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Abstract. In this paper, we study the concomitants of m—dual generalized order statistics (and conse-
quently m—generalized order statistics) from Huang-Kotz Farlie-Gumble-Morgenstern bivariate distri-
bution (HK-FGM) of the types 1 and 2. Some important information measures are derived and studied
for ordinary order statistics and sequential order statistics with a comparison. Specifically, the Shannon
entropy, inaccuracy measure, and Fisher information number. Moreover, a comparison between the two
types of HK-FGM distribution is carried out.

1. Introduction

Morgenstern [34] proposed the Farlie-Gumbel-Morgenstern (FGM) distribution for Cauchy marginals.
The same structure was examined by Gumbel [22] for exponential marginals. In connection with his studies
of the correlation coefficient, Farlie [19] proposed a new generic form of a bivariate distribution for given
arbitrary marginals, based on Morgenstern’s and Gumbel’s work [22]. Johnson and Kotz [28], [29] applied
the proposed bivariate distribution to the multivariate case, coining the known name “FGM” distribution
function (DF). The FGM distribution is defined by Fx y(x, y) = Fx(x)Fy(y)[1+ 6(1 = Fx(x))(1 = Fy(y))], =1 <
0 < 1, where Fx and Fy are the marginal DFs of some random variables (RVs) X and Y. While the classical
FGM distribution is a versatile family with many applications, one of its most well-known drawbacks is the
low level of dependence it allows between RVs, with a maximum positive correlation coefficient of 0.33. As
a result, FGM distribution is only applicable to data with low correlation. One of the successful attempts to
overcome this drawback is due to the Huang and Kotz [26] who employed multiple iterations of the FGM
distribution to boost the correlation between the components, demonstrating that just one iteration can
triple the covariance for particular marginals. Alawady et al. [6], Barakat and Husseiny [10], and Barakat
et al. [11] later studied this model in depth. Huang and Kotz [27] are responsible for one of the most
effective and well-known attempts to broaden the range of correlation and give the FGM distribution more

flexibility. Huang and Kotz [27] offered the following two comparable extended DFs F;)Y(x, y) (denoted by
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HK-FGM1(61, p1)) and Fy) (x, ) (denoted by HK-FGM2(02, p2))

FO (x,y) = Fx@Fy(y) [1+ 0:(1 - F{@)A - Fy ()], pr 2 1, (1)

with the probability density function (PDF)

g/(x, v) = fx(x)fy(y) [1 +01((1 + p1)FR (x) — 1)((1 + p1)F’;1(y) _ 1)] )
and
Fg?y(x, y) = Fx(x)Fy(y) [1 + 62(1 — Fx(x))*(1 = Fy(y))*], p» > 1, )

with the PDF
oY) = fx@fr(y) [1+ 0201 - Fx(@)" (1 - Fy(y)™!

X ((1+ p2)Fx(x) = 1)((1 + p2)Fy(y) — 1)].

The admissible range of the shape-parameter vectors (01, p1) and (02, p2) are Q; = {(01,p1) : p;z < 61 <

,—1
pl_l, p1 = 1}, and Qy = {(O2,p2) : -1 < 0, < (I’Z—j)p ,p2>1lor —=1< 6, <+1, po =1}, respectively.

