π
(4t − 1)

)
c1,3 = t2(t + 1) + 6(2t + 1). (18)

For values of unknowns c1,0, c1,1, c1,2 and c1,3, we collocate Eqn. (18) at t = 0.125 and t = 0.375 and using
the initial condition in Eqn. (17), four systems of linear equations are obtained. Solving these systems of
equations, the values of the unknowns are as follows:

c1,0 = 0.052291496911437, c1,1 = 0.039378247175879,
c1,2 = 0.011060694488843, c1,3 = 0.000749506866172. (19)

Putting the values of c1,0, c1,1, c1,2 and c1,3 from Eqn. (19) into Eqn. (17),

y(t) = 0.052291496911437

4

√
2

3π

 + 0.039378247175879
(

8
√
π

(4t − 1)
)

+ 0.011060694488843

4

√
2

15π
(12(4t − 1)2

− 2)


+ 0.000749506866172

(
2
√

3π
(32(4t − 1)3

− 12(4t − 1))
)
, t ∈

[
0,

1
2

)
.

Following above process for approximate solution of y(t) in the interval
[

1
2 , 1

)
,

y(t) = 4

√
2

3π
c2,0 +

8
√
π

(4t − 3)c2,1 + 4

√
2

15π
(12(4t − 3)2

− 2)c2,2

+
2
√

3π
(32(4t − 3)3

− 12(4t − 3))c2,3, t ∈
[1
2
, 1

)
. (20)

For values of unknowns c2,0, c2,1, c2,2 and c2,3, we collocate Eqn. (20) at t = 0.5, t = 0.625, t = 0.75, and
t = 0.875, four systems of linear equations obtained. Solving these systems of equations, the values of the
unknowns are as follows:

c20 = 0.552593926822261, c21 = 0.177851204277836,
c22 = 0.020541289764991, c23 = 0.000749506866172. (21)

Putting the values of c1,0, c1,1, c1,2 and c1,3 from Eqn. (21) into Eqn. (20),

y(t) = 0.552593926822261

4

√
2

3π

 + 0.177851204277836
(

8
√
π

(4t − 3)
)

+ 0.020541289764991

4

√
2

15π
(12(4t − 3)2

− 2)


+ 0.000749506866172

(
2
√

3π
(32(4t − 3)3

− 12(4t − 3))
)
, t ∈

[1
2
, 1

)
.

The exact solution (ES) and approximate solution of the Lane-Emden differential equation obtained by
Gegenbauer wavelet method (GWM) for different values of t in the interval [0,1) have been obtained.
Also compare this solution by Legendre wavelet method (LWM), first kind Chebyshev wavelet method
(FKCWM) and second kind Chebyshev wavelet method (SKCWM) are given in the Table 1 (Lal and
Patel[10]) .
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t ES LWM FKCWM SKCWM GWM
0.1 0.011 0.1105200243 0.0109999998 0.0110000002 0.011000000000001
0.2 0.048 0.0483697994 0.0479999999 0.0480000001 0.048000000000000
0.3 0.117 0.1181960706 0.1169999999 0.1170000000 0.116999999999998
0.4 0.224 0.2267734978 0.2239999999 0.2240000001 0.223999999999999
0.5 0.375 0.3803447612 0.3750000001 0.3750000001 0.375000000002715
0.6 0.576 0.5851525426 0.5760000001 0.5760000001 0.576000000002668
0.7 0.833 0.8474395224 0.8330000003 0.8330000002 0.833000000002610
0.8 1.152 1.1734483820 1.1520000000 1.1520000000 1.152000000002543
0.9 1.539 1.5694218030 1.5390000010 1.5390000000 1.539000000002469

Table 1

The graphs of the exact solution and approximate solution of the Lane-Emden differential equation by
Gegenbauer wavelet method, Legendre wavelet method and Chebyshev wavelet method are shown in the
Figure 1.

Figure 1

By Table 1 and Figure 1, it is evident that the exact and Gegenbauer wavelet solutions of the Lane-Emden
differential equation coincide almost everywhere.
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7.2. Absolute Error

The absolute error between the exact solution and approximate solution of the Lane-Emden differential
equation by the Gegenbauer wavelet method, the Legendre wavelet method, and the Chebyshev wavelet
method is given in Table 2. The absolute error is negligible by the Gegenbauer wavelet method, as compared
to the Legendre wavelet method, and the Chebyshev wavelet method are shown in Table 2.

t LWM FKCWM(×10−8) SKCWM(×10−9) GWM(×10−11)
0.1 0.00005200243 0.019999999920084 0.200000000935563 0.000100093544564
0.2 0.00036979940 0.010000000133514 0.100000001335143 0
0.3 0.00119607060 0.010000000827404 0 0.000201227923213
0.4 0.00277349780 0.010000000827404 0.100000008274037 0.000099920072216
0.5 0.00534476120 0.010000000827404 0.100000008274037 0.271499489556959
0.6 0.00915254260 0.010000000827404 0.100000008274037 0.266808797277918
0.7 0.01443952240 0.030000002482211 0.200000016548074 0.261002330859128
0.8 0.02144838200 0 0 0.254307686020638
0.9 0.03042180300 0.100000008274037 0 0.246913600676635

Table 2

The graphs of the absolute error in the solution of the Lane-Emden differential equation by the Gegenbauer
wavelet method and the Chebyshev wavelet method are shown in Figure 2.

Figure 2
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8. Conclusions

1. Gegenbauer wavelet approximation of Theorems 4.2.1 and 4.2.2 are given by
E(1)

2k−1,0
( f ) = O

(
1

2kα

)
, k ≥ 1. (E(1)

2k−1,0
( f ))→ 0 as k→∞ ;

E(1)
2k−1,M

( f ) = O
(

1
2(k−1)α

√
M

)
, M ≥ 1. (E(1)

2k−1,M
( f ))→ 0 as k→∞ and M→∞;

E(2)
2k−1,0

( f ) = O
(
ϕ

(
1
2k

))
, k ≥ 1. (E(2)

2k−1,0
( f ))→ 0 as k→∞ ;

E(2)
2k−1,M

( f ) = O
(
ϕ

(
1

2k−1

)
1
√

M

)
, M ≥ 1. (E(2)

2k−1,M
( f ))→ 0 as k→∞ and M→∞.

Therefore, approximation E(1)
2k−1,0

,E(1)
2k−1,M

,E(2)
2k−1,0

and E(2)
2k−1,M

of function f belonging to Hα[0, 1) and Hϕ[0, 1) are
the best possible in wavelet analysis.
2. By Table 1 and Figure 1, it is apparent that the exact and Gegenbauer wavelet solutions of the Lane-Emden
differential equation coincide almost everywhere in the interval [0,1).
3. By Table 2 and Figure 2, it is comprehensible that the absolute error in the Gegenbauer wavelet method
is negligible as compared to the Legendre wavelet method and the Chebyshev wavelet method.
4. The illustrated example shows the validity and accuracy of the proposed method of Section 6 to solve
the Lane-Emden differential equation.
5. The proposed method in Section 6 is also applicable to solve the natural problems in higher-order differ-
ential equations.
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