The maximum positive correlations of the models (1) and (2) are 0.375 and 0.391, respectively, which are
achieved atp; = 2and p, = 1.1877. There is a small difference between the two maximal positive correlations
produced by the comparable models (1) and (2). As a result, determining the trade-off between the models
(1) and (2) is difficult. The only work that treated this issue is Barakat et al. [14], where the focus was only
on the Fisher information (FI) measure. The majority of works on the extensions (1) and (2), on the other
hand, are concerned with the family (1). Abd Elgawad et al. [4], Bairamov and Kotz [9], Barakat et al. [12],
[13], and Fisher and Klein [20] are among them. One of the main aims of this work will be to conduct an
analysis of type (2) in light of various significant information measures (specifically, the Shannon entropy,
inaccuracy measure, and Fisher information number (FIN)). Moreover, another purpose of this study is to
compare the DFs (1) and (2) utilizing these information measures. Huang and Kotz [27] demonstrated that
using the model (1), the positive correlation between marginal distributions may be enhanced to = 0.39,
while the maximum negative correlation remains —31. Furthermore, when uniform marginals are used in
the model (1), the range 0 < p; < 1results in a fast-declining positive correlation, while the admissible range
quickly widens. Furthermore, at p; = 1, the highest negative correlation is found. As a result, we'll only
deal with the case p; > 1. Many researchers have expressed interest in using and generalizing the simple
analytical form of the HK-FGM families in various aspects of science, including Amblard and Girard [8],
Bairamov and Kotz [9], Barakat et al. [12], [13], Domma and Giordano [18], Fischer and Klein [20], and
Mokhlis and Khames [32], [33], among others.

Kamps [30] introduced the concept of generalized order statistics (GOSs) as a unified approach to
a variety of models of ascendingly ordered RVs. The concept of dual GOSs, denoted by DGOSs, was
introduced by Burkschat et al. [15] as a parallel concept of GOSs to enable a common approach to
descendingly ordered RVs.

The subclasses m—GOSs and m—DGOSs of GOSs and DGOSs, respectively, contain many important
models of ordered RVs such as ordinary order statistics (OOSs), lower and upper record values, k—records,
sequential order statistics (5OSs), and type II censored OOSs. Let F(.) be an arbitrary continuous DF, with
PDF f(.) and survival function F() = 1 - F()). Then the RVs X(1,n,m,k) < X(2,n,m,k) < ... < X(n,n,m,k)
(k> 0, m > —1) are said to be m—GOSs, if their joint PDF (JPDF) is given by (cf. Kamps [30])

n
(mk) —
1,2,..‘,71271(x1’ x2/ ceey xn) - [H ‘Vj

=1

n—-1
H?muf)f(x»]f“ (6 f ),

=

where F1(1) > x, > ... > x; > F!(0) and y; = k+ (n—j)(m+1) > 0,j = 1,2,...,n (note that y, = k). On
the other hand, the RVs X;(1,n,m, k) > X (2,n,m,k) > ... > Xy(n,n,m, k) (k > 0, m > —1) are said to be
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m—DGOSs, if their JPDF is given by (cf. Burkschat et al. [15])

n n—-1
o (1,2 X) = [H Vf] [ F*(xpf (x]')] F ) f (),
j=1 j=1

where F71(1) > x1 > ... > x,, > F1(0). Clearly, fld (z"f_’_kim(xl,xz, ..., Xy) is obtained just by replacing I_Tby F. Thus,
any obtained result for DGOSs can be easily deduced for GOSs and vice versa. For this reason, in this paper
we consider only the model of m—DGOSs.

The marginal PDF of rth m—DGOS, 1 < r < n, is given by (cf. Burkschat et al. [15])

Cr—l
(r—1)!

Fxanmio(x) = Pl () f(0g,, (F(0), )

where C,_1 = [ yi,r =1,2,...,1, gn(x) = hp(x) — 1y, (1), x € (0,1) and
i=1

Py (x) = _(;(::;)' m# -1,
" —In(x), m=-1.

David [16] was the first to introduce the concept of concomitants of OOSs. In problems of selection and
prediction, the concomitants are of interest. David and Nagaraja [17] provided a comprehensive review of
concomitants of OOSs. Let (X;, Yi),i = 1,2,...,n, be a random sample from a bivariate DF Fxy(x, y). If the
X-variates are arranged in descending order as Xy(1,n,m,k) > X4(2,n,m, k) > .... = Xy4(n,n,m, k), for the X
sample, then Y-variates paired with these m—DGOSs are called the concomitants of m—DGOSs and denoted
by Yy nmp, 7 = 1,2,...,n. The PDF of the concomitant of rth m—DGOS is given by

Fommi(y) = f Frx () fsomm (0%, )

where fx,(.nm i (x) is the PDF of X,(r,n, m, k) which is given by (3) and fy;x(ylx) is the conditional PDF of Y
given X. The concomitants of GOSs and DGOSs have been explored by a number of authors. Among them
are Abd Elgawad and Alawady [1], Abd Elgawad et al. [2], Alawady et al. [5], Haseeb and Nayabuddin
[23], [24], Haseeb et al. [25], Nayabuddin [35], Saman and Muhammad [38], and Tahmasebi et al. [40].

In this paper, we consider three information measures, which are Shannon entropy, inaccuracy measure,
and FIN. These information measures can be briefly explained as follows:

1. The Shannon entropy is a statistical measure of information that determines how much uncertainty
or variability an RV reduces on average. This measure is maximal for uniform distribution, additive
for independent events, rising in the number of outcomes with non-zero probabilities, continuous,
non-negative, and permutation-invariant as the number of outcomes with non-zero probabilities
increases. See Abd Elgawad et al. [3], [4], Alawady et al. [7], Barakat and Husseiny [10], and Pathria
and Beale [37] for further information on this measure. The Shannon entropy of a continuous RV X
having PDF fx(x) is defined by

HOO == [ futo)log fuo )
2. Let X and Y be two non-negative RVs with DFs Fx(x) and Gy(x), respectively. If fx(x) is the actual

PDF corresponding to the observation and gy(x) is the density assigned by the experimenter, then the
inaccuracy measure of X and Y is defined by Kerridge [31] as

IXY)= —j(; fx(x)log gy(x) dx. (6)
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3. The FIN is the second moment of the “score function” where the derivative is with respect to x in a
given PDF fx(0, x), rather than the parameter 0. It is a FI for a location parameter, for this reason, it
is also called shift-invariant FI. Recently, FIN is frequently used in different aspects of science. For
example, the FIN is intimately related to many of the fundamental equations of theoretical physics,
cf. Frieden and Gatenby [21]. Moreover, the FIN matrix is used to define a class of measures of
multivariate dependence between the components of a random vector, see Zografos [41]. For some
recent works about this measure, see Abd Elgawad et al. [3], [4], Tahmasebi and Jafari [39], and
the references therein. The FIN of the RV X having PDF fx(x) is defined by (cf. Papaioannou and

9log fx(&)

Ferentinos [36])
(o) 1
ox X_X) ‘L,( 2 ) @™ 7

The rest of the paper is unfolded as follows: In Section 2, we study the rth concomitant of m—DGOSs
in HK-FGM2 with general marginals. Moreover, the Shannon entropy, inaccuracy measure, and FIN are
derived. It is worth mentioning that Abd Elgawad et al. [4] derived the Shannon entropy and FIN for
HK-FGM1, but no computational study was conducted for their theoretical results. In Section 3, we carry
out a computational study for the three information measures related to the two types HK-FGM1 and
HK-FGM2. Moreover, comparisons between the two types and between OOSs and SOSs are carried out
based on these information measures.

FIN(X) = E(

2. Concomitants of m-DGOS based on HK-FGM?2

In this section, we derive the marginal DF of the rth concomitant of DGOSs based on HK-FGM?2, as well
as the Shannon entropy, inaccuracy measure, and FIN. Moreover, the inaccuracy measure is also derived
for HK-FGM1, since this measure was not discussed in Abd Elgawad et al. [4].

Lemma 2.1. Let X ~ Fx and Y ~ Fy. Furthermore, let p, is an integer number. Then

frnmia(y) = fr(y) [1 +(1- FY(]/))pz_l(l -1+ PZ)FY(]/))Ar,n,m,k;lﬂz] ’ 8)
where
Pz—l
— i 1 (1 + Pz)

j= 1
and y;j =k+ (n— j)(m+1).
Proof. In view of (4), the PDF of Y|, k] is given by

Frmmi(y) = f Frx) s (D)

= j: AL+ 62(1 = Fx()) (1 = (1 + p2) Fx(0))(1 = Fy())* (1 = (1 + p2)Fy(y))]

Cr- y
X 0 (P fr(wax

Thus, we can write

firmma@) = AL+ (1 = Fy@)y> (1 = (1 + p2)Ey ) Armip. ], (10)

where 0.C
Benmi, = G2 f (1= Fx())> (1= (1 + po)FxG)F ™ ()93 (Fx () fx ()
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m+1( )

= 02Cra f (1= Fx(0) ™' (1 = (1 + p2) Fx (X)) Fy; ()(—1] fx(x)dx. (1)

(=D

1X(x>

Apply the binomial theorem and take the transformation u = n (11), then

p2-1
Am,m,k;pz—(e 2C’1)1,Z(” t )( i f W1 = (14 mu) FE?

ﬁ yr+it+l
-1+ pz)f ur‘l(l -1+ m)u)W_ldu]

_ OG- yeti+l
_m;( i ) [!3(, )—(1+p2)[3’(,m)]

00 (-1 (r)T (L T(rr(tl
- (r—1)!(1+m)r;;( i )(‘1) [r(?’“ o ~(1+p )W :

m+1

(12)

m+1

Simplifying (12), we get (9) and by combining (9) and (10), we get the required result. [J

Now, we introduce Theorems 2.2, 2.4, and 2.5 to get an explicit form of the Shannon entropy, inaccuracy
measure and FIN for concomitants of m—DGOS of HK-FGM2, respectively, while Theorem 2.3 gives an
explicit form of the inaccuracy measure for concomitants of m—DGOS of HK-FGM1.

Theorem 2.2. Let Yy umi, 1 < v < n, be the concomitant of the rth m—DGOS based on HK—-FGM?2. Then, the
Shannon entropy of Y. mj is given by

p2—1

H(Y[r,n,m,k]) = H(Y) - Ar,n,m,k;pz Z (PZ )( 1) [(1 + pZ)(DY(l + 1) - q)Y(l)] rn mk;par
i=0

where Dy (i) = [ fr(y)Fi(y)log fr(y)dy, and

_ZAr,n,m,k;pz - (Ar,n,m,k;pz - 1)2 10g(1 - Ar,n,m,k;pz ) + (1 + Ar,n,m,k;pz )2 108(1 + Ar,n,m,k;pz)
4Ar,n,m,k;pz ’

Qr,n,m,k;pz =

Proof. For simplicity, write A, = A, xp,- Using (5) and (8), the Shannon entropy for Y, ;, 1 is given by

H(Y[r,n,m,k]) == f f[r,n,m,k](]/) 10g f[r,n,m,k](y)d]/

- f AL+ = Ey @)V (1 = (1 + p)Fy()A]

X[1+ (1 = Fy(y))” (1 - (1 + p2)Fy(y)Arl log fr(y)dy
—Ellog fr(Yirnmm)] = Ellog(1 + (1 = Fy(Ypmma))? - (1 = (1 + p2)Fy(Yprmma)Arl = J1 + 2,
where ]1 = _E[long(Y[r,n,m,k])]r and ]2 = _E[log(l + (1 - FY(Y[r,n,m,k])))pz_l(l - (1 + pZ)FY(Y[r,n,m,k])) Ar] Now,

J1 = —Ellog fy(Yrnmu)] = - I (log FrMIA A + (1 = Fy()™ ™' (1 = (1 + p2)Fy(y)A)1dy

p2-1

f (log FrLAW) + Ar 2(’72 )( DA WFy ) = AL+ p2) fr()F ()]1dy
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p2-1

—- [ fwtog iy -a Y1 [ AR wI0g oy
- i=0 -

pa—1

+Ar(1+Pz)Z(p2i_ 1)(—1)i f HWFY (y)log fr(y)dy
i=0 -

pa-1

= -8, X (e [ pwrotos fy
i=0 e

P21

+A,(1 +pz)2(p2i_ 1)(—1)1' f FrWFY!(y)log fr(y)dy
i=0 -

p2—1

=HM -2 ) (” o 1)(—1)1(1 +p)P(i +1) = Dy()].
i=0

Furthermore, by using the integrating by parts we get J, = % log(1 + A) — L o:o VdU, where U = log[(1 +

(1 =Fy))» ' = (1 + p2)Fy(y))A)], and dV = fr(y) + fr(y)(1 + (1 = Fy(y))”> "' (1 = (1 + p2)Fy(y))A;). On the
other hand, by using Mathematica ver. 11.3, we can easily prove that [, = Q. . x;,, which proves the
theorem. [J

Theorem 2.3. Let Y|, 1 be the concomitant of rth m—DGOS in HK—-FGM1 family. Then, the inaccuracy measure
is given by

DY, Y) = A+ A%, 0 H@) + AF L (L p)@y(p1),
where

Br+p,n—r+1)
B(r,n—r+1)

A*

7,1, m,k;p1

=011 =1 +p1)

Proof. By using (6) and the result of Abd Elgawad et al. [4] concerning the marginal PDF of concomitants
of DGOS based on HK-FGM1, the inaccuracy measure is given by

I Yimmit, ¥) = — f Fonmin() 108 fi(y)dy

== [ A8, (0= 0+ pOP @) 108 frliy
== I f)log f(y)dy — A7, i, I AW = (1 +p)FY (y) log fr(y)dy

=—(1+A7 ) I fr)log fr(dy + AF, L,k (1 +p1) I FWF (y)1og fr(y)dy.

Hence, I*(Yirumi, Y) = (1 + A* YH(y) + A* (1 + p1)@y(p1), as required to prove. [

1, mk;py r,n,mk;py

Theorem 2.4. Let Yy, m ) be the concomitant of rth m—DGOS in HK-FGM?2 family. Then, the inaccuracy measure
is given by

P21

I(Y[r,n,m,k]; Y) = H(y) - Ar,n,m,k;pz Z (Pz Z_ 1)(_1)Z[®Y(1) - (1 + Pz)q)Y(l + 1)]
i=0
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Proof. For simplicity, write A, = A,y k;p,- By using (6) and (8), the inaccuracy is given by

I(Y[r,n,m,k]/ Y) = _‘[ fr,n,m,k:n(]/) log fY(y)d]/
—I FrWIL+ (1= Fy))y> ' A - 1+ p2)Fy(y)Ar]log fr(y)dy

. f Fr(y)log fr(ydy - A, f A = Eym)P (1 = (1 + pa)Fy(y) log fr()dy

p2—1

f Frilog frindy - A, Z(”Z )( 1y f FrFy () log frindy

~(1+p) f FWE W) log fr(y)dy.

Hence, [(Yjumu, Y) = H@y) — A 2225 (%7 )(=1) @y () = (1 + p2)@y(i + D]. O
Theorem 2.5. Let Y, i, 1 < v < n, be the concomitant of rth m—DGQOS in HK-FGM2 family. Then, the FIN of
Ynmi 15 given by
FIN(Y{rn,mp1) = FIN(Y) + T(P2) = Apm jop, O(P2) = 280 0mcp, 'V (P2), (13)
where o )
(p2) = f (%] (14 Arpiopn(1 = (1 + p2)u)( — > du

P+ p)A = wp T+ (p2 = DA = w1 = (L+po)u

1
1T+ Apmip, (1 = (1 + p2)u)(1 = u)p2-1 f (Fy (u))du,

o(p2) =

and
1
W(p2) = fo (1 +p2)A —w> ™+ (p2 = DA — w21 = (1 + p2)u) fy (Fy' (w))du.

Proof. Again for simplicity, write A, = Ay, i ;- By using (7) and (8), then the FIN is given by

alogf[rnmk](y))z ([ :
FIN(Y [ 0,m, ):E(é = f 5= 10g firnma(¥) | firnma(y)d
[ k] ay i, . 8y gf[ 1y f[ \yyay

2

- f [a%(log () +log( + AL - (1 + pFr () —ﬂ(y))f’z-l)]

[ A+ A1 = (1+ p)Fy () - Fy(n)> )] dy

=FIN(Y)+£ [gg)] A+ A1 = (1 +p2)Fy())(A = Fy(y))*dy

+ f ) [—(1 + IS = Fr(u))=™" = (2 = DA ()1 = (1 +p2)Fr(y)(A - a(y))ﬁz-z]
. (1+ (1= (1+ p) Py ()1 = Fr(y)y= A,
XU+ A1 = 1+ p2)Fr())(1 = Fr(y)* ldy
" f“’ ~(L+ p)AF)A = B @)™ = (p2 = DA S @)L = (L+ p)Fr(y)(L - Fr(y))* ™
. (1+ (1= (1+ p) ()1 = Fr(y)y= A,
S

Xy O+ A= (L p2)Fr )L = Fy())* )] dy.

Upon using the transformation u = Fy(y) and after some algebra, the required result (13) follows. O
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3. Computational Study and Comparison between HK-FGM1 and HK-FGM2

We start this section with a comparison between HK-FGM1 and HK-FGM2 according to some selected
values of the correlation coefficient versus the different values of the parameter values of the two types.

Table 1: Correlation Coefficient p versus the parameters in HK-FGM1 and HK-FGM2
Y HK-FGM1 (91, Pl) HK-FGM2 (92, Pz)

037 | (-0.67,1.5), (-0.493,2), (-:0.206,3) | (-1.452,1.18), (-1.528,1.2), (-1.649,1.25)
03 | (-0.544,1.5), (-0.4,2), (-0.167,3) | (-1.201,1.18), (-1.237,1.2), (-1.337,1.25)
0.2 | (-0.363,1.5), (-0.267,2), (-0.185,3) | (-0.801,1.18), (-0.826,1.2), (-0.891,1.25)
02 | (0.363,1.5),(0.267,2), (0.185,3) | (0.801,1.18), (0.826,1.2), (0.891,1.25)
0.3 (0.544,1.5), (0.4,2), (0.167,3) (1.201,1.18), (1.237,1.2),(1.337,1.25)
037 | (0.67,1.5), (0.4932), (0.206,3) | (1.452,1.18), (1.528,1.2), (1.649,1.25)

3.1. Comparison between HK-FGM1 and HK-FGM2, as well as OOSs and SOSs, according to Shannon entropy

Tables 2 and 3 introduce the Shannon entropy of HK-FGM1 with uniform marginals at p; = 1,2, and
different values of 01, according to OOSs (for which we have (m, k) = (0,1), cf. Kamps [30]) and SOSs (for
which we have (m,k) = (1,1), cf. Kamps [30]). The calculations were carried out based on the result of
Abd Elgwad et al. [4] and by using the MATHEMATICA Ver.11.3. Tables 2 and 3 uncovered the following
features:

1. The maximum value of H(Y|;n,0,1]) attains at (r,n) = (2,3) and (01, p1) = (£0.15, 2).
2. The maximum value of H(Y|,,1,1]) attains at (,n) = (4,5) and (61, p1) = (-0.15,2).

Tables 4 and 5 display the Shannon entropy of HK-FGM2 with uniform marginals at p, = 1, 2, and different
values of 0,, according to OOSs and SOSs. The calculations were carried out based on the results of Theorem
2.2 and by using the MATHEMATICA Ver.11.3. Tables 4 and 5 uncovered the following features:

1. The maximum value of H(Y|;n,0,1]) attains at (r,n) = (4,5) and (62, p2) = (£0.05, 2).
2. The greatest value of H(Y[.,,1,17) attains at (r,n) = (6,7) and (0, p2) = (£0.05, 2).

Moreover, Tables 2-5 reveal an interesting fact that H(Y7;.,,0,1]) based on HK-FGM2 is greater than H(Y[;,,0,17)
based on HK-FGM1, Also, H(Y{;,1,17) based on HK-FGM2 is greater than H(Y;,1,17) based on HK-FGM1.
Finally, for the two types HK-FGM1 and HK-FGM2, we could not recognize any general trend based on r
or n for which one can decide H(Y[,1,1]) < H(Y[rn011), 0 HY[1,111) > H(Y[r0,0,11)-
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3.2. Comparison between HK—FGM1 and HK—-FGM2, as well as OOSs and SOSs, according to inaccuracy measure

Table 6 displays the inaccuracy measure of HK-FGM1 with exponential marginals with mean = 1, at
p1 = 1,2,3,4, and 6; = 0.25, according to OOSs and SOSs. The calculations were carried out based on
Theorem 2.3 and by using the MATHEMATICA Ver.11.3. Table 6 uncovered the following features:

1. In general, I* (Yirn011, Y) < I*(Y[pni1), Y), if 7 < %, and I*(Yyrn011, Y) > D*(Yypnap, Y), if 7> %
2. The maximum value of I*(Y7...0,15, Y) attains at (r,n) = (1,5) and (61, p1) = (0.25,4).
3. The maximum value of I*(Y7,,1,13, Y) attains at (r,n) = (1,5) and (61, p1) = (0.25,4).

Table 7 displays the inaccuracy measure of HK-FGM2 with exponential marginals with mean = 1, at
p2 = 1,2,3,4, and 6, = 0.25, according to OOSs and SOSs. The calculations were carried out based on
Theorem 2.4 and by using the MATHEMATICA Ver.11.3. Table 7 uncovered the following features:

1. In general, I(Y{n011, Y) < I(Ypnaap, Y), if 7 < %, and I(Y{rn011, Y) > I(Yrnaay, Y), if 7> ”Zi
2. The maximum value of I(Y[,0.1], Y) attains at (r,n) = (2,5) and (62, p2) = (0.25,2).
3. The maximum value of I(Y[,1,1], Y) attains at (r,n) = (2,5) and (6, p2) = (0.25,2).

Moreover, Tables 6 and 7 reveal a fact that I(Y[,,011, Y) > I* (Y011, Y), and I(Y 11, Y) > I*(Yirnaa), Y)-
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3.3. Comparison between HK-FGM1 and HK-FGM?2 according to FIN

Table 8 displays the FIN of HK-FGM1 with exponential marginals with mean =1, atp; = 1,2,3,4, and
01 = 0.25, according to OOSs and SOSs. The calculations were carried out based on the result of Abd
Elgwad et al. [4] and by using the MATHEMATICA Ver.11.3. Table 8 revealed the following properties:

1. In general, FIN(Y[;.4,0,11) < FIN(Y[10,1,17)-
2. The maximum value of FIN(Y{;..0,17) attains at (v, n) = (3, 10) and (61, p1) = (0.25,3).
3. The maximum value of FIN(Y};, 1,1]) attains at (r, n) = (3, 10) and (61, p1) = (0.25,4).

Table 9 displays the inaccuracy measure of HK-FGM2 with exponential marginals with mean = 1, at
p2=1,2,3,4, and 6, = 0.25, according to OOSs and SOSs. The calculations were carried out based on the
result of Theorem 2.5 and by using the MATHEMATICA Ver.11.3. Table 9 revealed the following properties:

1. In general, we could not recognize any general trend based on r or n for which one can decide
FIN(Y[;’,”’O’H) < FIN(Y[r,n,l,l])/ or FIN(Y[W,O,H) > FIN(Y[M,LH).
2. The maximum value of FIN(Y7.,0,11) attains at (r,n) = (8,10) and (62, p2) = (0.25,2).
3. The maximum value of FIN(Y7;,,1,11) attains at (r,n) = (3,10) and (0,, p2) = (0.25,4).
Moreover, Tables 8 and 9 reveal a fact that FIN(Y{;.,,0,17) according to HK-FGM2 is greater than FIN(Y[;.0,17)

according to HK-FGM1 and FIN(Y/;,,1,17) according to HK-FGM?2 is greater than FIN(Y7, ,1,17) according to
HK-FGM1.
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